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Background. Ovarian cancer (OC) is the leading cause of gynecologic malignant tumors. )e role of necroptosis-related lncRNAs
(NRLs) in OC remains unclear. )is study aims to explore the association between NRLs and prognosis in OC patients.Methods.
)e Cancer Genome Atlas (TCGA) and GTEx datasets were used to obtain OC’s data. A NRLs signature associated with overall
survival (OS) was constructed by Cox-LASSO regression analysis in training cohort for calculating risk score and then validated in
testing cohort. Subsequently, the area under the curve (AUC) and Kaplan–Meier survival analysis were used to evaluate the
predictive accuracy of the risk score. Finally, the immune infiltration and functional enrichment were compared between different
risk groups. Results. A 8-NRLs signature including AC245128.3, AL355488.1, AC092794.1, AC068888.2, AL590652.1,
AC008982.2, FOXP4-AS1, and Z94721.1 was identified to assess the OS of OC. Kaplan–Meier survival analysis, AUC value, and
Cox regression analysis confirmed its predictive value and showed that the clinical outcomes were worse for high-risk patients.
)ere were also differences in immunological functioning and immune pathways between the high-risk and low-risk groups.
Conclusions. )e signature based on eight NRLs has significant values in predicting prognostic prediction in OC, as well as
providing a new sight for targeted therapies.

1. Introduction

Ovarian cancer (OC) is a common cancer which is the leading
cause of cancer-related mortality in the reproductive system
worldwide. In Asian countries, its incidence showed an
upgraded trend in recent years [1]. As a heterogenous group
of malignancies, its prognosis is obviously different in various
pathological stages and classifications. Despite advances in
early detection and drug development, clinical outcomes still
remain unsatisfactory.When diagnosed, 60%–75% of patients
are already in the middle and advanced stages (stage III-IV)
and their 5-year overall survival (OS) rate is less than half [2].
)ere is an urgent need to search for accurate predictors and
prospective prognostic markers in order to contribute to a
better prognosis of OC and give trustworthy information to
guide suitable personalized treatment options.

Necroptosis is a type of planned cell death that combines
the characteristics of both necrosis and apoptosis [3]. Recent
researches have revealed the important role of necroptosis in
tumorigenesis and metastasis [4]. Meanwhile, as a member
of the noncoding RNA family, long noncoding RNA
(lncRNA) lacks the capability of encoding a protein [5].
Along with the development of related researches, accu-
mulating studies suggest that lncRNAs act as a vital role in
development, progression, cell survival, and genesis of tu-
mor [6, 7]. Many lncRNAs are associated with drug response
in various cancers, including OC [8]. To date, emerging
evidence has shown the potential of lncRNAs in regulating
necroptosis for cancer biology [9]. However, the clinical
significance of necroptosis-related lncRNAs (NRLs) remains
largely unknown. Remarkably, it is crucial to figure relevant
lncRNAs closely linked to necroptosis and prognosis in OC.
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)is research was conducted to analyze the lncRNAs
expression dataset in OC from GTEx database and )e
Cancer Genome Atlas (TCGA), and screened for NRLs with
prognostic value. An eight autophagy-related lncRNA sig-
nature of predicting the OC prognosis was identified.

2. Materials and Methods

2.1. Datasets and Data Preprocessing. )e TCGA and GTEx
databases were used to gather the clinical data (n� 587),
RNA sequencing profiles (n� 379), and normal ovarian
epithelial tissue RNA sequencing profiles (n� 88) for OC.
Only 374 individuals were kept for further study after ex-
cluding patients lacking RNA sequencing and survival time.
)e patients were split into two groups (training cohort and
testing cohort) at a ratio of 3 : 7 using the R software “caret”
package. With the usage of annotation documents of the
GENCODE database, lncRNAs and protein-coding genes
were identified. Moreover, based on earlier research, 67
necroptosis-related genes (NRGs) were retrieved. Mean-
while, the “limma” program was used to investigate the
differences in NRG expression between OC and normal
samples. Subsequently, using the 13,832 lncRNAs and dif-
ferential expression NRGs discovered, Pearson correlation
analysis was performed (p< 0.001, correlation coefficient
>0.4). A total of 161 NRLs were eventually chosen for further
bioinformatics investigation.

