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ABSTRACT: Transcription factors (TFs) play an important role
in gene expression and regulation of 3D genome conformation. TFs
have ability to bind to specific DNA fragments called enhancers and
promoters. Some TFs bind to promoter DNA fragments which are
near the transcription initiation site and form complexes that allow
polymerase enzymes to bind to initiate transcription. Previous
studies showed that methylated DNAs had ability to inhibit and
prevent TFs from binding to DNA fragments. However, recent
studies have found that there were TFs that could bind to
methylated DNA fragments. The identification of these TFs is an
important steppingstone to a better understanding of cellular gene
expression mechanisms. However, as experimental methods are
often time-consuming and labor-intensive, developing computa-
tional methods is essential. In this study, we propose two machine learning methods for two problems: (1) identifying TFs and (2)
identifying TFs that prefer binding to methylated DNA targets (TFPMs). For the TF identification problem, the proposed method
uses the position-specific scoring matrix for data representation and a deep convolutional neural network for modeling. This method
achieved 90.56% sensitivity, 83.96% specificity, and an area under the receiver operating characteristic curve (AUC) of 0.9596 on an
independent test set. For the TFPM identification problem, we propose to use the reduced g-gap dipeptide composition for data
representation and the support vector machine algorithm for modeling. This method achieved 82.61% sensitivity, 64.86% specificity,
and an AUC of 0.8486 on another independent test set. These results are higher than those of other studies on the same problems.

1. INTRODUCTION
Transcription factors (TFs) are proteins that play an important
role in gene expression. TFs directly control gene expression as
they have a special property of being able to bind to specific
sequences of DNA.1 Some TFs bind to DNA promoters to
form transcription initiation complexes from which the
polymerase can bind to the DNA fragment and initiate
transcription. Other TFs bind to enhancer DNA fragments that
can either stimulate or inhibit gene transcription. In addition to
their role in gene expressions, TFs can act as protein anchors,
thereby helping regulate 3D genome conformation.2 There-
fore, determining the binding sites of TFs plays an important
role in understanding the gene expression mechanism and
regulating 3D genome conformation. Previous studies showed
that methylated DNA fragments inhibited the binding of
TFs;3−5 for example, methylation at cytosine−guanine
dinucleotides (CpGs) has ability to prevent TFs from binding
to DNA fragments.3 However, recent experimental studies
have shown that there are TFs that can still bind to methylated
DNA fragments.6,7 The identification of TFs is an important
step in understanding the activities of TFs in detail and thereby
better understanding the role of methylated DNAs in gene
expressions and in the regulation of 3D genome structures.

There are several experimental methods to identify TFs and
TFs that prefer binding to methylated DNA targets (TFPMs).7

However, these methods are often costly and time-consuming.
In addition, the database of TFs is increasingly being
expanded. Automated methods are therefore needed to quickly
and accurately identify TFs and TFPMs. At the present time,
there are not many tools that can do this. In 2020, Liu et al.7

introduced a dataset of TFs and TFPMs and proposed a
machine learning method to recognize TFPMs. First, the
protein sequences are encoded into a vector of 201 features
selected from the composition/transition/distribution, split
AAC, and dipeptide composition (DC) features. Then, the
support vector machine (SVM) algorithm is used to determine
if the sequence is a TF. If the protein is a TF, DC will be used
to encode the protein, and the XGBoost algorithm will be used
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to determine if that TF protein is a TFPM. After training on
the training set using fivefold cross-validation, their TF
classification model using the SVM was tested on an
independent test set and achieved 80.19% sensitivity and
85.85% specificity. For the model using XGBoost to classify
TFPMs, the results on the independent test set were 71.01%
sensitivity and 64.86% specificity. In a more recent study from
the same group, Li et al.8 represented each amino acid
sequence as a sequence of tripeptide word vectors by using the
skip-gram model and then fed this sequence into a long short-
term memory model for both classifications of TFs and
TFPMs. They reported better performances compared to
those of their previous work with an area under the receiver
operating characteristic curve (AUC) of 0.9130 compared to
0.9116 for classification of TFs and an AUC of 0.8324
compared to 0.7356 for classification of TFPMs.
In this study, we propose a method with better performance

in classifying TFs and TFPMs. In this method, for TF
classification, we use the position-specific scoring matrix
(PSSM) to encode protein sequences and use a deep
convolutional neural network (CNN) to recognize TFs. For
classifying TFPMs, we use the reduced g-gap amino acid
composition method with optimal schemes and use the SVM
algorithm for classification. We use the same dataset as that
used by Liu et al.7 and Li et al.8 in order to compare the
performance of our proposed models with theirs.

