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Abstract: Indigenous southern Thai non-glutinous rice varieties Kaab Dum, Khai Mod Rin, Yar
Ko, Yoom Noon, and Look Lai made under four different processing conditions, white rice, brown
rice, germinated brown rice, and rice grass, were assessed for antioxidant components and in vitro
antioxidative activities. According to the findings, rice’s antioxidant components and antioxidant
activity were considerably impacted by both variety and processing. High levels of total extractable
phenolic compounds (164–314 mg gallic acid equivalent (GAE)/kg, dry weight (dw)) and carotenoid
(0.92–8.65 mg/100 g, dw) were found in all rice varieties, especially in rice grass and germinated
brown rice, indicating that milling to generate white rice had an adverse effect on those components.
Additionally, after germination, a higher γ-oryzanol concentration (9–14 mg/100 g, dw) was found.
All rice varieties had higher ascorbic acid, phenolic compound, and carotenoid contents after sprout-
ing. Overall, Yoom Noon rice grass had the highest total extractable phenolic content (p < 0.05). The
rice grass from Yoom Noon/Look Lai/Kaab Dum had the highest ascorbic acid content (p < 0.05). The
total carotenoid concentration of Look Lai rice grass was the highest, and Yoom Noon’s germinated
brown rice had the highest γ-oryzanol content (p < 0.05). All rice varieties’ aqueous extracts had
remarkable ABTS free radical scavenging activity, with Khai Mod Rin reaching the highest maximum
value of 42.56 mmol Trolox equivalent/kg dw. Other antioxidant mechanisms, however, were quite
low. Compared to germinated brown rice, brown rice, and white rice, rice grass often tended to have
stronger antioxidant activity. Yar Ko rice grass was found to have the highest DPPH free radical scav-
enging activity (3.8 mmol Trolox equivalent/kg dw) and ferric reducing antioxidant power (FRAP)
(4.6 mmol Trolox equivalent/kg dw) (p < 0.05). Khai Mod Rice grass had the most pronounced metal
chelation activity (1.14 mmol EDTA equivalent/kg dw) (p < 0.05). The rice variety and processing
conditions, therefore, influenced the antioxidant compounds and antioxidative properties of Thai
indigenous rice. The results can be used as a guide to select the optimal rice variety and primary
processing in order to satisfy the needs of farmers who want to produce rice as a functional ingredient
and to promote the consumption of indigenous rice by health-conscious consumers.

Keywords: rice; antioxidant activity; phenolic compounds; brown rice; germination; rice grass

1. Introduction

Rice (Oryza sativa L.) is a significant cereal crop for over half of the world’s population,
particularly in Asia, because it is a major source of carbohydrates and other nutrients [1].
Because of its high consumption and important supply of carbohydrates, vitamins, minerals,
and bioactive substances, rice is an excellent vehicle for delivering nutrients to these
populations [2–5]. Rice is mostly consumed as intact kernels, but rice flour can be utilized
in several food products, including conventional foods, noodles, baked goods, extruded
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items, and innovative products (such as snacks, gluten-free processed foods, and infant
foods) [2,3,6]. Due to rising consumer demand, it is anticipated that worldwide rice
production will double by 2050 [7].

Rice varieties differ greatly in terms of chemical, physical, thermal, and pasting
properties, all of which are influenced by genetic and environmental factors [2,3,5]. Rice
normally contains 70–80% carbohydrate, 6–8% protein, 1–3% fat, 0.3–1.5% ash, and 0.2–1%
fiber, depending on genotype, agronomic and cultivation circumstances, storage, and
processing features [1,8]. Rice grains have varying physicochemical qualities depending on
the variety, and the starch quality has a significant impact on their cooking properties [9].
Thailand is one of the most important rice-producing countries in Asia. Rice is a major Thai
commercial crop, and its grains are consumed as a staple food, with a wide range of rice
varieties available across the country [10]. Different regions of Thailand grow traditional
rice varieties because some consumers still utilize local rice as a staple diet [4,5,11,12]. In
southern Thailand, particularly in the Pak Panang Basin of Nakhon Si Thammarat, many
indigenous rice varieties are widely farmed. According to farmers’ interviews, the top five
native rice varieties cultivated in this region are Kaab Dum, Khai Mod Rin, Yar Ko, Yoom
Noon, and Look Lai.

