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Abstract: The unique structure and physiology of a tumor microenvironment impede intra-tumoral
penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor
microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1
(NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting
ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer
cells. Both the covalent conjugation and the co-administration of iRGD with chemotherapeutic agents
and engineered delivery vehicles have been explored. Interestingly, the iRGD-mediated drug delivery
also enhances penetration through the blood–brain barrier (BBB). Recent studies have shown its
synergistic effect with BBB disruptive techniques. The efficacy of immunotherapy involving immune
checkpoint blockades has also been amplified by using iRGD as a targeting moiety. In this review,
we presented the recent advances in iRGD technology, focusing on cancer treatment modalities,
including the current clinical trials using iRGD. The iRGD-mediated nano-carrier system could serve
as a promising strategy in drug delivery to the deeper tumor regions, and be combined with various
therapeutic interventions due to its novel targeting ability.

Keywords: iRGD; RGD; integrin; NRP-1; CendR; blood-brain barrier; immunotherapy; tumor-
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1. Introduction

Although advancements in therapeutic techniques have increased the life expectancy of cancer
patients, the growing rate of cancer incidence still remains a matter of concern [1,2]. The standard
treatment for various solid tumors includes chemotherapy and radiotherapy, following the surgical
removal of the tumor mass. Remarkable advancements in chemotherapy have not only reduced
cancer mortality, but also improved the quality of life for cancer survivors. Nevertheless, there are still
unresolved challenges in chemotherapy, including poor drug penetration, chemotherapeutic resistance,
short half-life, and side effects owing to cytotoxicity in healthy cells [3–5].

Conventional chemotherapeutic agents need to access the tumor tissues in order to destroy
tumor cells. Chemotherapeutic agents usually penetrate 3–5 times the diameter of cells in solid
tumors. Nonetheless, their concentration in deep regions of tumor beyond this penetration depth is
significantly lower than the intended concentration, thus leading to tragic relapse or acquisition of
drug resistance in cancer treatment [6]. In addition, the unique structure and physiology of the tumor
microenvironment hamper the penetration of chemotherapeutic agents. Tumors are heterogeneous
cellular entities composed of cancer cells and the surrounding tissues, including stromal cells, immune
cells, mesenchymal stem cells, and extracellular matrix (ECM) [7,8]. Most solid tumors originate
from epithelial cells, whose morphology is characterized by specialized structures at the boundaries
between neighboring cells for cell–cell adhesion [9]. Junction proteins, such as desmoglein 2 (DSG2)
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and E-cadherin, have been found to be up-regulated in malignant tumor cells [10,11]. The enhanced
adhesion between cells provides a physical barrier against intercellular transport of molecules,
including chemotherapeutic drugs [9]. During tumor progression, there is an overproduction of the
ECM constituents, such as collagens and fibronectins, which gradually build up a dense network.
Studies have shown that the increased density of ECM in tumors results in the low penetration of
anti-cancer drugs [12–14]. Particularly, the penetration of paclitaxel in tumors was linearly reduced
as the cell density of the tumor increased [15]. Clinicians often detect cancer as a massive lump by
palpation [16]. From a mechano-biological point of view, the existence of this massive lump is a clinical
proof that tumor tissues are mechanically stiffer than healthy tissues, which is due to the increased
density of the ECM [17,18]. The enhanced stiffness of ECM has been considered to intensify the
interstitial fluid pressure (IFP), thus impeding the effective penetration of anti-cancer drugs into the
solid tumor [19–21].

In general, the tumor vasculature possesses an immature nature owing to its rapid and aggressive
growth and insufficient smooth muscle cells, thus displaying a discontinuous endothelial cell lining.
The structural conditions of solid tumors such as leaky vasculature lead to the enhanced permeability
and retention (EPR) effect that permits macromolecules to enter the tumor interstitial space, while
the suppressed lymphatic filtration allows them to be retained in tumor tissues [22–24]. This passive
tumor targeting explains how nano-carriers of sizes 20–200 nm extravasate and accumulate inside
the interstitial space [25]. The penetration of a drug into the tumor via this passive delivery relies
extensively on random chances allowed by tumor vascularization and angiogenesis [26]. Additionally,
the magnitude of the EPR effect depends on the tumor type and heterogeneity [27–29]. Moreover,
the high IFP in solid tumors disrupts the effective uptake and distribution of drugs through passive
targeting [21]. In contrast, active tumor targeting utilizes the high binding affinity between ligands
and specific receptors expressed on target sites to enhance the penetration of drugs into the target
sites [30,31]. The binding affinity to receptors specifically expressed in the tumor endothelial cells
controls the cellular uptake of the nano-carriers [32]. Remarkably, recent reports have indicated that
the delivery efficiency of nanoparticles in solid tumors is currently as low as ~0.7% of the administered
dose, despite all the efforts to enhance the drug uptake [33,34].

Many studies have investigated whether the modulation of epithelial junctions and ECM structures
can improve the intra-tumoral penetration of anti-cancer drugs beyond the passive targeting ability
relying on the EPR effect. Degradation of ECM proteins or the reduction in their expression is a
reliable approach for improving the penetration and dispersion of anti-cancer drugs [35]. As an
example, relaxin, which binds with leucine-rich repeat-containing G protein receptors (LGR) on tumor
tissues [36], was found to effectively break down ECM components and enhance the expression of
matrix metalloproteinases [37]. Cancer virotherapy studies showed that relaxin can improve the
distribution and penetration of oncolytic adenovirus in tumors [38]. However, its effect on tumor
progression remains controversial. Overexpression of relaxin resulted in the increase in prostate tumor
growth and angiogenesis [39]. Furthermore, breast cancer cells exposed to relaxin, even for a short
duration, showed an increase in invasiveness [40]. As an alternative, the opening or modification of
the epithelial junction enables anti-cancer drugs to penetrate tissue barriers. The junction opener-1
(JO-1), a recombinant protein derived from the adenovirus serotype 3, binds and cleaves DSG2, thereby
triggering the epithelial mesenchymal transition (EMT)-like signaling, leading to transient opening
of epithelial junctions in tumors [41–43]. The co-administration of JO-1 opened tight junctions in
epithelial tumors and increased the therapeutic efficacy of several chemotherapy drugs [44]. Recent
studies evaluating the efficacy and safety of JO-1 did not report any blood or tissue complications, nor
expressed concern on overall health and behavior of the patient. However, the activation of EMT by
JO-1 binding to DSG2 might facilitate tumor metastasis, although no direct evidence from a long-term
follow-up has been found [44]. Its possible immunogenicity is another issue.

Chemotherapeutics targeting tumor vasculature can directly bind with the blood vessels or
vascular endothelial cells, and have less possibility to cause drug resistance due to high genetic
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stability of endothelial cells [45]. iRGD, a novel cyclic peptide composed of 9-amino acids including
an Arg-Gly-Asp (RGD) motif, has a high binding affinity to αvβ3 and αvβ5 integrins abundant in
tumor vasculatures. iRGD-conjugated and co-administrated drugs showed enhanced distribution
throughout the extravascular tumor parenchyma. Compared with RGD, the tumor targeting ability of
iRGD is more intensified because iRGD can specifically bind to integrins and neuropilin-1 (NRP-1)
receptors that are overexpressed on various tumors. The cleaved form of iRGD binds to NRP-1, and
subsequently triggers NRP-1-dependent endocytosis, thus resulting in enhanced tumor penetration.
iRGD shows attractive advantages in delivery systems, including low toxicity to normal cells [46], easy
and low-cost synthesis [47], and targeted release [48,49].

