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Background
Networks of complex systems represent functional or contextual relations that show 
globally and locally heterogeneous substructures. One important feature is the densely 
interconnected groups of nodes, which are called communities. Their organizational 
arrangements can have various characteristics such as overlapping, fuzziness or hierar-
chical structure and require diverse detection algorithms [1–4].

Time-resolved data of online content has become increasingly available and is of great 
importance for understanding the dynamics of content, including the emergence and 
lifetime of topics or trends. The development of methods, which capture these temporal 
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communities is a subject of current research [5–7]. Moving from a static to a temporal 
picture requires tracking the communities in time. This naturally raises the question of a 
temporal matching of communities resulting from static snapshots [8–12]. By incorpo-
rating higher orders of memory [13] in a method proposed in [14], long-term develop-
ments can be tracked reliably.

The temporal aspect of this approach is independent from the choice of static com-
munity detection algorithm and provides a free parameter to define the timescale of a 
thread in order to meaningfully define a topic. The proposed method can track trajec-
tories of content on various timescales that can occur for instance in the highly dynami-
cal world of online media. Especially long-term developments can be followed well by 
canceling out noise and by memorizing topics even with interruptions due to daily or 
weekly periodicities.

Previously in [14], we introduced a random-walk approach for hashtag community 
detection and a subsequent memory-based matching scheme on temporal networks. 
We had demonstrated that the lifetime of small communities can be increased with this 
approach. This paper serves as a substantial extension of the said conference paper. This 
paper provides a more detailed motivation of the approach, a detailed description of the 
matching procedure, including a discussion of different memory kernels and in a com-
pletely new part, focuses on analyzing the empirical dynamics of the groups that we can 
trace over time. Furthermore, we will elaborate on a mechanistic model to reproduce 
and understand their features. The resulting trajectories of hashtag groups allow us to 
analyze the way these groups grow and shrink. If a topic is new and widely discussed, 
people start inventing hashtags for its description. They are combined with established 
and popular hashtags, for the posts to appear in many queries and reach many users. 
This leads to an imitation or preferential attachment behavior as often observed in other 
social settings [15]. Simultaneously the total volume of hashtags that are posted within a 
topic decreases after some time. Other topics come up and the discussion will eventually 
switch to new subjects and their corresponding hashtags, leading to a cycle similar to 
the news media [16].

This behavior leads to a fat-tailed distribution of increases of group sizes in agreement 
with observations in other systems [17, 18]. It has been described based on a ranking 
model for network growth [19] via exogenous and random shifts. We, however, observe 
also bursty behavior in the decreases of the communities. To account for this, we extend 
the existing models by a recency ranking and gain a deeper understanding of the com-
plex dynamics of the ever-changing usage of hashtags.

Hashtag networks
In order to analyze groups of related content with methods from network science, we 
build co-occurrence networks from empirical datasets. In this work, we will focus on 
hashtags from the fashion platform https​://lookb​ook.nu, where users can post pictures 
of outfits to their followers and describe them with hashtags. The dataset was acquired 
in April–May 2017. An HTML scraper was used to extract information from the pub-
lic webpages of lookbook.nu via HTTP. Starting at a random user, 22,748 users were 
crawled along the follower-connections in order to focus on popular accounts. These 
users produced 1,158,340 posts within the observation time, which contained 81,409 

https://lookbook.nu
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unique hashtags in total. Nodes are labeled with corresponding hashtags and edges are 
realized, whenever two hashtags occur in the same posting, similar to network con-
structions that have been used to analyze social tagging systems [20]. These edges are 
undirected and timestamped, ranging through the complete year 2015. Aggregating 
them within a time interval �t results in snapshots of the temporal network. To account 
for multiple co-occurrences within �t, we introduce corresponding edge weights. The 
snapshots can also be represented as weighted adjacency matrices At , with zero or posi-
tive integer elements [21]. Figure 1 illustrates this procedure schematically. The aggre-
gated network over the complete dataset has a total size of 81,409 nodes, connected 
by 1,358,241 edges. To analyze the temporal evolution of these connections, we used 
smaller time intervals. In this work, we choose an aggregation window of 1 week ( �t = 7 
days) in order to avoid structural changes due to patterns within a week. As a result, we 
obtain 52 snapshot networks for 2015. Standard measures of these networks, averaged 
over all snapshots, are the mean degree �k� = 6.2, the diameter D = 5.03, and the mean 
path length �l� = 3.4 as well as the global clustering coefficient C = 0.62. These values 
are comparable to word co-occurrence networks [22] and remain stable over time.