Aside from rice variety, rice processing, such as milling, germination, and growing to
rice grass, can impact the compositional, nutritional, physicochemical, and bioactive aspects
of rice [1–5,8,10]. Due to its potential health benefits, brown rice has gained a lot of attention
as an important type of whole grain. Brown rice’s health benefits have recently been highly
publicized [8]. Brown rice is composed of three layers: bran, embryo, and endosperm;
when brown rice is polished into white rice, the majority of the bran and embryo are
removed [8]. Thus, brown rice is abundant in phytonutrients such as phenolics, dietary
fiber, vitamins, minerals, γ-oryzanols, and carotenoids, which are all known to reduce the
risk of many diseases [13,14]. These compounds may function as natural antioxidants to
possibly prevent the destruction of biomolecules such as lipids, proteins, and DNA. [13,15].
Among these substances, polyphenols have been identified as the main active component
for anti-oxidation [16,17]. In addition, whole grains’ nutritional value is greatly improved
during germination and sprouting [4,10,18]. Because of their health-promoting features and
high nutritional qualities, such as amino acids, fiber, trace minerals, vitamins, flavonoids,
and phenolic acids, sprouts and cereal grasses have recently received increased attention
as functional foods [19–23]. Germination is a bioprocess that boosts secondary metabolite
synthesis, such as polyphenols and γ-aminobutyric acid (GABA) [18]. In cereal grasses at
the jointing stage, antioxidants and phytonutrients are abundant [10,18,24]. When the rice
grass is in the jointing stage, just before the second leaf appears, it can be harvested [10].
According to research on Thai rice varieties, rice grass juice, especially from the Kum
Doisaket variety, demonstrated antioxidant and DNA-protective properties [10].

Recently, research has changed to develop functional food products with bioactive
ingredients as awareness of nutrition and health has grown. Numerous investigations
are being carried out to establish how polishing affects the functional, physicochemical,
and nutritional qualities of colored and non-colored rice varieties [1,2,8,11,25]. However,
the antioxidant components and properties of the non-colored rice grown in southern
Thailand, as influenced by rice variety and processing conditions, have received relatively
limited study [5]. Therefore, this research sought to determine the impact of rice variety
and processing conditions (white rice, brown rice, germinated brown rice, and rice grass)
(Figure 1) on some antioxidant substances and antioxidant activity of five native non-
glutinous short grain Thai rice varieties: Khai Mod Rin, Kaab Dum, Yar Ko, Look Lai,
and Yoom Noon. The findings will offer fundamental information on the antioxidant
compounds and their antioxidative properties of native Thai rice, which can be applied as
an alternative for healthy food preparations and functional ingredients in both domestic
and commercial scenarios.
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Figure 1. Appearances of paddy (a), white rice (b), brown rice (c), germinated brown rice (d), and
rice grass (e) of southern Thai indigenous non-colored rice varieties, including Khai Mod Rin, Kaab
Dum, Yar Ko, Look Lai, and Yoom Noon.

2. Results and Discussion
2.1. Total Extractable Phenolic Content

Figure 2 displays the total extractable phenolic contents of five indigenous rice varieties
processed using various methods. Among all rice varieties, white rice showed the lowest
total extractable phenolic content (p < 0.05). Except for the Yar Ko variety, where the highest
total extractable phenolic content was identified in brown rice, the highest total extractable
phenolic content was discovered in rice grass. In Look Lai, Khai Mod Rin, and Kaab
Dum, the order of total extractable phenolic content was typically rice grass > brown rice
> germinated brown rice > white rice. In Yoom Noon, the difference in total extractable
phenolic content between brown rice and germinated brown rice was not statistically
significant (p > 0.05). In general, whole rice grains, which include the endosperm, embryo
(or germ), and bran, provide health benefits in addition to offering nutrients. Shao et al. [26]
reported the distribution of total phenolic content in the endosperm, embryo, and bran of
white, red, and black rice grains. The bran typically had the highest total phenolic content
(7.35 mg gallic acid equivalent (GAE)/g), contributing 60%, 86%, and 84% of the phenolics
in white, red, and black rice, respectively. The average total phenolic content of the embryo
and endosperm were 2.79 and 0.11 mg GAE/g, accounting for 17% and 23%, 4% and 10%,
and 7% and 9% in white, red, and black rice, respectively [26]. Polyphenolics are secondary



Molecules 2022, 27, 5180 4 of 15

plant metabolites that are created to aid in plant growth [10,18,24]. As a result, rice grass
has the highest total extractable phenolic content.
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Figure 2. Effect of rice variety and processing condition on total extractable phenolic content of Thai
indigenous rice. Bars represent the standard deviations from triplicate determinations. Different
lowercase letters within the same processing condition indicate significant differences (p < 0.05).
Different uppercase letters within the same variety indicate significant differences (p < 0.05).