At present, the iRGD peptide has attracted significant attention as a promising delivery moiety
for improving the intra-tumoral penetration of chemotherapeutic agents through angiogenetic vessels.
In this review, we will present and summarize the literature describing the underlying mechanism
of the iRGD-mediated tumor-targeting in the milieu of tumor stroma. First, we describe its two
major implementation strategies, i.e., co-administration approach and the targeting moiety approach.
Then, we will highlight its recent applications in immunotherapy and clinical trials. Lastly, we
will focus on the role of iRGD-mediated transport in drug delivery to the brain. Collectively, it is
expected that application of iRGD can be incorporated into newly developed treatment modalities,
such as immunotherapy, for improving the overall chemotherapeutic efficacy. Advantages of iRGD
peptide will not only allow the resolution of problems present in chemotherapeutic agents, such as
poor drug penetration and side effects, but also improve the pharmacokinetic properties of the drug
delivery system.

2. iRGD Peptide

2.1. Discovery of iRGD Using Phage Display Screening

The RGD peptide is a representative example of vasculature-targeting peptides, employed for
the delivery of anti-cancer drugs or imaging agents [50,51]. The RGD peptide displays a specific
binding affinity to αvβ3 and αvβ5 integrins. The novel cyclic peptide iRGD, containing the RGD
motif, was identified by Ruoslahti and colleagues through phage display screening [52]. To isolate
peptides with high affinity to tumor tissues, they utilized the cyclic CX7C (C = cysteine; X = any
amino acid) peptide library displayed on the T7 phage [53]. Tumor-related phages were selected
through three rounds of ex vivo and in vivo phage screenings. The newly obtained phage pool showed
200–400 times stronger binding affinity to tumor-derived cell suspensions than the original library.
In addition, the binding affinity to tumor cell suspensions was five times stronger than that to cell
suspensions derived from normal bones. Random clones were selected from the phage pool for
sequencing. The three peptides containing the RGD motif, i.e., CRGDKGPDC, CRGDRGPDC, and
CRGDKGPEC, were identified in the selected pool. The phage displaying CRGDKGPDC peptide was
bound and internalized to primary prostrate carcinoma (PPC1) cells at 4 ◦C and 37 ◦C, respectively.
The internalized peptide was named “iRGD”. In general, iRGD refers to the cyclic 9-amino peptides
with sequences CRGD[K/R]GP[D/E]C [52].

2.2. Dual Targeting Mechanism of iRGD in Tumor Treatment

iRGD is a prominent enhancer that enables anti-cancer drugs to penetrate tumorigenic blood
vessels. It enhances the permeability to tumor vessels, triggers internalization, and penetrates deep
into tumor tissues, thus resulting in improving the diagnostic sensitivity and therapeutic efficacy. The
disulfide-based cyclic iRGD peptide has flexible structural conformations [52,54]. The peptide has
three distinct sites: a tumor homing motif, a C-end Rule (CendR) penetration motif, and a proteolytic
cleavage recognition site [52,55]. The cleavage process and structural illustration of the binding events
of iRGD are presented in Figure 1.
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The integrin-dependent binding is the first step in iRGD’s tumor-targeting process. Integrin is a
heterodimeric transmembrane glycoprotein consisting of α- and β-subunits and is known to mediate
cellular adhesions to ECM [56,57]. Integrin expression is strongly correlated with the cell type and
microenvironment [58,59]. Eight different integrin heterodimers, viz., αvβ1, αvβ3, αvβ5, αvβ6, αvβ8,
α5vβ1, α8β1, and αIIbβ3, recognize the RGD motif within ECM proteins [60]. Ruoslahti and colleagues
first identified αvβ3 [61], which is overexpressed in various cancers, including gastric cancer [62],
glioma [63], non-small cell lung cancer [64], pancreatic cancer [65], and prostate cancer [66]. Later,
αvβ5 was identified as an important regulator in these cancer types [62,64,66,67].
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cryptic CendR motif (R/KXXR/K) at the C-terminus arginine or lysine residues. Then, the CendR 
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Through this mechanism, the drugs conjugated or co-administered with iRGD can effectively 
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Figure 1. Illustration of cleavage process and the binding events of cyclic iRGD [CRGDKGPDC] peptide.
(A) iRGD is proteolytically cleaved to expose the cryptic C-end Rule (CendR) motif. The cleavage sites
are indicated with red lines. (B) iRGD binds with integrins. As an example, we present the structure
of integrin αvβ3 complexed with cyclo (RGDf-NV) reproduced from PDB code 1I5G [68]. (C) After
cleavage, the arginine or lysine of the CendR motif binds to the b1 domain of neuropilin-1 (NRP-1).
The presented structure was reproduced from PDB code 2ORZ showing the binding event of NRP-1
and Tuftsin mediated by arginine moiety [55,69,70]. The spheres represent the binding residues of
polypeptides and blue ball-sticks represent non-binding residues. The color indicates the corresponding
sequence of peptides.

After binding to integrin, iRGD is proteolytically cleaved to produce CRGD/K and expose the
cryptic CendR motif (R/KXXR/K) at the C-terminus arginine or lysine residues. Then, the CendR motif
binds to NRP-1 and subsequently triggers an active endocytosis to internalize iRGD [55]. Through this
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mechanism, the drugs conjugated or co-administered with iRGD can effectively penetrate deeply into
the tumor sites (Figure 2) [49].Polymers 2020, 12, x FOR PEER REVIEW 5 of 27 
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Figure 2. Schematic representation of the iRGD-activated tumor-targeting for nano-carrier delivery in
solid tumors. Tumors are composed of cancer cells surrounded by an extracellular matrix (ECM) and
stromal cells, including tumor-associated macrophages, tumor-associated neutrophils, mesenchymal
stem cells, and fibroblasts. (a) First, the iRGD (CRGD[K/R]GP[D/E]C) peptide binds to αvβ3 and αvβ5
integrins on tumorigenic endothelial cells. (b) iRGD is proteolytically cleaved to produce CRGD/K and
expose the CendR motif at the C-terminus. (c) Then, CendR binds to NRP-1 to trigger the penetration
into the tumor tissue. (d) Finally, internalization into tumor sites via endocytosis is achieved.

Similar to RGD, the iRGD peptide has a specific binding affinity to αvβ3 and αvβ5 integrins in
the nanomolar range [71,72]. The CRGDK fragment cleaved by a protease showed an approximately
50- to 150-fold higher binding affinity to NRP-1 than integrins. It has been reported that the proteolytic
cleavage results in a decrease in the rigidity of the CRGDK fragment, thus increasing its binding
affinity to NRP-1 [52]. The shift in CRGDK from integrins to NRP-1 activates endocytosis, consequently
leading to enhanced penetration [73,74]. This shift in the binding affinity enables iRGD peptides to
be spread throughout the interstitium. Conversely, RGD peptides only bind to integrins, but not to
NRP-1, and are thus accumulated only inside and/or around tumor vessels. Notably, the expression
of αv integrins is largely restricted in specific types of tumors, whereas that of NRP-1 is enhanced in
many tumor types. Compared with RGD peptides, the iRGD peptide is an efficient targeted drug
delivery moiety with enhanced penetration due to CendR- and NRP-1-dependent penetration [52].