Community structure

Since hashtags can be used in different contexts by diverse communities of people, we 
suspect a formation of strong substructures in such networks. The modularity value is 
relatively high ( Q > 0.5 ) for all snapshots, suggesting pronounced subgraphs [23]. Mod-
ularity maximization gives a good possibility to get a first impression of these structures 

Fig. 1  Scheme for the construction of co-occurrence networks of hashtags: every time two hashtags are 
used within the same posting, and an edge with the timestamp of that post is drawn. Aggregating the edges 
over a time-window results in an undirected and weighted snapshot network. On the right, screenshots from 
https​://lookb​ook.nu

https://lookbook.nu
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[24]. Figure 2 shows the distribution of the global clustering coefficients CM of each indi-
vidual module M from 52 snapshots. The bimodal character suggests that mainly two 
structural types can be found. We hypothesize that this corresponds to different ways 
of using hashtags: A descriptive usage of hashtags as keywords results in structures with 
lower clustering coefficient (example: Fig. 2, purple inset), while the usage of high num-
bers of buzzword hashtags in each post shape strongly clustered groups (example: Fig. 2, 
green inset). 

This picture is supported by investigating the relation of degree and local clustering 
coefficient. Figure  3 shows the distribution of combinations (di, Ci) of degree di and 
clustering coefficient Ci for each node i across all snapshots. A majority of the networks 
follow the relation: Ci ∼ d−1

i  as described in [25] for hierarchical networks. Low cluster-
ing coefficients define top level hashtags for broader topics (e.g., ’#summer,’ ’#denim’). 
The upper part of the distribution contains very specific hashtags, as expected in hierar-
chical networks, but also less meaningful buzzwords (e.g., ’#fashionblogger,’ ’#effortless’).

Considering their topological position in the network (Fig. 5a), we observe that nodes 
with high clustering coefficient either lie in the periphery of hubs (Fig. 5b), or they shape 
strongly intraconnected groups. This leads to the picture of networks that consist of 
several hierarchically structured subgroups that share nodes in their periphery, which 
have large clustering coefficients. Figure 5c shows how modularity maximization can be 
misled in such networks by combining hubs that do not belong together. To separate 

Fig. 2  Two types of groups: histogram of the global clustering coefficient of each community found with 
modularity maximization. The inset shows two examples of substructures that we observe in the low- and 
high-value areas. A hierarchically ordered structure shown in purple and a densely connected group in green. 
These network visualizations and those in Fig. 5 are generated using gephi [38]
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the topics from each other and possibly filter out the unspecific groups between them, 
we incorporated our understanding of the data in a customized community detection 
method.

Finding hashtag communities

Our approach is to adapt a time-continuous random-walk (RW) clustering method 
developed in [26, 27]. This method is based on exploiting dynamical properties of the 
RW to find communities such that they correspond to the metastable sets of the pro-
cess, i.e., structures where the RW is stuck for very long time periods. To achieve this, 
we define a new type of a time-continuous random walk such that hashtag communities 
represent its metastable sets. The dynamics of this new process are given by the follow-
ing rate matrix:

where A is the weighted adjacency matrix, di is the degree, and Ci is the clustering coeffi-
cient of a node i. Parameter φ > 0 is a constant that is used to regulate the general 
importance of Ci depending on the given data. Transition rates from a node i to a node j 
are given by the off-diagonal elements of Lφ . Diagonal elements indicate the metastabil-
ity of the process within hashtag communities, since the expected waiting time in every 
node i is given by 1

�Lφ(i,i)�
= eφ(1−Ci). Therefore, a process stays longer on average in 

nodes with smaller values of the clustering coefficient. By taking into account both local 
measures and topological information, we achieve two things: hubs are naturally often 
visited, while the densely connected groups between them are not attractive for the ran-
dom walker and it passes through them quickly.