Phenolic compounds which were present in the rice bran during pre-soaking may be
leached away in order to generate germinated brown rice. As a result, when compared
to raw brown rice, germinated brown rice frequently had lower total phenolic content.
The white rice, which has the lowest total phenolic content due to the complete removal
of the rice bran, exhibits this effect noticeably. According to Tian et al. [27], the highest
concentration of total extractable phenolics was discovered in brown rice, followed by
germinated brown rice and white rice, in that order. When compared to parent brown
rice, the number of phenolic esters such as hydroxycinnamate sucrose esters in germinated
brown rice was reduced by 70% [27]. According to Goufo and Trindade [28], rice pheno-
lic is made up of 12–28% hydroxybenzoic acids and 61–89% hydroxycinnamic acids. In
southern Thai indigenous brown rice, a number of phenolic compounds and their deriva-
tives, including phenolic acids, esters, and glucosides, were found [5]. Some indigenous
brown rice from southern Thailand has been found to contain specific compounds, in-
cluding benzoic acid, m-salicylic acid, glucocaffeic acid, 6-caffeoylsucrose, dihydroferulic
acid 4-O-glucuronide, natsudaidain 3-(4-O-3-hydroxy-3-methylglutaroylglucoside), (R)-2,3-
dihydro-3,5-dihydroxy-2-oxo-3-indoleacetic acid, 1-O-cinnamoyl-beta-D-gentiobiose, and
3′,6-disinapoylsucrose [5].

2.2. Ascorbic Acid Content

Figure 3 displays the ascorbic acid content of five native rice varieties processed
differently. When the ascorbic content of white rice, brown rice, and germinated brown rice
was compared, it was discovered that Khai Mod Rin, Kaab Dum, and Look Lai had ascorbic
acid contents that were comparable to and higher than those of Yar Ko and Yoom Noon.
The ascorbic acid level of all rice grass samples was higher than that of other processing
conditions (p < 0.05). The quantities of ascorbic acid in rice grass were highest in Kaab
Dum, Look Lai, and Yoom Noon, then Yar Ko and Khai Mod Rin (p < 0.05). According
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to Singh and Prasad [29], neither polished rice nor brown rice contained ascorbic acid. In
this study, trace amounts of ascorbic acids (<1.5 mg/100 g dw) were detected in white rice,
brown rice, and germinated brown rice using the spectrophotometric approach. However,
these contents were almost negligible if they were calculated on a wet basis.
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With the exception of Kaab Dum, where there was a drop in ascorbic acid level in
white rice (p < 0.05), processing brown rice into white rice and germinated rice had no
influence on the ascorbic acid content in any of the five rice samples (p > 0.05). Ascorbic acid,
which has vitamin C activity, is a crucial antioxidant and aids in a number of physiological
processes in plants, including cell division, growth, and photosynthesis [30]. Since ascorbic
acid is typically present in all plant tissue and is particularly abundant in young leaves and
photosynthetic tissue [31,32], the production of rice grass boosted the ascorbic acid level in
all five rice varieties. The results were consistent with the report of Liskko et al. [33], which
found that ascorbic acid increased when the rice germinated at the early vegetative stage.

2.3. Carotenoid Content

Figure 4 depicts the carotenoid content of five indigenous rice varieties processed
differently. The variation in rice’s carotenoid content was dependent on the varieties
and processing techniques used. However, the rice varieties had less of an impact on
the carotenoid content than the processing method. Rice grass had the highest level of
carotenoid content, while white rice had the lowest level (p < 0.05). Brown rice and germi-
nated brown rice both contained moderate amounts of carotenoids. Because chlorophyll
obscures their appearance, the carotenoid pigments found in plant leaves are not readily
visible (green). The carotenoids’ prominent colors are yellow, orange, and red when the
chlorophyll is absent. Therefore, despite the presence of carotenoids, young leaves are
green [34,35].
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Rice grass had the highest concentration of carotenoids, followed by brown rice,
germinated brown rice, and white rice. This proved that carotenoids were lost during the
polishing of rice grains. This outcome was in line with Lamberts and Delcour’s report [36],
which discovered that the exterior layers of rice grains had a significant amount of red and
yellow pigments but that the interior seed did not.