NRP-1, a transmembrane glycoprotein, contains a short transmembrane domain. It was first
described as a neuronal adhesion molecule in the nervous system [75]. NRP-1 is essential for neural
crest migration and axon guidance during neuronal development [76,77]. Moreover, NRP-1 has been
implicated in angiogenesis, as its overexpression in mice embryos shows that it is involved in the
formation of blood vessels, excess capillaries, and hemorrhaging [78,79]. NRP-1 is also recognized
as a co-receptor that enhances the binding of the vascular endothelial growth factor (VEGF)-A to
the VEGF receptor [80]. Its upregulation triggers the activation of VEGF signals involved in tumor
angiogenesis [81]. NRP-1 is found to be overexpressed in many tumors, including breast cancer [82],
melanoma [80], and glioblastoma [54], indicating that NRP-1 plays a critical role in tumor progression.
The correlation of NRP-1 overexpression and cancers was analyzed using meta-analysis over 15
studies involving a total of 2049 patients [83]. It was observed that median NRP-1 expression was
59.54%. Reports have established that NRP-1 overexpression varies by cancer type. It was 30%, 51.74%,
61.99%, and 56.76% in tongue cancer, pancreatic ductal adenocarcinoma (PDAC), breast cancer, and
glioma, respectively [83]. There was a difference in median survival of patients with high and low
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NRP-1 expression; it was shown as 16.7 (0.5–46.6) and 34.9 (5.6–94.3) months, respectively. The low
survival rate was highly correlated with NRP-1 overexpression [84]. Furthermore, the expression of
NRP-1 had patient-to-patient variations, which complicates the simple prediction of the treatment
outcomes. For example, patients with no gland formation (nGF) types of gastric cancer suffered from
poor prognosis [85]. The study suggested that 70.8% of gastric cancer cases with nGF types showed
high expression of NRP-1, while only 65.6% (84/128) of cases with the gland formation type had
its overexpression.

The interaction between iRGD and NRP-1 overexpressed in endothelium cells is effectively utilized
to penetrate tumor cells in targeted drug delivery systems [54]. For example, the co-administration of
the iRGD peptide elevated the anti-cancer efficacy of gemcitabine in a murine pancreatic cancer model
which showed an overexpression of NRP-1. These results suggest that the co-administration of iRGD
peptide would be beneficial for patients with NRP-1 overexpressing tumors [84].

2.3. Active Targeting of iRGD Peptide to Exploit the Tumor Microenvironment

In adults, angiogenesis is tightly controlled, and normal vasculature becomes largely quiescent. In
contrast, the formation of tumor vasculature is abnormally regulated and is continuously stimulated by
a variety of factors, such as hypoxia, high IFP, fibrosis, inflammation, and acidity [86–88]. Particularly,
the shortage of oxygen occurs at places distant from blood vessels, causing hypoxic conditions, and
triggers the activation of the VEGF and the platelet derived growth factor [89]. The activated endothelial
cells induce the up-regulation of integrin αvβ3 [90], which recognizes the ECM proteins and promotes
endothelial cell migration [91]. They also trigger the activation of proteolytic enzymes, which disrupts
the basal membrane. The subsequent apoptosis of endothelial cells provokes the urgent formation
and dramatic remodeling of the vessel lumens, resulting in immature and leaky vasculatures. These
vasculatures suffer from fenestrations, irregular blood flow, inadequate lymphatic drainage, and the
loss of smooth-muscle layer and pericytes [92]. This poorly organized vasculature is a route for passive
transport of nano-carriers. Concomitantly, active targeting to cancer cells or tumoral endothelium aim
to improve the transport of anti-cancer drugs. Remarkably, the active targeting strategy using iRGD,
containing the tumor-homing CendR motif, resolves the issues concerning the limited penetration
of drugs. The active targeting strategy often utilizes the biological interaction between ligands and
receptors specifically expressed on target sites. A study using fluorescein (FAM)-labeled peptides
demonstrated that the conjugation of iRGD enables the drugs to be effectively distributed at the tumor
parenchyma, whereas FAM-inactive controls were not found within or around the tumor. In addition,
the anti-tumor effect of iRGD in drug delivery was stronger compared with that of conventional
RGD [93]. Although conventional RGD peptides were only found in and around the tumor vessels,
cumulative evidence suggests that iRGD-containing cryptic CendR motif readily entered the tumor
parenchyma [52,94,95].

In an earlier study, Wang et al. reported that the iRGD-conjugated doxorubicin-polymeric
nanoparticles (NPs) effectively penetrated tumors, and exhibited an anti-angiogenetic effect [93].
Additionally, experiments using iRGD modified liposomes (R-LP) encapsulating elF3i shRNA
(R-LP/shelF3i) revealed highly suppressed tumor migration and invasion. Inhibition of pulmonary
metastasis, angiogenesis, and tumor proliferation was observed in R-LP/shelF3i-injected mouse
model [96]. In addition, the study confirmed that the iRGD-conjugated pigment epithelium-derived
factor (PEDF)-DNA-loaded liposomes (R-LP/PEDF) exerted anti-invasion and anti-migratory activities
in colorectal cancer cells, and extended the survival time in a mouse model [97]. The capability of
anti-cancer drugs to reach the deep regions of tumor with sufficient concentration is essential for
achieving therapeutic efficacy. As discussed above, use of the iRGD peptide is a promising strategy
that achieves enhanced penetration and effective delivery of anti-cancer drugs, thus eradicating cancer
cells in the deeper regions of tumors, which are inaccessible to conventional chemotherapeutic agents.



Polymers 2020, 12, 1906 7 of 27

3. Applications of iRGD in Cancer Therapy

3.1. Implementation Strategies in iRGD Technology

As summarized in Tables 1 and 2, there are two strategies for using the iRGD technology to
enhance chemotherapeutic efficacy: its covalent conjugation, and the co-administration with anti-cancer
compounds or drug delivery vehicles. The conjugation strategy refers to the method in which the iRGD
peptide is chemically or physically bonded to anti-cancer drugs, or encapsulated in delivery vehicles
with anti-cancer drugs. To conjugate iRGD with anti-cancer drugs, maleimide-thiol reaction [98],
Michael addition of acryloyl-amine reaction [99], alkyneazide click reaction [100], or amidation of
carboxyl-amine reaction [101] were utilized [102]. This conjugation strategy has been implemented
in many delivery vehicles, including liposomes, micelles, and polymeric NPs (Table 1). Meanwhile,
some studies simply applied the iRGD peptide as a co-administrated agent with chemotherapeutics,
without any devised design for advanced conjugation; these methods are summarized in Table 2. Both
strategies have equally yielded significant improvements in drug penetration and chemotherapeutic
efficacy [103,104]. These studies have also reported similar advantages, including targeted delivery
and reduced toxicity of anti-cancer drugs. To date, there has been no report on the advantage of one
strategy over the other.