(1)Lφ(i, j) =











− 1

eφ(1−Ci)
, i = j

Ai, j

die
φ(1−Ci)

, i �= j, Ai, j > 0

0, else,

Fig. 3  Hierarchical structured and unspecific hashtags: the two-dimensional distribution of value pairs 
(Ci , di), clustering coefficient and degree of node i, respectively. The most frequently used hashtags, which 
fall into the region within the curly brackets, are listed (upper left: 0.6 < Ci < 0.8, lower right: 300 < di < 500)
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Now, we can find the hashtag communities M1, . . . ,Mm as metastable sets of the RW 
process given by Eq.  (1). For this, we use the Markov state modeling approach [27], 
as it provides a way to find fuzzy communities and filter out unspecific hashtags. In 
particular, we obtain clustering into communities M1, . . . ,Mm and additionally a tran-
sition region T = V \

(
⋃m

l=1Ml

)

, consisting of the remaining nodes from the set of all 
nodes V, which are not uniquely assigned to exactly one of the communities. A transi-
tion region can act as a filter for very unspecific hashtags by accounting for the typical 
fuzzy character of communities in tag co-occurrence networks, avoiding overlapping 
areas [28, 29]. For nodes in T, we can calculate the affiliation probability to each 
M1, . . . ,Mm by solving sparse, symmetric, and positive definite linear systems [26, 30].

Details of this approach are described in [26, 30], and in the following, we briefly high-
light the effects of two parameters that control the main components of this method: φ 
controls the repulsive force of high local clustering coefficients Ci , and θ sets the lower 
threshold of the affiliation probability. Figure  4 shows three examples of community 
composition in the same simple network but, for different parameter combinations. For 
low values of φ, the rate matrix (see Eq. (1)) allows transitions through regions of high 
clustering coefficients. Walks between high-degree nodes become more favorable, and 
the transition region T between them becomes small. Increasing φ separates the hubs 
and leads to the highest diversity in the modules and their sizes, where θ = 0.9 and 
φ = 4.0 (see Fig. 4). A higher value for θ increases the size of the transition region even 
further, shrinking the smaller communities, leading to less homogeneous sizes again. 

Comparing modularity maximization for weighted graphs to our method in Fig. 5c, 
d leads to a similar insight. The lack of a transition region destabilizes modularity 
maximization and leads to merging groups of different topics that should be separated 
in our analysis. Depicted is an example, where the hashtags #summer and #winter get 
assigned to the same group by modularity maximization, while they are separated by 
the transition region (gray) with our method. 

The described method has two advantages: (1) It can be customized to our needs for 
the characteristic underlying network structure, by modifying the RW process. (2) It 

Fig. 4  The roles of φ and θ : three examples of the same simple network but with different module 
compositions resulting from different combinations of the parameters φ and θ from the RW method. The 
module sizes S(Mi) and the size of the transition region S(T) as the number of nodes they contain are shown
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can detect fuzzy communities, which is important property of the hashtag groups under 
investigation and possibly more general for word groups. It is outside the scope of this 
work to compare our method to other community detection methods, in part because 
our method is designed to infer fundamentally different topological structures. The 
remaining parts of this work are independent of the community detection on the static 
snapshots, allowing for a customized solution as the one presented above.

Dynamics of communities
The fashion world underlies strong seasonal and trend-driven changes, which lead to 
alterations in the hashtag landscape. In Fig.  6, two snapshots,   a  week in August and 
a week in December, are shown. It can be observed that the community structure var-
ies largely between the two seasons. Understanding the dynamics of these developments 
requires a method to quantitatively capture the communities over time. We propose a 
meta-algorithm that solves the bipartite matching problem, which arises from connect-
ing previously obtained partitions of every snapshot network. It is important to note that 
this method is independent from the choice of the algorithm used for the static commu-
nity detection on the individual snapshots. Generally, the class of matching-based meth-
ods for temporal community detection [8–11, 14] offers a big advantage, by allowing us 
to choose a static detection method for the specific data structure and question. 