Notably, all five rice tests showed that the carotenoids in brown rice and germinated
brown rice were identical. Because carotenoids are not generally water soluble, very little
carotenoid was lost throughout the soaking and washing steps of making germinated
brown rice. The carotenoid levels of the five rice samples connected to grain processing
varied depending on the rice varieties’ input. The white rice with the largest amount of
carotenoids was Look Lai, followed by Kaab Dum/Yoom Noon, Khai Mod Rin, and Yar Ko.

With regard to brown rice and germinated brown rice, Look Lai had the highest
carotenoid content, followed by Yoom Noon, Khai Mod Rin/Kaab Dum, and Yar Ko
(p < 0.05). The carotenoid level in rice grass was highest in Look Lai, followed by Khai Mod
Rin, Kaab Dum, Yoom Noon, and Yar Ko, in that order (p < 0.05). Interesting to note is
that Look Lai in this study showed a greater carotenoid content than the other examined
varieties. In brown and milled rice from 39 aromatic rice varieties, beta-carotene levels
were reported by Renuka et al. [37] in 2016. Beta-carotene content was discovered to range
from 0.008 to 0.2 mg/100 g in milled rice and from 0.11 to 0.21 mg/100 g in brown rice. In
comparison to that report, all five native rice varieties had greater carotenoid contents. It
should be mentioned that Renuka et al. [37] reported the beta-carotene contents, whereas,
in our investigation, we provided the total carotenoid levels.

2.4. γ-Oryzanol Content

Figure 5 illustrates the levels of γ-oryzanol in five indigenous rice varieties produced
using various techniques. All five rice samples’ levels of γ-oryzanol were comparable
between white and brown rice (p > 0.05). When compared to brown rice with different
levels across rice varieties, the concentration of γ-oryzanol increases in brown rice that
has germinated by 11.5 to 16 times. The germinated brown rice variety with the highest
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concentration of γ-oryzanol was Yoom Noon, followed by Khai Mod Rin, Look Lai, Yar
Ko, and Kaab Dum, respectively (p < 0.05). When compared to brown rice, the level of
γ-oryzanol was reduced in the rice grass of Khai Mod Rin, Look Lai, and Yoom Noon
but not Kaab Dum and Yar Ko. Rice bran oil contains significant levels of γ-oryzanol. γ-
oryzanol is a nutritional substance found in large amounts in rice bran oil. The nutritional
function of γ-oryzanol involves antioxidant properties, lowering blood cholesterol and
triglyceride levels, increasing high-density lipoprotein, decreasing the amount of sugar in
blood circulation, and increasing the level of insulin in diabetes patients [38–40]. Several
biochemical processes were altered, and bioactive substances, such as γ-oryzanol, were
generated during the germination phase [41]. All five samples of brown rice used in this
investigation showed an increase in the level of γ-oryzanol during germination. These
findings were in line with the findings of Cáceres et al. [42], who discovered that when
cultivated at 34 ◦C for 48 h, the accumulation of γ-oryzanol in the germinated brown rice
of Indica SLF09 increased from 11.17 mg/100 g (dw) to 16.75 mg/100 g (dw).
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2.5. DPPH• Scavenging Activity