Liposomes display excellent properties as a drug delivery vehicle, including sustained release
and loading capability for both hydrophobic and hydrophilic drugs [105,106]. The surface conjugation
of iRGD to liposomes confers the additional advantage of tumor penetration as shown in Table 1. For
example, Song et al. reported that the liposomes loaded with iRGD-conjugated doxorubicin enhance
the anti-tumor activity in 4T1 breast cancer cells and the depletion efficiency of tumor-associated
macrophages (TAMs) as compared with doxorubicin-loaded liposomes [107]. In addition, studies using
iRGD-modified indocyanine green (ICG) liposomes (iRGD-ICG-LPs) reported an increase in tumor
inhibitory effect through photothermal therapy (PTT)/ photodynamic therapy (PDT) effects. Evidently,
iRGD-ICG-LPs provided the sensitive detection of 4T1 breast tumor through near-infrared (NIR)
fluorescence imaging to enhance their accumulation in tumor [98]. Bao et al. have also demonstrated
that the iRGD-conjugated pigment PEDF-DNA-loaded liposomes showed enhanced anti-metastatic,
apoptotic, and cytotoxic activities in colorectal cancer cells, and extended survival time in vivo [97].

A number of studies also investigated whether the iRGD-conjugated micelles were effective
vehicles to deliver chemotherapeutics for treating various cancers, including prostate, pancreatic,
breast, cervical, and brain cancer, using iRGD-conjugated micelles (Table 1). Studies included taxen-
and platinum-based chemotherapeutics. Sugahara et al. observed the enhanced tumor penetration in
pancreatic ductal adenocarcinoma-bearing mice after injection with iRGD-conjugated micelles [52]. It
was reported that iRGD-linked polymeric micelles efficiently entered cells via endocytosis [108]. The
enhanced drug accumulation in glioblastoma and its effective transportation through the blood–brain
barrier (BBB) were reported from the studies using iRGD conjugated micelles [103,104].

Numerous studies have evaluated the effect of iRGD conjugation to polymeric NPs (Table 1).
Polymeric NPs are often utilized to decrease the toxicity, and to improve the solubilization and
efficacy of chemotherapeutics. Lipid-polymeric NPs solicit more advantages by using biodegradable
polymers and biomimetic lipids [109]. For example, Zhu et al. found that the iRGD conjugation on
paclitaxel-loaded Poly(ε-caprolactone)-Poly(N-vinylpyrrolidone) (PCL-PVP) polymeric NPs enhances
the drug accumulation and penetration at tumor sites. Additionally, H22 tumor-bearing mice with the
iRGD conjugation on paclitaxel-loaded PCL-PVP polymer showed a reduction in tumor growth and
survival extension [110]. Gao et al. showed that the iRGD-modified lipid–polymer hybrid NPs loaded
with isoliquiritigenin (ISL-iRGD NPs) inhibit the tumor growth in tumor-bearing models. ISL-iRGD
NPs also induced enhanced apoptosis in breast cancer cells [111]. The iRGD-conjugated polymeric
NPs were also implemented to improve the efficacy of boron neutron capture therapy, which has been
limited by the difficulty of targeted delivery to tumors. The study revealed increases in the uptake of
both doxorubicin and boron in A549 cells [112].
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Table 1. Application of iRGD conjugation with therapeutic agents to improve the drug efficacy.

Vehicles APIa Cancer Type Ref

Liposomes PEDFb DNA Colorectal cancer (CT26) [97]

none Breast cancer (4T1) [98]

Doxorubicin Breast cancer (4T1), melanoma (B16-F10) [107,113–115]

Lycobetaine Octreotide Glioma (C6) [116]

Polymeric NPsc Doxorubicin Breast cancer (4T1), liver cancer (VX2) [112,117–119]

Paclitaxel Gastric cancer (MKN-45P), colon cancer (CT26), hepatoma (H22),
breast cancer (4T1) [110,120,121]

Carmustine
O6-enzylguanine Glioma (F98, C6, U87) [122]

Tamoxifen Breast cancer (MCF-7, T47D) [123]

Isoliquiritigenin Breast cancer (4T1) [111]

Silica NPsc Doxorubicin Colorectal cancer (HT-29) [124]

Micelles Paclitaxel Prostate cancer (PC-3, PPC1), pancreatic cancer (MIA PaCa-2), breast
cancer (BT474) [52]

Platinum complex Glioblastoma (U87) [103]

Camptothecin Glioblastoma (U87) [104]

Docetaxel HeLa [108]

Hydrogels Doxorubicin Melanoma (B16) [125]

Gambogic acid Gastric cancer (MKN-45) [126]

Solid lipid NPsc siRNA Glioblastoma (GL261) [109]

Protein NCsd Paclitaxel Hepatoma (H22) [127]

APIa, Active pharmaceutical ingredient; PEDFb, Pigment epithelium-derived factor; NPsc, Nanoparticles; NCsd, Nanocapsules.
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Table 2. Application of iRGD co-administration with therapeutic agents to improve the drug efficacy.

Drug Vehicles APIa Cancer Type Ref

drug delivery systems

Polymeric NPsb Paclitaxel Glioma (C6), breast cancer (BT474),
colorectal cancer (LS174T) [128,129]

Doxorubicin Breast cancer (4T1) [130]

Silica NPsb Irinotecan Pancreatic KPC-derived cancer [131]

Liposomes Doxorubicin Prostate cancer (22Rv1),
melanoma (B16F10) [54,132]

Polypeptide NPsb Cisplatin Melanoma (B16F1) [133]

Gold NPsb

(Au NPs)
Doxorubicin Breast cancer (4T1) [134]

Dendrimers Doxorubicin Prostate cancer (22Rv1),
Melanoma (B16F10) [135]

Drugs only None

HPRP-A1c Non-small cell lung cancer (A549) [48]

Gemcitabine Non-small cell lung cancer (A549) [136]

Cetuximab Non-small cell lung cancer (A549) [137]

izTRAILd & Sorafenib Fibrosarcoma (HT-1080) [138]

APIa, Active pharmaceutical ingredient; NPsb, Nanoparticles; HPRP-A1c, anti-microbial peptide derived from the N-terminus of ribosomal protein L1 of Helicobacter pylori; TRAILd,
TNF-α-related apoptosis inducing ligand.
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Additionally, several studies have investigated the conjugation of iRGD to hydrogels (Table 1).
Su et al. observed that doxorubicin-encapsulated and iRGD-conjugated nanogels, with thermo- and
pH- responsive properties, facilitated controlled drug release in B16 tumor cells. Cellular uptake of
doxorubicin-encapsulated iRGD-conjugated nanogels was also observed in B16 melanoma cells, with
the alleviation of side effects caused by doxorubicin [125]. The iRGD-conjugated hydrogels of gambogic
acid nanoparticles (GA-NPs) promoted the antitumor activity due to the enhanced penetration into
tumor sites, ultimately leading to reduced tumor volume and a distinct anti-tumor effect [139].