a b

c d
Fig. 5  Values of two local network measures and their effects on community detection: a the local clustering 
coefficients in one network snapshot and b the degrees of the nodes. The darker the color and the larger 
the radius of a node, the higher the value of a measure. The two pictures show the same network, with fixed 
node positions. c The same network, with node colors corresponding to the modules that were obtained by 
modularity maximization (edge colors follow the colors of the attached nodes for better visualization) and d 
obtained by our customized RW method, resulting in a fuzzy clustering with the transition region T in gray
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Matching problem

To measure properties like stability, and the rise and descent or the lifetime of communi-
ties, we track their history through the snapshot networks. In contrast to an event-based 
approach [9], our goal is to find long-term developments and re-identify forgotten trends 
rather than observe behavioral patterns of various events. Our first assumption is that the 
vocabulary used to talk about a topic stays similar from one day to the other. This directly 
suggests maximizing the sum of pairwise similarity measures for adjacent timesteps. For 
example, one can compute the overlap of hashtags of two communities, A and B, from the 
snapshots at t − 1 and t, respectively, by considering their Jaccard index:

Using the above, we construct a weighted bipartite graph with hashtag communities as 
vertices and weighted edges with the Jaccard index as schematically drawn in Fig.  7a. 
Jaccard indexes below a threshold Jt = 0.1 are not considered in that construction, a 
lower bound that can be varied according to the desired minimal overlap. In order to 

(2)J (At−1,Bt) =
|At−1 ∩ Bt |

|At−1 ∪ Bt |
.

a b

Fig. 6  Two representative snapshots, with clustering: a the resulting communities on a snapshot from 
August, b the results for a week in December. Colors correspond to different communities Mi and gray nodes 
form the transition region T 

Fig. 7  The matching process: a pairwise calculated Jaccard indexes and the resulting coloring in step t = 2. 
b The memory weights M for some groups and their effects on the matching in step t = 3
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track the groups over time, we face a matching or coloring problem on that graph, which 
can be solved by the Hungarian method in polynomial time [31]. 

In this first example, the matching is simple, namely, the one that results in the max-
imal sum of Jaccard indexes Jmax = 3/5+ 2/3 = 1.27. All groups, for which a match-
ing was found, are then renamed to be consistent with the labeling from the previous 
timestep (Fig. 7a). Names of communities which could not be matched, like Ft , are kept. 
This renaming procedure gives the possibility to track the development of a community 
over time and to measure its lifetime or the changes of its size.

Memory weights

The discrete nature of community detection makes it generally unstable toward varia-
tions in the network topology. Communities split (cf. F in Fig. 7a) or merge (cf. A) due to 
small temporal topological changes, but can reunite or separate after only one step. This 
can lead to unwanted effect, as in the third timestep t = 3 from our example, where a 
pairwise Jaccard index finds no match for G and it is understood as a new development. 
Similarly, I is identified as F, while there will not be any match for C and its development 
would stop. However, these events are just temporal fluctuations and should not deter 
the continuity of groups A and C. To overcome this algorithmic deficiency, we expand 
the task to a multistep matching. We recursively consider possible matchings from snap-
shots further in the past within a time window of length n. As similarity measure, we 
sum up the Jaccard indexes over the n preceding steps, weighted by the inverse temporal 
distance to compute memory-dependent weights W:

This proposed protocol of calculating the weights incorporates the ideas of consider-
ing timesteps further in the past [11] as well as a finite length of influence [10]. This is 
motivated by the assumption that a topic can be followed over time as long as a frac-
tion of its members stay the same for a finite timespan even if members change in 
the long run. In Fig. 7b, two possible scenarios are illustrated. The group A has disap-
peared but can be rediscovered by the value W ({At−2, At−1}, Ht) = 1/2, which is 
higher than W ({Bt−2, Bt−1}, Ht) = 2/5. The other scenario is the small group F that 
split off C but merges back afterwards. The memory accounts for that by a high overlap 
W ({Ct−2, Ct−1}, Jt) = 2/3 and results in keeping the label C. The choice of the window 
size n depends on the data, but also on the natural timescales of the dynamical processes 
that are of interest. If it, for example, is not desirable to relabel a group when it under-
goes weekly periodicities, one should choose the window to be longer than a week. Fol-
lowing the goal to capture developments that have timescales of months, we use n = 4 
weeks to explore the seasonal trends in fashion.