2. MATERIALS AND METHODS
2.1. Benchmark Dataset. The dataset introduced by Liu

et al.7 can be freely accessed at http://lin-group.cn/server/
TFPred. The dataset includes a training set and a test set for
classifying TFs and another training set and another test set for
the problem of classifying TFPMs (Table 1). For the problem

of classifying TFs, the training set included 416 TF protein
sequences (the positive class) and 416 non-TF protein
sequences (the negative class), while the independent test
set had 106 TF protein sequences and 106 non-TF protein
sequences. For the problem of classifying TFPMs, the training
set was unbalanced with 270 TFs attached to methylated
DNAs (the positive class) and 146 TFs not attached to
methylated DNAs (the negative class), and the independent
test set also had the same imbalance ratio as that of the training
set with 69 TFs attached to methylated DNAs and 37 TFs not
attached to methylated DNAs.

2.2. Identifying TFs. An overview of data representation
for our TF classification framework is shown in Figure 1. First,
the input protein is encoded by a PSSM. Then, our proposed
CNN is used for TF prediction. The CNN was trained using
fivefold cross-validation, leading to five CNN models using the
same network architecture but with different parameters.
Finally, ensemble learning to combine the predictions from the
five CNN models is used to determine if the input sequence is
a TF.

2.2.1. Position-Specific Scoring Matrix. In bioinformatics, a
PSSM is a common method to encode protein sequences.9−17

Although this encode provides a lot of useful information for
research, when using a PSSM to encode data, the common
problem is that the difference in the amino acid number of the
protein sequences leads to the difference in the size of the
PSSM data representing the sequences. Therefore, there have
been many studies performing transformations to standardize
the size of the PSSM. Cheol Jeong et al.9 reduced the matrix
size from L × 20 (L is the number of amino acids in the
sequence) to 20 × 20 by averaging the PSSM values at
positions of the same amino acid. Wang et al.17 proposed a
method to calculate the correlation values from the PSSM and
position-specific frequency matrix to produce a new feature
vector with 2000 dimensions. This method not only helps
ensure the characteristic vector size for protein sequences but
also improves the efficiency of the subsequent machine
learning model. There is also an auto-cross covariance
transform and discrete wavelet transform used by Zhang et
al.13 Due to the rather large PSSM data with a size of L × 20
(L is the protein chain length), Chen et al.15 proposed an
secondary structure element (SSE)-PSSM method that not
only reduces the size of the feature vector but also improves
performance of predicting the secondary structure of proteins
with the most important modification being the SSE
transformation. After searching for strings that are similar to
the query string, they first converted the strings to an SSE form
and then computed the position propensity matrix and finally
the PSSM. Although there are initially 20 amino acids, after the
SSE transform, only H (α-helices), E (β-strand sheets), and C
(others) types remain. This method helps reduce the
complexity of the PSSM from L × 20 to L × 3. There is
also a weighting method for the PSSM using Gaussian
distribution implemented by Ge et al.12

For TF classification problem, we use the PSSM scheme to
encode protein sequences, and then, PSSMs are used to train
the CNN model. PSSMs have the form P = Pij: i = 1, ..., L and j
= 1,..., 20 where L is the length of the protein sequence and
each Pij represents the score of the jth amino acid in the 20
amino acids and the acid the ith amino acid in the query
sequence. The PSSM is created using Position-Specific
Iterative Basic Local Alignment Search Tool (PSI-BLAST)
software.18 PSI-BLAST searches for protein sequences that
match the query sequence in a large database and then
performs multiple sequence alignment on these sequences for
generating the corresponding PSSM. In this study, we used
PSI-BLAST with the Swiss-Prot database to calculate the
PSSM for each protein sequence.
CNNs are widely used in many research fields. In this study,

we use a deep CNN model to learn patterns in the PSSMs.
Although the CNN requires a fixed-size matrix as input, the
number of amino acids of the protein sequences in the training
set is not fixed and ranges from 51 to 4834 amino acids. The
distribution in Figure 2 shows that up to 90.74/97.23/98.67%
of strings have lengths less than 1000/1500/2000, respectively.
We converted all the sequences to the same length of N. This
length was determined through cross-validation (described in
Section 3.1). The conversion was performed either by cutting
off amino acids at the end of the sequence at the positions after
the position N for sequences having lengths greater than N or
by zero-padding on sequences having lengths less than N.
2.2.2. CNN Model Architecture. The CNN model (Figure