Similar to the conjugation approach, the co-administration of iRGD with therapeutic drugs also
resulted in improved drug efficacy (Table 2). Sugahara et al. emphasized that the tumor-penetrating
effect does not require the conjugation of peptides. Instead, a simple co-administration with iRGD
improves drug efficacy, such as that of doxorubicin and nab-paclitaxel (Abraxane®). The iRGD
moiety, via binding of the CendR motif and NRP-1, activates a bulk transport process that sweeps
along compounds or therapeutic drugs present in blood [54,139]. Despite this report, there have
been continuous attempts to maximize its effect by devising innovative vehicles through conjugation
techniques. Nevertheless, it is worthwhile to understand the improvements in chemotherapeutic
efficacy resulting from the simple co-administration of iRGD, as summarized in Table 2.

Some studies investigated whether the co-administration of iRGD with drug delivery systems
can improve chemotherapeutic efficacy. For example, Zhong et al. showed that the co-administration
of iRGD with the paclitaxel-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticle facilitates drug
accumulation in tumors, and improves the antitumor effects when compared with the paclitaxel-loaded
PLGA without iRGD co-administration [129]. The co-administration of iRGD with irinotecan-loaded
silicasome was also reported to activate the NRP-1-mediated transcytosis transport pathway in
pancreatic ductal adenocarcinoma, supporting the notion that iRGD can improve the efficacy of
irinotecan-based silicasome [131]. Deng et al. also showed that the combination of iRGD with
self-assembled amphiphilic block copolymer NPs (HA-PLA) facilitates the drug distribution and tumor
penetration in lungs, and consequently inhibits metastatic breast cancer [132].

In addition, many studies have investigated whether the simple co-administration without
associating with any delivery vehicle can lead to enhanced drug penetration and efficacy. The
simple co-administration of iRGD with chemotherapeutics has been evaluated in numerous studies.
TNF-α-related apoptosis inducing ligand (TRAIL) therapy is often limited by the drug-resistance
of cancer cells, although TRAIL is an attractive anticancer agent owing to its selective targeting of
cancer cells. The effect of the recombinant TRAIL against cancer cells was examined to overcome the
inhibition of TRAIL-resistance by combining the therapeutic effects of sorafenib and iRGD [138]. When
sorafenib and iRGD were co-administrated with the recombinant human izTRAIL, the anti-cancer
effect of izTRAIL was observed to be enhanced in HT-1080 fibrosarcoma-bearing mice. In addition,
the co-administration of iRGD with gemcitabine induced the effective apoptosis in A549 xenograft
model compared with the solo administration of gemcitabine [136]. In the A549 xenograft model,
the co-administration of gemcitabine and iRGD yielded decreases in tumor volume and growth
than the administration of gemcitabine alone. Additionally, the co-administration of iRGD with the
membrane-active peptide HPRP-A1 augmented the reactive oxygen species (ROS) production and
mitochondrial depolarization in A549 cells. The combinatorial treatment using iRGD and HPRP-A1
has been shown to be more effective in terms of tumor penetration and accumulation than HPRP-A1
alone [48].

3.2. Recent Clinical Trials with Co-Administration of iRGD in Pancreatic Cancer

PDAC is a virulent cancer, and its aggressive biology contributes to a poor prognosis in pancreatic
cancer patients. Surveillance, Epidemiology, and End Results (SEER) statistics during 1974–2014
indicated that PDAC incidence and mortality rates have continually increased in the US for decades [140].
Unlike other cancers, 5-year relative survival rate show little improvement [141]. As per earlier reports,
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pancreatic cancer is the forth-leading cause of cancer death [140], and may probably become the second
leading cause in the US by 2030 [142].

PDAC does not show any obvious symptoms in the early stage, except abdominal pain, indigestion,
and weight loss due to anorexia. This silence at the early stages makes it difficult to diagnose early
enough to perform surgical resection. Furthermore, there is a lack of markers for early detection. The
location of tumor, i.e., retroperitoneum, and the systemic effects of the disease also limit the choices for
local treatment. Reports indicate that chemotherapy may produce a small benefit [143]. Gemcitabine is
the first-line standard treatment for PDAC. Many studies have attempted to improve the effects of
gemcitabine using other chemotherapeutic agents, such as nab-paclitaxel, oxaliplatin, fluorouracil,
and leucovorin [144]. In particular, nab-paclitaxel increased the intra-tumoral concentration of
gemcitabine [145]. A synergistic effect with nab-paclitaxel was observed in murine models with
pancreatic cancer [145,146]. The co-administration of gemcitabine and nab-paclitaxel significantly
extended the overall survival and progression-free survival in patients with advanced pancreatic
cancer [28]. Thus, the combination therapy of gemcitabine with nab-paclitaxel has been suggested as a
standard therapy for pancreatic cancer. Nevertheless, the outcome of chemotherapeutic treatments on
pancreatic cancer remains unsatisfactory. The failure of chemotherapeutic treatment of PDAC is closely
related with aggressive cellular properties and the acquisition of chemotherapeutic resistance. Stromal
proliferation through non-cell-autonomous action, decreases in vascular density, and inhibition of
immunosuppression contributes to chemotherapeutic resistance. As the basic properties of PDAC
are revealed, recent clinical trials have focused on the specific targeting of tumor stroma [143].
The iRGD peptide has been employed for the treatment of pancreatic cancer. NRP-1 is aberrantly
upregulated in PDAC [147–149], and is thus an attractive target for deterring the progression of
PDAC [150]. The combination of the iRGD peptide with silicasome-based chemotherapy was shown
to trigger NRP-1–mediated transport in PDAC, resulting in improved survival rates and reduced
metastatic progression [131]. The co-administration of the iRGD peptide with gemcitabine resulted in
effective drug accumulation and tumor reduction in patient-derived PDAC xenografts with NRP-1
overexpression [84]. In addition, the combination therapy of iRGD with nab-paclitaxel slightly reduced
the tumor growth of BT474 breast tumors [54].

Presently, there is an ongoing Phase 1 clinical trial study to evaluate the safety and preliminary
efficacy of CEND-1 in combination with gemcitabine and nab-paclitaxel (CEND1-001, Clinical trial
reference NCT03517176) [151]. The study was designed as an open-label and multi-centered trial. For
dose escalation, the safety of ascending dose levels of CEND-1 was evaluated. Initially, four different
doses of monotherapy CEND-1 have been administered for one week. Subsequently, its combination
therapy with gemcitabine and nab-paclitaxel was performed for 28 days. The co-administration of
CEND-1 peptide with gemcitabine and nab-paclitaxel is expected to improve the treatment efficacy for
pancreatic cancer patients.

3.3. iRGD Application with Immunotherapy

Cancer immunotherapy focuses on the activation of immune surveillance to attack cancer cells by
modulating various components of the immune system, such as cytokines, antigen-presenting cells,
and B/T lymphocytes.