Alternatively, we can sum over all available timesteps using an exponential memory 
kernel with decay rate r to compute W:

(3)W ({At−n, ...,At−1},Bt) =

n
∑

t ′=1

1

t ′
|At−t ′ ∩ Bt |

|At−t ′ ∪ Bt |
.

(4)W ({At−n, ...,At−1},Bt) =

t
∑

t ′=1

e−t ′·r |At−t ′ ∩ Bt |

|At−t ′ ∪ Bt |
.
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The above version of the memory weights has the advantage that we can extract a proxy 
for the value of r from the data. Calculating the average relative overlap of all hashtags H 
between adjacent snapshots 

〈

Ht∩Ht+1

Ht∪Ht+1

〉

t
≈ 0.9 naturally suggests a choice r = 0.1.

Testing stabilization

The advantage of our method based on Eqs. (3) and (4) to find a matching in noisy data 
can be quantified by a constructed test case. To this end, we start with a static partition-
ing and generate uncorrelated randomized copies of it by swapping members between 
the communities with a fixed probability p. The obtained randomized snapshots can be 
assembled one after the other to construct a noisy time series with a stable underlying 
community structure (Fig. 8). One can then run the matching procedure on this artifi-
cial timeseries and quantitate how often the matching algorithm found the underlying 
(known) groups in the noisy data by the relative success rate s. The resulting values for 
different shuffling probabilities p, depending on memory lengths n and decay rates r, are 
compared in Fig. 8. The case of n = 1 corresponds to a usual Jaccard index-based match-
ing. By means of only a few steps of memory, the accuracy can be increased significantly, 

Fig. 8  Testing stabilization: illustration of a benchmark test to quantify the ability of stabilization in noisy data 
for different parameters. The resulting success rates s are shown for different scenarios with two memory 
kernels ( 1/t′ and e−r·t′ ) and range from the limit of no memory ( n = 1 and r = 10.0 ) to the case of infinite 
memory ( n = 10 and r = 0)
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especially for relatively low shuffling probabilities. For strongly randomized matchings, 
only high memory values can still find the underlying structure. The empirically meas-
ured decay rate r = 0.1 as well as the finite window size of n = 4, which we use through-
out this work, achieve both good success scores, especially in the more realistic regime 
of low shuffling probabilities. 

Empirical results

An insightful visualization of such complex datasets with temporal community struc-
ture was proposed in [32] under the name ’alluvial diagrams.’ Figure 9 depicts one exam-
ple for such a diagram, where the communities are drawn for each snapshot and the 
hashtags transitions between them, encoded in the thickness of the bands. The ’#sum-
mer’ community loses many members and the ’#autumn’ group becomes the biggest one 
in the 1st week of September. Our interactive online tool can be used further to explore 
the results (www.tu-berlin.de?lorenz). In Fig. 9, the community sizes vary largely, show-
ing many small but stable groups such as the exemplarily labeled ‘#gothic’ and ‘#asian’ 
developments. These small groups suffer the most from fluctuations. Besides these 
results, an implementation of the matching method is available at: https​://githu​b.com/
phili​pplor​enz/memor​y_commu​nity_match​ing. 

Modeling online dynamics
The proposed methodology enables us to observe highly dynamic developments of 
hashtag groups rising and falling in their size (see Fig. 9). By a mathematical model, we 
aim to understand the main driving forces that cause people to post new combinations of 
hashtags and to drop a topic again. To this end, we focus on the development of the sizes 
Si(t) of community i at time t. Our dataset includes the likes L that are placed on the 
postings, and we could observe a strong correlation of average likes per hashtag 〈Li/Si〉, 
a community receives and its size Si, shown in Fig. 10a (Pearson correlation ρ = 0.925 ). 