3) consists of four convolution layers with 32, 64, 128, and 256

Table 1. Datasets for Classification of TFs Versus Non-TFs
and TFPMs Versus TFPNMs

TFs vs non-TFs TFPM vs TFPNM

dataset positive negative positive negative

training set 416 416 270 146
independent test set 106 106 69 37
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filters, with a kernel size of 3 × 3 and a stride of (1, 1). After
each convolution layer, there are MaxPooling2D layers with a
kernel size of 2 × 2 and a Dropout layer with a ratio of 0.2. The
features extracted from the convolutional network layers are
then passed through a GlobalAveragePooling2D layer and then
two fully connected layers with 256 neurons. Finally, the

output layer with the Softmax function produces probabilities
for the two classes: TF (positive) and non-TF (negative).
Our CNN models were trained using the Adam optimization

algorithm with sparse categorical cross-entropy loss and an
initial learning rate of 0.001. During model training, we use the
early stopping method with a patient length of 10 to stop
training if the validation loss does not decrease after 10 epochs.
In addition, the reduce on plateau technique with a patient
length of 5 is also used to reduce the learning rate when the
validation loss does not decrease after five epochs.
2.2.3. Ensemble Learning.We used fivefold cross-validation

to train five CNN models, and then, ensemble learning is used
to combine the predictions by the five models. The final
outcome is determined by the median of the outputs of the five
models (Figure 4).

2.3. Identifying TFs That Prefer Binding to Methy-
lated DNA. An overview of data representation for our TFPM
classification framework [with Op(13) and 2-gap as a setting
example] is shown in Figure 5. First, proteins were parametri-
cally extracted using the reduced g-gap DC method. Then, the
SVM algorithm is used for TFPM classification. The best
hyperparameters of the data representation step and the SVM
model were determined from fivefold cross-validation.
2.3.1. Reduced G-Gap DC. 2.3.1.1. Reduced Amino Acids.

Reduced amino acids (RAAs) is a method of grouping 20 basic
amino acids into different groups and then representing the

Figure 1. Data representation for TF classification.

Figure 2. Distribution of amino acids in the protein sequences in the
training set, showing that 97.23% of the sequences have lengths less
than 1500.
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amino acids in each group by the corresponding group symbol.
Many studies and experiments have shown that reducing the
complexity of the original protein sequence helps reduce
information redundancy and improve the computational
efficiency of the subsequent machine learning model.19−21

The most important thing in the RAA method is the way to
group amino acids. Zheng et al.22 proposed the RAACBook
method in which the authors used up to 74 different evaluation
methods to classify amino acids. With each evaluation method,
there were up to 18 different grouping methods, from which up
to 673 schemes were created. This method was applied in
classification of human enzymes21 and in classification of
antimicrobial peptides.23 Another way of grouping amino acids
was proposed by Takabatake et al.24 in which the BLOSUM62
matrix was used to calculate the number of similarity scores
between amino acids prior to calculating the correlation

coefficients of each pair of amino acids and grouping the amino
acids using hierarchical clustering.
In the study by Etchebest et al.,19 the authors based on their

previous work on 3D protein structures built from a limited
number of different amino acid blocks to identify 16 protein
blocks (PBs). From the 16 PBs found, they encoded the PDB-
REPRDB dataset into sequences of PBs. Then, they computed
16 amino acid occurrence matrices of size 20 × 15 using
windowing, followed by transformations and combinations to
get a final matrix of size 20 × 240. From this matrix, they
calculated the distances between amino acids and clustered the
amino acids using R software. After analysis, they proposed
Op(13) with the division of 20 amino acids into 13 groups
(Table 2). They reported that if some information in the
analysis could be ignored, they could reduce the number of

Figure 3. Architecture of the CNN models used for TF classification.