2.2. Construction of a Prognostic Signature. Univariate Cox
regression analysis was conducted to identify prognostic
lncRNAs (p value <0.05). )ese predictive lncRNAs were
then used to identify lncRNAs implicated in signature
creation with multivariate Cox, least absolute shrinkage and
selection operator (LASSO) regression analysis. To develop
the model and manage the complexity of LASSO regression,
we employed the suitable λ. )e following formula was used
to determine the risk score: risk score for

OS � 
n

i�1
Coef i ∗ xi. (1)

In addition, patients with different prognostic lncRNAs
expressions were classified by using ConsensusClusterPlus
package. By locating the inflection point of the sum of
squared errors, the ideal k value was determined (SSE). )e
decline slowed down after k� i, and k� i was selected.

2.3. Exploring Clinical Benefit. )e risk score for each OC
patient was calculated using the algorithm above. Risk
signatures for predicting survival were assessed by area
under the curve (AUC) and Kaplan–Meier survival analysis.
)e median value in the ROC curve, which is used to choose
“high-risk” and “low-risk” groups, was determined by cal-
culating the risk score of each patient. In training and testing
cohorts, we pooled clinical variables and ran univariate and
multivariate Cox regression analyses, respectively. Finally,
based on the coefficients of the above multivariate Cox

regression, to create a nomogram, we utilized R software
“regplot” package.

2.4. Immune Infiltration Analysis. We employed 6 methods
(TIMER, CIBERSORT, QUANTISEQ, MCP-counter,
XCELL, and EPIC) to estimate the abundances of immune
cells classified by risk groups in order to investigate varia-
tions in immune cell infiltration. SsGSEA and ESTIMATE
algorithms were also performed to compare immunological
functions and pathways in low- and high-risk groups. More
crucially, we looked at how immunological checkpoint and
human leukocyte antigen-associated genes were expressed in
various risk groups. )e “ggplot2” and “clusterProfiler”
programs in R software were then used to conduct gene
GSEA enrichment analysis using differently risk groupings.

2.5. Drug Sensitivity Analysis. )e IC50 was computed in R
using the pRRophetic package, and the medicines were
found in the Genomics of Drug Sensitivity in Cancer
database.

2.6. Statistical Analysis. )e R programming language
conducted all statistical analyses (v.4.0.1). In the preceding
section, detailed statistical approaches for transcriptome
data processing were discussed. )e difference is statistically
significant when P< 0.05.

3. Results

3.1.LandscapeofNecroptosis-RelatedGenes. According to the
expression of 67 genes associated with necroptosis between
normal and tumor samples, we finally got 21 specific nec-
roptosis-related genesNRGs inOC (|Log2FC|>1 andP< 0.05),
as shown in Figure 1(a). Of them, 8 were upregulated, and 13
were downregulated (Figure 1(b)). As shown in Figure 1(c), the
correlation analysis of 21 NRGs showed that DDX58 had the
strongest positive correlation with CYLD (r� 0.39).

3.2. Identification of NRLs. For TCGA-OC cohort, the
aforementioned 21 NRGs, as well as all annotated lncRNAs,
were used and analyzed through Pearson correlation anal-
ysis (correlation coefficients>0.4 and p< 0.001). 161 NRLs
were identified (Figure 2(a)). )ese NRLs were adopted in
univariate Cox analysis to find survival-related NRLs. Fi-
nally, for the following analyses, 11 NRLs were examined
(Figure 2(b)). Interestingly, the Wilcox test revealed that all
survival-related NRLs were highly expressed in the tumors
except MYCNOS and AC245128.3, which was highly
expressed in the normal samples (Figures 2(c)-2(d)).

3.3. Construction of a Risk Signature. A total of 11 NRLs were
subjected to LASSO regression analysis in order to reduce the
number of genes in the signature (Figures 3(a)-3(b)). After that,
10 NRLs were recovered using LASSO and submitted to
multivariate Cox regression analysis (stepwise method) to de-
velop a risk stratification system (Figure 3(c)). Eventually, the
risk score for OC patients was determined by multiplying the
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expression of 8-NRLs by the regression coefficients: risk
score� (0.2769 ∗ AC245128.3)+ (−0.2069 ∗ AL355488.1)
+ (0.0952 ∗ AC092794.1)+ (0.5208 ∗ AC068888.2)+ (−0.2180 ∗
AL590652.1)+ (0.3159 ∗ AC008982.2)+ (−0.1292 ∗ FOXP4-
AS1)+ (0.5255 ∗ Z94721.1) (Figure 3(d)).