Fig. 9  Alluvial diagram during the change of seasons: 6 weeks at the end of August of our data visualized. 
The number of hashtags in each group and transition is encoded in the thickness of the drawing, while the 
groups are ordered by their size

https://github.com/philipplorenz/memory_community_matching
https://github.com/philipplorenz/memory_community_matching
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In the following, we treat its size as a proxy for its popularity, and the quantity, which is 
simulated by the proposed model, can be understood as conceptual score for popularity. 

Figure 10b shows the distributions P(S(t)) of total sizes in each week. They are plotted 
on top of each other to illustrate their stability and shape. We used the maximum likeli-
hood method from [35] to estimate the exponent and the standard error of the indicated 
power law. This shape fits to the general picture of many distributions that are related to 
popularity measures.

In the following discussion, our main focus is on the dynamics of these values, which 
exhibit very diverse temporal evolution. The trajectories before and after a maximum are 
shown in Fig. 11a. Their mean values (green and red) show very symmetric behavior of 
gaining and losing members, while the large standard deviations confirm their broadly 
distributed S. To quantitate this further, we consider the distributions of the logarith-
mic derivative �S/S = (S(t)− S(t − 1))/S(t − 1) (green), as was previously done in [17, 
34], which describes the relative gains. In addition, in this work, we describe the relative 
losses (�S/S)r = (S(t − 1)− S(t))/S(t) (red) from 1 week to the other. Both their distri-
butions are plotted in Fig. 10c, d. 

We observe in agreement with Fig. 11a that both distributions are very similar and exhibit 
a fat tail. A similar behavior has been demonstrated for relative gains in Wikipedia traffic 
[17], Youtube views [18], hashtag usage on Twitter [33], and citation counts [34]. These fat-
tailed distributions of relative changes seem to be a characteristic feature of online popular-
ity dynamics.

Fig. 10  Statistics of various observables: a the correlation between the average likes 〈Li/Si〉 per hashtag of 
community i and its size Si . b The distribution of (community-)sizes in each snapshot S(t), plotted on top of 
each other and as a guide to the eye, a fitted power law (exponent: 1.27± 0.03, KS-statistic: 0.2, p value: 0.08). 
c The distribution of relative gains �S/S = (S(t)− S(t − 1))/S(t − 1) (green) in size and d relative losses 
(�S/S)r = (S(t − 1)− S(t))/S(t) (red). The Inset shows the distribution of interburst times �t between 
events of �S/S > 10 (blue) and a fitted power law (exponent: 1.1± 0.02, KS-statistic: 0.3, p value 0.05)
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Pure rich-get-richer mechanisms, where �S ∼ S cannot reproduce these broad distri-
butions; however, their shapes suggest self-enhancing process in both directions (gain and 
loss). Exogenous events can be responsible for small items to rise up quickly as modeled in 
[17], but also aging of the top items [34] can lead to rising newcomers. The distribution of 
interevent times (event: �S/S > 10 ), as shown in the inset of Fig. 10d, is following a power 
law, where we also used the method from [35] to estimate the exponent. This is an indicator 
of cascades of events, which we believe are caused by competition among pieces of content 
[36], e.g., by the downfall of a popular item, leaving room for others.

In the following, we propose a class of models that is able to explain these observations by 
an interplay of ephemeral popularity and ranking mechanisms.

Ranking

https​://lookb​ook.nu and many other websites show posts in a longitudinal order, natu-
rally imposing a hierarchy. It is a natural tendency to sort items according to their relative 
attribute. This is also what most websites do, their algorithms are usually called ’trending,’ 
’hot,’ ’popular,’ or ’new.’ To account for this, the proposed model incorporates a ranking as 
previously described in [17, 19, 33]. We adapted this basic idea by ranking community i 
according to a prestige score �i(t), which depends on time. To order these scores relative to 
each other, we formulate a general ranking function r(�i(t), {�1(t), ..., �N (t)}) as the sum of 
Heaviside functions:

For simplicity of the notation, we neglect its dependence on all other states and con-
sider it as implicitly present r(�i(t), {�1(t), ..., �N (t)}) ≡ r(�i(t)). The function results 
in a small integer r(�i(t)) if an item i has a high score �i relative to the others. By that 