Figure 6 displays the DPPH• scavenging capabilities of native rice extracts treated to
various procedures. Various phytochemical components of rice have a variety of antioxidant
activities, which can be linked to their potential health advantages [38]. Rice is considered
a rich source of antioxidant molecules such as vitamin E, γ-oryzanol, phenolic compounds,
anthocyanin and proanthocyanidin, flavonoids, carotenoids, and phytosterols [38]. The
highest DPPH scavenging activity was found in rice grass of all rice varieties, followed
by germinated brown rice, brown rice, and white rice, respectively (p < 0.05). Several
antioxidants were present in rice grass, especially total extractable phenolic compounds
(Figure 2), ascorbic acid (Figure 3), and total carotenoids (Figure 4). Additionally, it is
possible that the antioxidant power was brought on by the presence of chlorophyll, which
has been linked to antioxidant activity [43].
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A good association between phenolic substances and DPPH• inhibition, which stands
for radical inhibition, was found by Shao et al. [26] and Moniruzzaman et al. [44]. However,
factors such as molecular structure, position and number of hydroxyl groups, polarity, and—
most significantly—the bond dissociation energy needed to separate the hydrogen atom
from the compound affect their antioxidative activity [45,46]. Yar Ko rice grass showed the
highest DPPH• scavenging activity when the impact of rice type was taken into account,
followed by those from Look Lai, Khai Mod Rin, Yoom Noon, and Kaab Dum, respectively
(p < 0.05). For germinated brown rice, the DPPH• scavenging activity of Look Lai ≥ Yar
Ko > Khai Mod Rin ≥ Kaab Dum ≥ Yoom Noon. For brown rice, the DPPH• scavenging
activity of Look Lai ≥ Kaab Dum ≥ Khai Mod Rin ≥ Yoom Noon = Yar Ko. Because of
the milling and polishing processes, which deplete antioxidant components, the DPPH
scavenging activities of white rice were not varied across five varieties (p > 0.05). The degree
of milling is a significant aspect that can affect the nutritional value and antioxidant activity
of rice [47]. The quantity of the antioxidant molecule quercetin, ferulic, and coumaric acids
decreased as the degree of milling of japonica and indica brown rice increased [47].

2.6. ABTS•+ Scavenging Activity

Figure 7 displays the ABTS•+ scavenging activities of indigenous rice extracts that were
treated to various procedures. Rice grass displayed the highest ABTS•+ scavenging activity
among all rice varieties, followed by brown rice that had been germinated, brown rice, and
white rice, in that order (p < 0.05), as found in the DPPH• scavenging activity (Figure 6). The
ABTS•+ scavenging activity (~5–40 mmol Trolox equivalent/kg dw) was almost 10 times
greater than the DPPH• scavenging activity (~0.5–4 mmol Trolox equivalent/kg dw). This
was because the water-soluble active compounds (such as water-soluble phenolics and
ascorbic acid) could be extracted, which led to higher scavenging activity against the
water-soluble free radical, ABTS•+, than the hydrophobic free radical, DPPH.
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Regarding the rice variety, rice grass of Khai Mod Rin had the highest ABTS scav-
enging activity, followed by those of Yar Ko, Kaab Dum, Look Lai, and Yoom Noon,
respectively (p < 0.05). All types of rice demonstrated the same ABTS•+ scavenging activity
for germinated brown rice, brown rice, and white rice (p > 0.05). Normally, germinated
brown rice had higher ABTS•+ scavenging activity than brown rice and white rice (p < 0.05),
which was due to the fact that milling and polishing can remove antioxidative compounds
of rice [8]. Germination and sprouting can produce some antioxidants [4,10,18], such as
phenolic compounds (Figure 2), ascorbic acid (Figure 3), and carotenoids (Figure 4).

2.7. FRAP

The FRAP of aqueous extracts of indigenous rice subjected to different processes is
depicted in Figure 8. Rice grass exhibited the highest FRAP, regardless of the type of
rice (p < 0.05). Khanthapok et al. [10] reported that the FRAP of rice grass juice varied
depending on the variety. According to one theory, phenolic compounds serve as reducing
equivalents by accepting electrons from free radicals, interacting with them to create more
stable products, and stopping the radical chain reaction [48]. Yar Ko had the highest
FRAP among the rice grasses (p < 0.05), followed by Look Lai/Kaab Dum, and Khai Mod
Rin/Yoom Noon, respectively. Depending on the rice variety, the FRAP values of brown
rice, germinated brown rice, and white rice differed. For germinated brown rice, Yar Ko had
the highest FRAP value (p < 0.05), while all the other varieties had the same FRAP value
(p > 0.05). The greatest FRAP value for brown rice was recorded for Kaab Dum (p < 0.05),
followed by Khai Mod Rin, Yar Ko, Yoom Noon, and Look Lai, respectively. For white rice,
Yoom Noon, Kaab Dum, and Look Lai often had the greatest FRAP values, followed by
Khai Mod Rin and Yar Ko. Based on the findings, sprouting significantly improved the
FRAP of rice extract. This implied that rice sprouting produced reducing equivalents (i.e.,
phenolic compounds).
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2.8. Metal Chelation