Growing evidence indicates that infiltration of effector T lymphocytes is highly correlated with the
prognosis of cancer patients [152]. The effector T lymphocyte is a major factor responsible for anti-tumor
responses, but essentially faces difficulty in infiltrating into the tumor microenvironment [153].
Staphylococcus endotoxin C2 (SEC2), a super-antigen, activates T lymphocytes as a useful
immunotherapeutic agent, that has been traditionally used in China [154]. Song et al. developed the
modified recombinant protein ST-4 of SEC2, and applied it with iRGD to enhance the accessibility to
the tumor microenvironment [155]. iRGD-mediated ST-4 effectively activated T lymphocytes in mouse
B16F10 melanoma cells, and induced lymphocyte infiltration. As a result, the enhanced anticancer
effect was achieved through immunosuppression.
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Chemotherapeutic agents have been recognized to produce antitumor effects through the direct
cytotoxic effect, without eliciting an adaptive or innate immune response [156,157]. However, recent
studies emphasized the complex interactions between immune response and cytotoxic agents [158,159].
Anti-tumor immune response in chemotherapeutic treatments is triggered by the death of tumor
cells [160,161]. Dendritic cells acquire antigens from apoptotic cancer cells, present it to T cells,
and solicit antigen-specific proliferation of T cells. In addition, some chemotherapeutics-induced
increase of lymphocyte infiltration in tumor microenvironment can slowly prevent the growth of
residual tumor cells and prolong overall survival [162,163]. However, due to non-selective cytotoxicity
and non-specific biodistribution, chemotherapeutic agents can cause undesired side effects to the
immune system by affecting the spleen and bone marrow [164]. Deng et al. investigated whether
co-administration of pirarubicin loaded lipid carriers with iRGD could improve anti-tumor immune
response, and reduce the side effects of anti-tumor drugs, and reported an increase in cytotoxic T
lymphocyte infiltration and cytokine secretion, which contributed to the extended overall survival of
pirarubicin-lipid carrier+iRGD treated mice [165].

Combinatorial treatment with immunomodulators and chemotherapy, i.e., chemoimmunotherapy,
showed a synergistic anti-cancer effect, and thus is considered as a promising therapeutic approach for
cancer treatment [166–168]. As an example, the treatment of co-assembled nanoparticles composed
of iRGD derivatives, paclitaxel, and imiquimod resulted in tumor suppression and prevention of
recurrence [121]. Here, imiquimod is an immune response modifier inducing the innate immune
response. Chemotherapeutic treatment combining an anti-tumor immune response seems to be
promising for the complete eradication of metastatic and residual tumors as well as primary
tumors [135]. Nano delivery systems in cancer treatment promote innate or adaptive immunity,
and inhibit immunosuppression [169,170]. Hu et al. studied a combinatorial approach to treat breast
cancer using multistage-responsive nanoparticles. They formulated nanoparticles with doxorubicin,
indocyanine green, nitrooxyacetic acid, modified hyaluronic acid, and iRGD. Again, the presence of
iRGD achieved the deep penetration of therapeutic agents at the tumor sites, and thus the eradication
of primary tumor growth [48].

Immune checkpoints are stimulatory and inhibitory pathways crucial in maintaining the
homeostasis of the immune system and self-tolerance. Tumors often evade the immune attack
by hijacking inhibitory pathways [171]. In other words, to avoid an immune attack, tumor cells attempt
to escape the immune surveillance by editing the tumor microenvironment. Additionally, tumor cells
attempt to evade immune recognition; the loss of antigen on tumor cell surfaces allows tumor cells to
avoid recognition by cytotoxic T cells [172]. The inhibitory receptor cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) is constitutively expressed on regulatory T cells (Tregs) [173], while it is transiently
expressed on activated T cells [174]. CTLA-4 present on exhausted T cells competes with the
co-stimulatory receptor CD28. The binding affinity of CTLA-4 is higher than that of CD28. Thus,
CTLA-4 binds to the ligands of CD80/CD86 expressed on antigen-presenting cells (APCs), preventing
auto-immune responses and leading to T-cell anergy [175–178]. The overexpression of CTLA-4 on Tregs
is highly observed in lung cancer, indicating that CTLA-4 contributes to immune tolerance and immune
evasion [179]. Thus, anti-CTLA-4 treatments may restore immune responses to attack tumor cells.
Conversely, the inhibitory receptor programmed cell death protein 1 (PD-1) expressed on activated T
cells binds to programmed death ligand 1 (PD-L1) and PD-L2 to suppress the activation of cytotoxic T
cells [180,181]. Unlike PD-L2, which is primarily expressed on APCs, PD-L1 is expressed on various
cells, including tumor cells, which are protected from immune attacks [182,183]. PD-L1 binds to CD80
expressed on T cell surfaces and inhibits functional T cell activation. Thus, the immune evasion signal
may be inactivated by blocking the binding events between PD-1 and PD-L1 via the administration of
a PD-1 antibody [184]. Immune checkpoint blockades prevent tumor cells from evading the immune
attack by activating T cells. Particularly, CTLA-4 and PD-1 inhibitors can stimulate anti-tumor immune
responses [185]. Ipilimumab is an immune checkpoint blockade with known anti-CTLA-4 activity.
After decades of continuous efforts to translate laboratory findings into clinical practice, FDA approved
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the use of ipilimumab for advanced melanoma treatment [186]. Since then, there has been an increasing
interest in immunotherapy, specifically on PD-1/PDL-1 axis targeting advanced cancer stages [187].

Despite dramatic outcomes by the immunotherapy in some cancer patients, treatments with
CTLA-4 or PD-1/PD-L1 immune checkpoint blockers were effective only in about 15% to 25% of
patients with various cancers [188]. Tumor heterogeneity, variation in cancer type and stage, and
treatment history were suggested to contribute to this unpredictable efficacy of immunotherapy.
Substantial efforts were required to amplify the efficacy of immunotherapy in majority of patients with
variable cancer types. As an effort to achieve this goal, the investigations focused particularly on the
tumor-specific target delivery of immune modulators and the tumor-specific activation of immune
systems in the milieu of complex tumor environments. Recent studies have focused on the iRGD
peptide as a major player in enhancing the efficacy of immunotherapy. For example, gene delivery
therapy against PD-L1 loaded on solid–lipid nanoparticles (SLN) to treat glioblastoma utilized iRGD
conjugation and achieved immune activation via the downregulation of PD-L1 [109]. In addition,
the co-administration of IL24-iRGD led to significantly increased apoptotic events in non-small cell
lung cancer cells compared with the single treatment of IL24 [189]. The enhanced alteration of tumor
immune environment, such as the decreases in Treg cells and the increases in CD4 T cells, has been
indicated as a major player in this enhanced apoptotic event [190].