(5)r(�i(t), {�1(t), ..., �N (t)}) :=

N
∑

k=1

�(�k(t)− �i(t))+ 1

(6)with �(x) =

{

0, if x < 0

1, if x ≥ 0.

a b
Fig. 11  Observed peaks and their simulation: a All trajectories Si(t) leading to and from the global maximum 
Si(tpeak), relative to that Si(t)/Si(tpeak). Their mean s are plotted in green (increase) and red (decrease) with 
the corresponding standard deviation at each point. b Exactly the same plot for the resulting trajectories 
obtained from a Monte-Carlo simulation of Eq. (9) with parameters: α = 3.0, m = 500, and N = 100

https://lookbook.nu
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coupling, the ranking implies a competition between the topics i, due to a limited capac-
ity of the users and websites.

In each discrete timestep, the score Si(t + 1) a topic i receives is distributed according to 
the ranks, which result from the last timestep. Following are the attachment probabilities:

The attachment probability decreases with P(r(�i(t)) ∼ r−α modeling the decay of user 
attention as they scroll further down the feed and is consistent with the observed decay 
of sizes (Fig. 10b). Consistent with the momentary character of the empirical popular-
ity measure Si(t), we model the users to newly distribute m scores (e.g., likes) along this 
feed of posts at every time step. This can be expressed in the following update rule:

where ξ ∈ [0, 1] is a uniformly distributed random variable and �(x) as defined in 
Eq.  (5). If an item has been ranked down, resulting in a lower attachment prob-
ability ( P(r(�i(t)) < P(r(�i(t − 1)) ), this update rule can cause decreasing scores 
Si(t + 1) < Si(t) (losses).

Aging model

In the ranking of community sizes, constant turnovers can be observed in Fig. 9 as well as 
negative slopes �S < 0 (Figs. 10d and 11a) that refer to shrinking processes. To account for 
this, it is necessary to introduce, besides the rich-get-richer mechanism, an age-dependent 
decay of the prestige score. The age of a node has been considered in [37] by the assump-
tion that old nodes might not attract as many new links as young ones and slow down in 
growth. In our case, we assume that hashtags/topics, especially describing pop-culture and 
news, have to be up to date. If they lack recency, they are mentioned by less users with time 
[16]. To this end, we rank the topics by a combined score of attractiveness, namely, the dif-
ferences of their sizes and their ages �i(t) = Si(t)− a(t − ti), where t is the current time, 
ti the time of introduction. The aging factor a weights the influence that the age has on the 
ranking. This leads to the following attachment probabilities in the aging model:

Alternative choices of prestige scores �i(t) are possible. The general dynamic behavior 
occurs whenever this score eventually decays with time. An interesting option for future 
research, e.g., is the rate of change �i(t) = �Si(t).

Numerical results

Equation (8) can be implemented and simulated. For simplicity, we keep the total number 
of topics N = const. in this work by adding a new topic each timestep, while removing 

(7)P(r(�i(t)) =
r(�i(t))

−α

∑N
j=1 r(�j(t))

−α
.

(8)Si(t + 1) =

m
∑

h=1

�(P(r(�i(t))− ξ)),

(9)P(r(�i(t))) =
r(Si(t)− a(t − ti))

−α

∑N
j=1 r(Sj(t)− a(t − tj))−α

, i = 1, ...,N .
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the smallest one. Adding new hashtags to the system with Si(t = ti) = 0 accounts for 
exogenous events. The resulting trajectories and their mean s are shown in Fig. 11b, with 
good agreement to the empirical observations. The simulation of our model with α = 3.0, 
m = 500, a = 1.0, and N = 100, reproduces both distributions shown in Fig. 12a, b very 
well with a Kolmogorov Smirnov distance of 0.05 (P value < 0.001 ) for the gains and 0.06 
(p value < 0.001 ) for the losses. The distribution is broad due to cascades of rank shifts. The 
lack of regularity and the burstiness of these jumps become clear in the power-law distribu-
tion of interburst times between events of �S/S > 10 as shown in the inset of Fig. 12b. 