Figure 4. Ensemble learning for TF classification.
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groups and thus get Op(11), Op(9), Op(8), and Op(5) with
11, 9, 8, and 5 groups, respectively.
As mentioned above, the RAA has been widely used by

many research groups, and there are new proposals on how to

divide groups for RAAs. In this study, we extend an efficient
clustering method proposed by Etchebest et al.19 by combining
RAAs and g-gap DC to obtain an efficient encoding method for
the TFPM classification problem.
2.3.1.2. G-Gap DC. G-gap DC (GDC) is an extension of the

amino acid composition method for encoding protein
sequences. In this method, the protein sequence is encoded
into a 400-dimensional vector showing the frequency of 400
dipeptides with gaps between two amino acids; these gaps can
be 1, 2, 3, and so forth. There have been many studies with
different proposals using GDC. Feng et al.25 used GDC with
gaps between 0 and 5 in classifying the super-family of small
heat shock proteins. For prediction of antihypertensive
peptides, Rauf et al.26 used a 20 × 20 matrix format with
different gaps (from 0 to 3) to generate different encoding
matrices. In other studies, GDC was also combined with other
encoding schemes including amino acid composition, auto-
cross-covariance, and PseAAC.27,28

In this study, we propose the reduced GDC (RGDC), an
enhanced version of GDC for TFPM classification. We extend
the GDC method by combining it with RAAs to obtain an
efficient encoding scheme for TFPM classification.

Figure 5. Data representation for TFPM classification.

Table 2. Op(13) Grouping for Amino Acids

index group of amino acids
symbols for the

group

1 G (glycine) G
2 I (isoleucine), V (valine) I
3 F (phenylalanine), Y(tyrosine),

W (tryptophan)
F

4 A (alanine) A
5 L (leucine) L
6 M (methionine) M
7 E (glutamic acid) E
8 Q (glutamine), R (arginine), K (lysine) Q
9 P (proline) P
10 N (asparagine), D (aspartic acid) N
11 H (histidine), S (serine) H
12 T (threonine) T
13 C (cysteine) C
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2.3.1.3. Reduced GDC. Our proposed RGDC scheme is a
combination of two methods: RAA and GDC. The first step of
RGDC is to reduce the number of 20 basic amino acids by
grouping the amino acids into groups and using one amino
acid in each group as the representative of that group.29 Then,
the amino acids in each protein sequence are replaced by their
group representatives. This will remove some redundant
information while preserving meaningful information of the
sequence.30,31 In order to use the RAA method, we need to
group the amino acids together. Here, we use the scheme
proposed by Etchebest et al.,19 in which an optimization
procedure (Op) was used to group the 20 basic amino acids
into different groups.
After replacing the amino acids in the original protein

sequence with their representatives, we compute the GDC
feature vector. For N groups, the vector GDC produces N2

features in the form of x x x x, , ..., N1
g

2
g

2
g= [ ], where each xig

represents the frequency occurrence of the ith g-gap dipeptide
in the input protein sequence. Each xig is calculated as in eq 1.

x
n

n

n
L g 1i

i

j
N

j

ig
g

1
2 g

g

= =
= (1)

where nig is the total number of occurrences in the input
protein sequence of the ith g-gap in the N2 g-gap dipeptide, L is
the length of the input protein sequence, and g is the number
of gaps used. g = 0 means that there is no gap between two
consecutive amino acids; g = 1 means that there is a
corresponding gap between two consecutive amino acids,
similarly for g = 2, 3, and so forth.
2.3.2. SVM Model. SVM is a machine learning model that

has been proven to be effective in many studies.32−36 In this
study, we use an SVM model pre-installed in the scikit-learn
library,37 in which the kernel is the radial basis function with
hyperparameters γ and C tuned from repeating 5-fold cross-
validation 10 times with different randomization in each
repetition. Input data are normalized to the normal
distribution N(0, 1), and the model outputs the probability
of each class.

2.4. Evaluation Metrics. To assess the model perform-
ance, common evaluation metrics including accuracy (ACC),
sensitivity (SEN), specificity (SPE), Matthew’s correlation
coefficient (MCC), and AUC were used. These metrics are
computed as in eqs 2−5, in which TPs, FPs, TNs, and FNs are
the true positives, false positives, true negatives, and false
negatives, respectively.