3.4. Clinical Benefits of Risk Signature. )e OC patients of
TCGA cohort were separated into two risk categories based
on the median value of risk scores: high risk and low risk.
)e AUCs of risk score computed with the training cohort at
1, 3, and 5 years were 0.673, 0.678, and 0.710, respectively
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Figure 1: Identification of necroptosis-related genes in ovarian cancer. (a) )e heatmap of the differentially expressed necroptosis-related
genes. (b))e volcano plot of necroptosis-related genes with differential expression. (c) A heatmap for correlation analysis of 21 necroptosis-
related gene expressions in ovarian cancer tissues.
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Figure 2: Continued.
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(Figure 4(a)). Meanwhile, the AUC for predicting 1, 3, and 5
years was 0.601, 0.674, and 0.689, respectively, in testing
cohort (Figure 4(b)). In each group, high-risk patients had a
considerably lower survival time than low-risk ones
(p< 0.05), as shown in Figures 4(c)-4(d). In addition, the
distribution of risk score, survival status, and survival time
was compared between low- and high-risk groups in the
training and testing cohorts using the risk score algorithm.
All of these showed that the high-risk group had a poor
prognosis (Figures 4(e)-4(f )). Univariate and multivariate
Cox regression analyses employing clinical characteristics
and risk score were used to determine if the risk score was an
independent prognostic variable for OC patients. )e risk
score was strongly associated with OS in both the training
and testing populations, according to the results of uni-
variate Cox regression analysis (training cohort: HR� 1.308,
95% CI� 1.195–1.431; testing cohort: HR� 2.649, 95% CI
1.715–4.093) (Figures 5(a), 5(c)). In multivariate Cox

regression analysis, the risk score remained an independent
marker for OS after correcting for other covariates (training
cohort: HR� 1831, 95% CI� 1.495–2.243; testing cohort:
HR� 2.273, 95% CI� 1.418–3.641) (Figures 5(b), 5(d)). In
addition, the risk mark outperformed the other clinico-
pathological markers in terms of prediction, according to
ROC curve analysis (Figures 5(e)–5(g)).

3.5. Construction of Nomogram. We depicted the risk sig-
nature based on the aforementioned risk formula since the
risk signature’s formula is hard and the nomogram may
intuitively relate to clinical practice. In multivariate Cox
regression, we merged statistically significant indications to
create a visual prognostic model (Figure 6(a)). Furthermore,
the nomogram’s calibration curve revealed that the pre-
diction curves in two cohorts are almost identical to the
standard curve. )e projected survival rate is closely similar
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Figure 2: Identification of necroptosis-related lncRNAs in ovarian cancer. (a) )e network necroptosis genes and lncRNAs interact in.
(b) )e HR and p value of 11 prognostic lncRNAs from the univariable Cox HR regression. (c) )e expression profiles of 11 prognostic
lncRNAs. (d) )e boxplot of 11 prognostic lncRNAs.

Journal of Oncology 5



10.9

10.8

10.7

10.6

10.5

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

10 10 10 10 10 10 10 11 11 11 10 9 9 7 3 0

log ()
−3−4−5−6 −2

(a)

0.4

10
11

9
2

5

8
3

10

74
1

6

10 11 10 0

0.2

0.0

−0.2

−0.4

−6 −5 −4 −3 −2

C
oe

ffi
ci

en
ts

Log Lambda

(b)

Hazard ratio

AL355488.1

AC092794.1

AC245128.3 (N = 264) 0.128

0.033*

0.07

0.099

0.088

0.003**

0.065

0.002**

(0.92-1.88)
1.32

(N = 264) (0.67-0.98)
0.81

(N = 264) (0.99-1.22)
1.10

(N = 264) (0.32-1.10)
0.59

(N = 264) (0.63-1.03)
0.80

(N = 264) (1.11-1.70)
1.37

(N = 264) (0.77-1.01)
0.88

(N = 264) (1.22-2.35)
1.69

AC068888.2

AC008982.2

AL590652.1

FOXP4-AS1

Z94721.1

0.5 1 21.5 0.5

# Events: 166; Global p-value (Log-Rank); 1.3335e − 06
AIC: 1513.46; Concordance Index: 0.65

(c)

Figure 3: Continued.