Staying on top

In the simulated dynamics, it seems that higher ranks are held longer while the frequency of 
rank-shift events increases between lower ranks. In order to quantitate this, we formulate 
the condition that an item i in rank r loses its position to item k from the rank below r + 1:

As a lower bound for the time to stay in a rank, we assume that the ranks are reached 
adiabatically fast compared to the time they stay there. Then, we approximate the com-
petitor k from the lower rank r + 1 to be very young tk ≈ t and the score on rank r to be 
on average �S(r)� = m · P(r):

The above describes the maximum age for one topic to stay on rank r with the given 
m, a,α and N, leading directly to a lower bound of the average time τ spent in a rank r:

The above can be compared with the resulting average times 〈τ (r)〉 of topics staying in 
one rank in the simulation and the empirical dataset. Figure 13a shows the results, where 
it becomes obvious that higher-ranked hashtag groups can keep their ranking longer than 

(10)Si(t)− a(t − ti) < Sk(t)− a(t − tk).

(11)Si(t)− a(t − ti) < Sk(t) ⇒ m ·

(

r−α − (r + 1)−α

∑N
j=1 j

−α

)

< a(t − ti).

(12)min(�τ (r)�) ∼ r−α − (r + 1)−α .

Fig. 12  Comparison of empirical and simulated distributions a distributions of gains 
�S/S = (S(t)− S(t − 1))/S(t − 1), empirical (green) and simulated (black). b Analogous to the distribution 
for losses (�S/S)r = (S(t − 1)− S(t))/S(t) (red). The Inset shows the distribution of interburst times �t 
between events of �S/S > 10 from the data (blue, fitted exponent: 1.1± 0.02 ) and the simulation (black)
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the smaller ones. The empirical data (dots) confirm that relation very well, especially for 
high ranks. One can observe in the inset (log–log plot) that for lower ranks (ca. r > 6 ), 
the approximation of the perfect opponent overestimates the competition in the lower 
ranks where not only the fittest can overtake. An example trajectory in Fig. 13b shows 
that, for items that reach high ranks, the approximation of an adiabatic rise holds since 
it reaches its maximum at a young age. In the inset, an item that only reaches rank 6 is 
shown. This happens quite late in the lifetime after a gradual climb up, so the assumption 
of young competitors does not hold here. 

Conclusion
We have presented an investigation to analyze the dynamic behavior of topics in online 
media. We have focused on a dataset of hashtags, which were used on the fashion plat-
form: lookbook.nu over the course of 1 year.

We have built timestamped co-occurrence networks and aggregated them to weighted 
snapshot graphs. We have applied a random-walk-based approach for finding a transi-
tion and a community region to obtain a reliable and meaningful clustering.

Independent from the method for community detection, we have proposed a construc-
tion of weighted bipartite networks of successive timesteps to track group dynamics over 
time. For robustness against temporal fluctuations and instabilities, we have extended 
the Jaccard index, determining the weights, to incorporate higher-order memory.

The resulting dynamics show fat-tailed distributions of relative gains and losses, char-
acterizing bursty behaviors in the increases and also decreases of hashtag groups. In 
order to describe and understand these developments, we have formulated a ranking 
model that incorporates gain and loss from a combined attractiveness score of commu-
nity size and age.

Based on the model results and affirmed by the empirical findings, competition 
among ranked items with unlasting prestige scores can lead to bursty behaviors in the 
gains and also losses of popularity. In addition, we found that competition becomes 

a b
Fig. 13  Average times of stable ranks and exemplary trajectories: a the analytic lower bound from Eq. (12), 
the resulting times from the Monte-Carlo simulation and the empirical values of the normalized average time 
〈τ(r)〉 of stable ranking r. The values are normalized to their maximum at r = 1 to make them comparable. The 
inset shows the same plot with logarithmic axes. b Two trajectories from the simulation that reach different 
maximal ranks. The size Si(t) in black and the rank r(Si(t)− (t − ti)) in green, which reaches a maximum of 
r = 2. The inset shows the same quantities for an item that reaches only r = 6
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intense for higher ranks so they have to be reached in a young age. The simple model 
can be further extended and is applicable to other online media where recency plays 
an important role.
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