Accuracy
TN TP

TN TP FN FP
= +

+ + + (2)

Sensitivity
TP

TP FN
=

+ (3)

Specificity
TN

TN FP
=

+ (4)

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
= × ×

+ + + +
(5)

3. RESULTS AND DISCUSSION
For classification of TFs, we tested different lengths of 1000,
1500, and 2000 when encoding input sequences. Table 3

shows the performances of the first CNN model from fivefold
cross-validation. It can be seen that the length of 1500 gave the
best result in terms of the AUC value. We then fixed 1500 as
the optimal length when encoding input sequences using
PSSMs and used this setting when testing the proposed
framework with the independent test set.
For classification of TFPMs, we tested several amino acid

grouping options19 including Op(5), Op(8), Op(9), Op(11),
Op(13), and without using grouping [i.e., using Op(20)] in
order to find the optimal scheme. In combination with
different amino acid grouping options, we also tested different
gaps including 1-gap, 2-gap, 3-gap, 4-gap, and not using g-gap
(i.e., g = 0). For each pair of Op(.) and g-gap, the performances
of SVM models with different hyperparameters γ and C from a
pre-defined grid were computed from fivefold cross-validation,
and the highest AUC value was recorded as shown in Figure 6.
As seen from Figure 6, the best validation AUC of 0.8529

corresponded to Op(8) with 3-gap, and this corresponded to
the SVM model with γ = 0.1 and C = 0.01. This setting was
applied when testing the proposed framework with the
independent test set.
Table 4 summarizes our results in comparison with those of

other state-of-the-art methods using the same training and test
datasets.
As can be seen in Table 4, our proposed methods

outperform the two recent studies by Liu et al.7 and Li et
al.8 on both classification problems. Our methods achieve
higher AUC, accuracy, sensitivity, and MCC than those of the
other two methods while maintaining a competitive specificity
with theirs. For the TF classification problem, we use PSSMs
to represent input proteins. This representation has been
shown to be effective in multiple protein classification
problems.10,11 Each PSSM has a fixed size of 1500 × 20
which is much smaller than the average size of the 100-
dimensional tripeptide word vectors in the study of Li et al.8�
whose average size is about 100 × 500 as the sequences in TF
classification have about 500 amino acids on average. On the
other hand, the size of our PSSM is much higher than that of
the 201-dimensional feature used in the study by Liu et al.7

However, this PSSM size seems to be suitable for applying
deep learning on this specific dataset. In addition, ensemble
learning helps improve the predictive performance as it makes
full use of the training data while still maintaining certain
differences among the individual models. For the TFPM
classification problem, the RGDC method is proved to be
effective. One possible reason is that this method calculates
statistics of amino acid pairs separated by a certain distance
(number of gaps) in proteins, and the relationship between
these amino acid pairs may be related to their ability to bind to
sites on the DNA sequence around the methylated site. We do
not use deep learning for TFPM classification, as the dataset is

Table 3. Performances of the First Model with Different
Input Lengths

input length sensitivity specificity accuracy MCC AUC

1000 0.7710 0.9518 0.8614 0.7349 0.9577
1500 0.7831 0.9638 0.8734 0.7594 0.9585
2000 0.7590 0.9518 0.8554 0.7244 0.9522
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relatively small. We propose using SVM, a classification
method that often works well with small multidimensional
datasets and uses repeated fivefold cross-validation to tune the
SVM model for generalization ability. Our preliminary work
also confirmed that SVM performed much better than other
machine learning algorithms on this problem. Using Op(8),
each RGDP feature vector has 64 dimensions which is smaller
than the 200-dimensional dipeptide composition feature in Liu
et al.7 and the averaged size of 200 × 470 of the tripeptide
word vectors in Li et al.8 (the sequences in TFPM classification
have about 470 amino acids on average). This small size of the
RGDP feature vectors is suitable to be used with SVM for this
small dataset. All of these factors contribute to the effectiveness
of our proposed methods.

4. WEB-BASED APPLICATION
To support the research community in identifying TFs and
TFPMs, we deployed our proposed framework as an online
web server with a user-friendly interface. A link to the web
server is available at https://github.com/ngphubinh/iTFPM-
RGDC. Our web-based application supports protein sequences
stored in the FASTA format. After input sequences are
submitted, the predicted results will be returned.

5. CONCLUSIONS
Although the fact that TFs can bind to methylated DNA has
been recently confirmed, the mechanism of this relation is still
unclear, and it is often costly and time-consuming to use
experimental methods to identify TFs and TFPMs. In this
study, we propose two efficient machine learning frameworks
for predicting TFs and TFPMs. The two data representation
schemes, PSSMs for TF identification and RGDC for TFPM

identification, contribute significantly to the superior perform-
ance of our frameworks when compared with other state-of-
the-art methods. In future, the relation between other protein
representation schemes and more advanced deep learning
architectures and machine learning algorithms will be
considered to further improve the performance of the
methods.
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