However, similar to other chemotherapeutic treatments, the use of immune checkpoint blockades,
such as that for CTLA-4, PD-1, and PD-L1, also develops resistance to some extent, because blocking
one pathway often activates the others in the complex network of tumor environments. In contrast to
the treatment modalities using immune checkpoint blockades, adaptive cell immunotherapy becomes a
potential treatment option, which is evident from the positive outcomes and lesser likelihood of causing
acquisition of resistance. Nevertheless, adaptive cell transfer requires infiltration of formidable barriers
of solid tumors, and has to overcome the immunosuppressive environments. Recently, nanoparticles
containing multiple drugs, including the tumor penetrating moiety of iRGD, were suggested to be
a practical intervention to create optimal tumor environment for the cancer immunotherapy [191].
In that study, lipid nanoparticles coated with iRGD successfully restored the tumor microenvironments
from immunosuppressive to stimulatory, and allowed the tumor-specific chimeric antigen receptor
-T (CAR-T) cells to trigger tumor regression and penetrate into the lesion. Ding et al. also reported
the synergistic effect of iRGD with PD-1 knockout immunotherapy [192]. They found that iRGD
used with PD-1 knockout lymphocytes showed an anti-tumor effect in gastric cancer by promoting
tumor-specific lymphocyte infiltration. They proposed that the binding of iRGD with NRP-1 induces
tyrosine phosphorylation of vascular endothelial cadherin, which subsequently opens cell contacts and
allows lymphocytes to migrate to, and infiltrate the tumor parenchyma. These findings consistently
demonstrated that the iRGD peptide effectively enhances anti-tumor efficacy of immunotherapy, thus
paving a new avenue in cancer treatment.

3.4. iRGD Application in Brain Pathology

Brain tumor remains the biggest challenge in cancer therapy owing to multiple biological obstacles,
including the BBB, the blood–brain tumor barrier (BBTB), hypoxia regions, tumor heterogeneity, glioma
stem cells, and drug-efflux pumps [193]. Although the BBB acts as a vital filter to control substances
that pass through the blood to the brain, it also forms a formidable impediment in drug delivery for
the treatment of brain cancer. The BBB is composed of brain capillary endothelial cells, astrocytes,
pericytes, and neurons. The endothelial cells are connected by tight junctions and narrow gaps
between endothelial cells that make it difficult for macromolecules to pass through [194,195], and block
the penetration of hydrophilic molecules (>400 Da) [196]. Meanwhile, the BBTB is more permeable
than BBB, because anomalous angiogenesis occurs here due to the upregulated vascular endothelial
growth factor, triggered by tumor-induced hypoxia [197]. High-grade glioma shows dysfunctional
and heterogeneous BBTB, whereas BBTB of lower-grade gliomas is similar to BBB. Although the
BBTB consists of leaky vasculatures, the penetration of therapeutics remains highly limited, thus
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imposing a challenge on the treatment of gliomas [193,198]. The P-glycoprotein, an efflux pump, is
abundantly present in cerebrovascular endothelial cells, and protects the brain from the accumulation
of hydrophobic drugs, including chemotherapeutics [199]. The inhibition of drug efflux transporters
has been shown to enhance the brain penetration of various drugs [200].

Diverse interventions have been performed to improve drug permeability in the BBB and BBTB.
Here, we briefly summarize these representative approaches. Earlier, the osmotic disruption, using the
hyperosmotic solution of arabinose and mannitol, was attempted for disrupting the tight junctions of
the BBB [201]. However, due to the concerns on transient cerebral edema, and the risk of exacerbating
neurological deficits, osmotic disruption is not widely utilized in clinical practices. Alternatively,
the physical disruption of the BBB has been attempted through the application of ultrasound or
electromagnetic waves [202]. However, similar concerns regarding tumor diffusion and neurotoxic
effects were raised. Chemical compounds, such as bradykinin, are known to enhance the BBB
permeability by inducing vasodilation [203]. Thus, the inhibition of multidrug efflux transporters was
subsequently utilized to enhance the drug penetration through the BBB. Use of transferrin coupled
to paclitaxel, a strategy exploiting the receptor-mediated transport system without opening the tight
junctions, also elicited endocytosis [196]. In addition, therapeutic agents have been directly injected
into the resection cavity of glioma via invasive approach [202]. Nanocarrier-based drug combination
strategies, such as liposomes, have also been applied to improve the systemic or local delivery of
anti-cancer drugs to cure glioblastoma. The modification of drugs using lipid groups also facilitates
brain permeability to some extent [204]. However, this method concomitantly enhances the nonspecific
accumulation of drugs in other tissues via systemic circulation [193]. Further, a positive-pressure bulk
flow via convection-enhanced delivery (CED) may mediate the local simple diffusion of drugs into
brain. However, side effects, such as edema and infection, cannot be avoided by CED [205].

Recently, iRGD has been suggested as a promising candidate to overcome the poor permeability of
therapeutics in the brain. Many studies have showed that the iRGD peptide synergistically intensified
the BBB disruption through combinations with the abovementioned disruptive interventions, including
radiation and ultrasound therapy. As mentioned in Section 3.3, Erel-Akbaba et al. showed that the
conjugation of iRGD effectively enhances the uptake of SLNs for the gene delivery of siRNA-PD-L1 to
the brain tumor, consequently resulting in a decrease in glioblastoma growth [109]. Radiation primed
against glioma also enhanced the uptake of SLN into the brain. The lipophilicity and the positive
charge of SLNs exhibited an increase in the cellular uptake of iRGD, and penetration through the BBB.
This study revealed that the use of nano-carriers, chemical modification of drugs, radiation, and active
targeting using iRGD synergistically improved the penetration of drugs through the BBB, and efficiently
optimized the efficacy of immunotherapy. As mentioned earlier, ultrasound waves have been applied
to physically disrupt the BBB, and to improve its permeability. The study using the ultrasound-induced
sonodynamic therapy (SDT) showed that the iRGD peptide increases the median survival time and
chemotherapeutic efficacy of SDT in the treatment of gliomas [153]. SDT with iRGD-modified liposomes
has also been shown to effectively promote the penetration of drugs into glioma cells. Together with
the combination of radiation therapy and the iRGD peptide, this result supports that the combined
therapy with the iRGD peptide and physical disruption of BBB synergistically contributed to the
enhanced permeability of the BBB and the efficacy of chemotherapeutics.

Several studies have shown that the iRGD peptide has a potential to advance cancer diagnosis
and prognosis because it has enhanced the imaging resolution in magnetic resonance imaging
(MRI) [206,207]. MRI is a powerful tool that visualizes cellular density, but has a limitation in sensitivity
and resolution. iRGD can trace invasive lesions in tumor because it binds to integrins overexpressed on
newly generated tumor blood vessels. Nanoparticles coated with the iRGD peptide have been used to
increase the resolution of MRI, thus revealing metastatic lesions of the brain from breast cancer [206]. In
addition, a study has showed that intravenously administered iRGD-nanoparticles effectively suppress
tumor growth at the initial stages of metastasis. These results stated that the iRGD peptide is beneficial
not only for imaging enhancement, but also for preventive alleviation of metastatic progression of
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breast cancer. Moncelet et al. revealed that the internalization of iRGD-Alexa488 into U87 cells highly
correlates with cell density, which can be used as a parameter to determine the grade and invasiveness
of glioma [207]. They reported that the iRGD peptide significantly improved the signal-to-noise ratio
of MRI contrast agents, such as gadolinium chelates.