Metal chelation of aqueous extracts of indigenous rice subjected to different processes
is shown in Figure 9. In comparison to other treatments, aqueous extracts of rice grass
from all rice varieties tended to have the highest metal chelation activity (p < 0.05). The
maximum metal chelation activity was found in the Khai Mod Rin rice grass aqueous
extract, which was followed by Yar Ko/Look Lai/Kaab Dum, and Yoom Noon. According
to reports, the different antioxidants present in rice grass include a lipid peroxidation
inhibitor, a metal ion chelator, and a free radical scavenger [10,49]. Fascinatingly, aqueous
extracts of brown rice from Khai Mod Rin and Kaab Dum tended to exhibit metal chelation
comparable to or even closer to rice grass. This was most likely caused by the presence
of chelating substances in brown rice of certain varieties, including phenolic compounds,
carotenoids, phytic acid, and other substances [3–5,8]. The loss of chelating compounds
through leaching and/or chemical changes during soaking and germination may have
been the reason why the metal chelation was reduced when the germination was applied.
After germination, the metal chelation rose to a considerable level in Yar Ko, Yoom Noon,
and Look Lai. Aqueous extract of white rice from all kinds had the lowest metal chelation
(p < 0.05), which was similar to other antioxidant mechanisms. This was likely because the
chelating agent was removed during milling and polishing [8].
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3. Materials and Methods
3.1. Chemicals

All chemicals used for analyses were purchased from Sigma-Aldrich Corp. (St. Louis,
MO, USA).

3.2. Rice Samples

Five native southern Thai non-glutinous rice varieties (Oryza sativa L.), including Khai
Mod Rin, Kaab Dum, Yar Ko, Look Lai, and Yoom Noon (12% moisture), were harvested
at Pak Phanang, Nakhon Si Thammarat, Thailand (Figure 1). All of the rice employed
in this study was of the non-colored variety. Utilizing a domestic method, white and
brown rice were analyzed in comparison to germinated brown rice and rice grass (Figure 1).
Prior to being employed in the experiment, the paddies were checked for their ability to
germinate (at least 90% germination). For the preparation of germinated brown rice, brown
rice was soaked in the dark for 96 h at 35 ◦C in water with a pH of 5 while changing the
water every 6 h [4]. The Khanthapok et al. [10] method was modified for the preparation
of rice grass. Rice paddies were cleaned and left to soak in tap water all night. Seeds
were placed in vermiculite medium in plastic trays and then irrigated with tap water until
the seeds sprouted. Rice grass was cultivated using tap water and fluorescent lighting
(16/8 photoperiod) at room temperature (27–29 ◦C). Fresh grasses were cut above ground
at the jointing stage just before the second leaf appeared (Day 9), weighed, washed thrice
with tap water, then distilled water, towel-dried, and used for subsequent experiments.

3.3. Determination of Total Extractable Phenolic Content

The total extractable phenolic content was determined by the Folin-Ciocâlteu colori-
metric method [5,50,51]. The sample (0.5 g) was treated twice with 80% aqueous methanol
(8 mL) in a 40 kHz-ultrasonic bath (Ultrasons-H model 3000841 JP Selecta, Barcelona, Spain)
at 35 ◦C for 1 h. The free phenolic fraction was obtained after centrifugation at 5000× g
(RC-5B plus centrifuge, Sorvall, Norwalk, CT, USA) for 25 min. The pH of the supernatant
was then adjusted to 4.5–5.5 using 6 M HCl. DI water (20 mL) was used to wash the
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aforementioned residue once more. Following water removal, the samples were twice
blended with 20 mL of 4 M NaOH for 2 h in an ultrasonic bath. The pH of the mixture was
raised to 4.5–5.5 using 6 M HCl. The bound phenolic fraction supernatant was obtained
following centrifugation under the same condition. After that, the total extractable phenolic
content of the mixed fractions was determined. Briefly, 100 µL of the sample was mixed
with 2.0 mL Folin-Ciocâlteu reagent (previously diluted to 10-fold with deionized water)
and thoroughly mixed. After standing for 5 min, 15% sodium carbonate solution (1.0 mL)
was added. The correspondence solution was kept in the dark for 60 min. The absorbance
was read at 765 nm using a Libra S22 UV-Visible spectrophotometer (Biochrom, Cambridge,
England). The amount of GAE per amount of dried material represents the total extractable
phenolic content.