Numerous studies have reported that the active targeting using the iRGD peptide yields
enhanced therapeutic outcomes in brain cancer treatment owing to increased cell internalization
and BBB penetration. For example, the iRGD-linked polymeric micelles loaded with platinum-based
chemotherapeutics were found to be actively internalized, and thus exhibited high anti-tumor effect in
an orthotopic mouse glioblastoma model, compared with polymeric micelles without iRGD [103]. In
addition, the iRGD-conjugated prodrug micelles encapsulating camptothecin effectively penetrated the
BBB to arrive at glioma sites [104]. These results consistently indicated that the iRGD-conjugated micelles
effectively promoted the transport of the drugs through the BBB, thus suggesting a promising approach
for glioma therapy. Another study examined the anti-glioma effects of conjugated iRGD with lycobetaine
and octreotide liposomes (LBT-OCT-LPs-nRGD) [116], and showed that the LBT-OCT-LPs-nRGD
significantly enhanced the survival time, and reduced tumor-associated macrophages.

4. Conclusions and Future Perspectives

The tumor microenvironment is a complex milieu composed of cellular and acellular components
with unique structure and physiology, which provides obstacles in the delivery of chemotherapeutic
agents. As an emerging technology, the iRGD peptide, containing the integrin-binding RGD and the
cryptic CendR motif, is a novel strategy that overcomes the poor penetration of chemotherapeutics
into the tumor parenchyma. The integrins highly expressed on tumor endothelium cells enable
iRGD to home in on and access the tumor site. Moreover, the overexpressed NRP-1 receptors on
various types of cancer cells can mediate endocytosis and lead to deep penetration into tumor tissues.
Therefore, the iRGD-mediated active delivery depends not only on the overexpressed integrins at
the tumor angiogenetic blood vessels, but also on the NRP-1-mediated endocytosis at tumor sites.
This dual-targeting function makes iRGD superior to the conventional RGD, which only targets
integrins. Nevertheless, the tumor targeting capability of iRGD highly depends on the level of NRP-1
expression, which varies greatly depending on the type and stage of the cancer [84]. Individual
differences in its expression exacerbate the simple prediction of treatment outcomes. Thus, in order
to clinically utilize iRGD in a wide range of cancer treatments, a systematic evaluation of NRP-1
expression according to cancer type and progression should be performed. In addition, the concept of
personalized medicine would be beneficial for the use of iRGD through preemptive investigation of its
expression in individual patients.

The application of the iRGD peptide can advance the treatment modalities and the targeting
activity of engineered delivery vehicles through covalent conjugation, or co-administration with
chemotherapeutic agents and delivery vehicles. Thus far, accumulating evidences seem to support that
these two approaches equally enhance tumor penetration and efficacy of chemotherapeutic agents. A
study suggested that conjugation might add complexity to surface of nanocarries that might result in the
unexpected effect in the complicated in vivo system [208]. Moreover, the transportation of conjugated
drugs may be affected by the relatively limited number of target receptors on the vasculature, while
separate injection of the free peptide can trigger bulk transportation of therapeutic drugs at the tumor
site [54,209]. However, only a few studies compared the co-administration and conjugation approaches
directly. Thoroughly designed studies are required to reveal the specific mechanisms by which the
co-administered and the conjugated iRGD contribute to the deep penetration of drugs into tumor sites.

A recent pioneering approach using iRGD has been applied in immunotherapy and gene delivery
therapy. Despite dramatic outcomes following cancer immunotherapy in some patients, its clinical
success has been lower than expected because of the complexity of the tumor microenvironment. T
lymphocyte infiltration through the tumor parenchyma plays a critical role in the anticancer effects
of immunotherapeutic agents. Interestingly, co-administration of iRGD enhanced T lymphocyte
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infiltration by enabling intercellular contact of cadherin tyrosine phosphorylation. Moreover, iRGD
conjugation induces immune activation by downregulating PD-L1. Nevertheless, it is critical to
investigate the underlying mechanism of iRGD in the immune response to clarify the synergistic role
of iRGD in immunotherapy.

In contrast, iRGD-mediated transport shows potential for resolving long-standing limitations
to drug delivery to the brain. In fact, some interventions to improve drug permeability in the
BBB and BBTB including hyperosmotic solution, electromagnetic waves, and bradykinin affect BBB
permeability over a wide spectrum. Unfortunately, these interventions led to undesired problems
such as nonspecific permeability, simple diffusion, and side effects. In contrast, the iRGD peptide
enhanced the BBB permeability for specific target drugs. The combinatorial regimen with other
BBB disruptive methods, including radioactive and ultrasonic therapy, synergistically enhanced the
penetration of chemotherapeutics through the BBB. Additionally, combining iRGD peptides with
nanoparticle-based delivery vehicles or lipophilic modification of drugs can augment the penetration
of drugs into the brain.

Phase 1 clinical trial is currently evaluating the efficacy and safety of iRGD for PDAC patients. The
study is mainly monitoring the dose escalation of iRGD for combinatorial treatment with gemcitabine
and nab-paclitaxel. Considering that interpersonal variations in NRP-1 expression highly affect the
success of clinical trials, the expression of NRP-1 at each patient is monitored by immunohistochemistry
of tumor biopsy. The successful completion of this clinical trial will determine the clinical fate of iRGD
peptide for the treatment of various cancers. In conclusion, the combination of iRGD dual-targeting
technique with various chemotherapeutics and/or new treatment modalities is expected to open a new
era in the fight against cancer.
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APCs Antigen-presenting cells
API Active pharmaceutical ingredient
BBB Blood–brain barrier
CendR C-end Rule
CTLA-4 Cytotoxic T lymphocyte-associated antigen-4
DSG2 Desmoglein 2
ECM Extracellular matrix
EPR Enhanced permeability and retention
FAM Fluorescein
GF Gland formation
nGF No gland formation
HA-PLA Self-assembled amphiphilic block copolymer NPs
HPRP-A1 Anti-microbial peptide derived from the N-terminus of ribosomal protein L1 of H. pylori
IFP Interstitial fluid pressure
iRGD-ICG-LPs iRGD-modified indocyanine green (ICG) liposomes
ISL-iRGD NPs iRGD-modified lipid–polymer hybrid NPs loaded with isoliquiritigenin
JO-1 Junction opener-1
LGR Leucine-rich repeat-containing G protein receptors
NCs Nanocapsules
NIR Near infrared
NPs Nanoparticles
NRP-1 Neuropilin-1
PCL-PVP Poly (ε-caprolactone)-poly (N-vinylpyrrolidone)
PD-1 Programmed cell death protein 1
PD-L1 Programmed death ligand 1
PDAC Pancreatic ductal adenocarcinoma
PDT Photodynamic therapy
PEDF Pigment epithelium-derived factor
PLGA Paclitaxel-loaded poly (lactic-co-glycolic acid)
PTT Photothermal therapy
R-LP iRGD-modified liposomes
R-LP/PEDF iRGD-conjugated pigment epithelium-derived factor (PEDF)-DNA-loaded liposomes
R-LP/shelF3i iRGD-modified liposomes encapsulating elF3i shRNA
SEC2 Staphylococcus endotoxin C2
SEER Surveillance, Epidemiology, and End Results
SLN Solid–lipid nanoparticles
TAMs Tumor-associated macrophages
TRAIL TNF-α-related apoptosis inducing ligand
VEGF Vascular endothelial growth factor
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