3.4. Determination of Ascorbic Acid Content

The total ascorbic acid content was measured using the AOAC [52]. In a nutshell,
for extraction, sample (1 g) was macerated for 3 min in 10 mL of ice-cold, 5% (w/v)
metaphosphoric acid produced in 10% (w/v) acetic acid. For 10 min, the extracts were
centrifuged at 7000× g. The supernatants were filtered through Whatman No. 1 filter
paper, and a volume of 25 mL was produced. Using a 2 mL sample, 2,6-dichlorophenol
indophenols (0.02% w/v), thiourea (2% w/v), and 2,4-dinitrophenylhydrazine (2% in 4.5 M
H2SO4) were added one at a time, and the mixture was then incubated at 50 ◦C for 70 min
with frequent stirring. Samples were moved right away and kept in an ice bath. After
adding 4 mL of the 85% H2SO4, the mixture was gently shaken to combine the contents
before being left to stand for 30 min. To ascertain the total ascorbic acid content in the
samples under investigation, the absorbance at 520 nm was measured and compared with a
calibration curve, which was constructed using various amounts of standard ascorbic acid.

3.5. Determination of Total Carotenoid Content

Ground sample (2–8 g) was extracted with acetone using an IKA® homogenizer (Model
T25 digital Ultra-Turrax®, Staufen, Germany) for 1 min at 21,500 rpm. To get rid of any
acetone residue, the extracts were transferred to petroleum ether and then rinsed with
water. With an equivalent volume of 10% methanolic KOH, saponification was carried out
in the dark at room temperature for 16–20 h. Diethyl ether and acetone were used for the
recovery and washing of the saponified carotenoids. Petroleum ether was used to dilute
the obtained saponified extracts to a level of 25 mL. The extinction coefficient for mixes of
carotenoids (2500) and the absorbance value measured at 450 nm were used to compute
the total carotenoid concentration [53].

3.6. Determination of γ-Oryzanol Content

A total of 1 g of pulverized sample and 5 mL of distilled water were combined with
0.2 g of ascorbic acid, and the mixture was reacted at room temperature for 30 min. The
extract was added with 5 mL of a 1:1 hexane:isopropanol solution before being incubated
for 30 min (room temperature). Using a syringe filter (0.45 µm), the solvent and rice
piece residue were separated. The remainder of the rice piece was then extracted once
more, making a total of four extractions. The four extracted solutions were combined and
centrifuged at 6000× g for 15 min. To obtain crude samples, the organic solvent layer was
separated, and the solvent was further evaporated in a rotary evaporator (60 ◦C). Using
2 mL of isopropanol to dissolve about 0.1 g of the crude samples, it was then analyzed
at 326 nm. The pure γ-oryzanol calibration curve was used to determine the quantity of
γ-oryzanol [54,55].

3.7. Aqueous Rice Extract Preparation and Evaluation of Antioxidant Activities

White rice, brown rice, germinated brown rice, or rice grass was mashed with a pestle
in a clean mortar containing 10 vol of distilled water. The mixtures were then placed in an
ultrasonic bath operating at 40 kHz and 60 ◦C for 2 h. Aqueous rice extracts—supernatants—
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were obtained after centrifugation at 10,000× g (20 min/4 ◦C) and were utilized to ascertain
the antioxidant properties.

According to Sungpud et al. [56] and Chaijan and Panpipat [4], the DPPH• and ABTS•+

scavenging activities and the ferric reducing antioxidant power (FRAP) were evaluated.
Trolox (0–1 mM) was utilized as a standard for the DPPH•, ABTS•+, and FRAP assays, and
the result was reported as mmole Trolox equivalents (TE)/g dried sample. Metal chelation
was assessed and represented as mmol EDTA equivalent/g dried sample, according to
Limsuwanmanee et al. [57].

3.8. Statistical Analysis

All of the tests were carried out in triplicate (n = 3). ANOVA analysis was performed
on the data. The means were contrasted using Duncan’s multiple range analysis. SPSS 23.0
was used to conduct the statistical analysis (SPSS Inc., Chicago, IL, USA).

4. Conclusions

Thai native rice’s antioxidant components and antioxidative activities were impacted
by the rice variety and processing conditions. Depending on the rice variety, processing
into brown rice, germinated brown rice, or rice grass tended to improve both antioxidant
components and antioxidant power. In contrast, processing into white rice resulted in
a decrease in antioxidant compounds such as total extractable phenolic, ascorbic acid,
total carotenoid, and γ-oryzanol, as well as antioxidant activity. In order to meet the
needs of farmers who aim to produce rice as a functional ingredient and to encourage the
consumption of indigenous rice by health-conscious customers, the results can be used as a
reference to choose the best rice variety and primary processing.
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