6 Journal of Oncology



to the actual rates at 1, 3, and 5 years, as illustrated in
Figures 6(b)-6(c). Furthermore, according to the ROC
analysis of nomogram, good predictive performance for the
training and testing cohorts was revealed (Figures 6(d)-6(e)).

3.6. Immunity Analysis. )e main enrichment pathways of
various risk categories were investigated using the GSEA
algorithm. In the high-risk group, CHEMOKINE SIG-
NALING PATHWAY, CYTOKINE RECEPTOR IN-
TERACTION, and HEMATOPOIETIC CELL LINEAGE
were dominant (Figure 7(a)). In the low-risk group, im-
portant pathways were BASAL CELL CARCINOMA,
HEDGEHOG SIGNALING PATHWAY, and RIBOSOME
(Figure 7(b)). A heatmap of immune infiltration was
created, based on six algorithms (TIMER, CIBERSORT,
QUANTISEQ, MCP-counter, XCELL, and EPIC)
(Figure 7(c)) to investigate the association between var-
ious risk groups and immune cell infiltration. Interest-
ingly, in TIMER algorithm, T cell CD8+, neutrophil,
macrophage, and myeloid dendritic cell were positively
correlated with risk score (Figure 7(d)). Meanwhile, re-
sults of ESTIMATE algorithm revealed high-risk group
had a higher score in stromal, immune, and estimate
(Figure 8(a)). )ose who are at high risk are more likely to
develop hot tumors and react to immunotherapy. )e
“ssGSEA” R package was used to quantify the enrichment
scores of immune cell subpopulations and their related
activities in order to further investigate the relationships
between risk scores and immune cells and functions
(Figure 8(b)). Given the significance of checkpoint im-
munotherapy, it is worth emphasizing that there are large
variances in immune checkpoint expression across vari-
ous risk categories (Figure 8(c)).

3.7. Drug Effectiveness Analysis. )e drug sensitivity of OC
chemotherapeutic drugs, which are often used in clinics, was
examined. Six chemotherapeutic drugs had their IC50 values
measured in OC patients, and four of them had statistically
significant differences across risk subgroups (Figure 9). )e
high-risk group had considerably higher IC50 values of
etoposide, docetaxel, doxorubicin, and cisplatin (P< 0.05). It
was discovered that OC patients in the low-risk group, as
determined by their risk profile, were more responsive to the
chemotherapeutics mentioned above.

3.8.MolecularSubtypesBasedonNRLs. )eOCpatients from
TCGAwere divided into different subtypes based on consensus
algorithm and 8 NRLs expression in risk signature
(Figure 10(a)). Interestingly, the majority of C2 subtypes were
classified as high-risk group, and the majority of C1 subtypes
belonged to the low-risk group (Figure 10(b)). C2 showed the
worst prognostic efficacy, while C1 had a higher probability of
survival (Figure 10(c)). Moreover, results of ESTIMATE al-
gorithm revealed C2 group had a higher score in stromal,
immune, and estimate. Heatmap also showed that the mo-
lecular subtypes were statistically significant with risk groups
and FIGO staging (Figure 10(d)). Taken together, our mo-
lecular subtype results provided another insight into the ability
of 8 NRLs to differentiate patients (Figure 10(e)).

4. Discussion

OC is a heterogenous disease. Although overall survival rates
for OC patients have improved greatly, metastasis and re-
currence are the leading causes of death [10]. Age, pathological
stage, lymph node metastasis, and distant metastasis have all
been employed in clinical studies to predict the prognosis of

0.3 0.276969013

0.095244516

0.315950544

0.525546183

−0.2069453

−0.520843624

−0.218003455
−0.129283638

0.0

−0.3

co
ef

LncRNAs

LncRNAs

AL355488.1
AC092794.1

AC245128.3

AC068888.2

AC008982.2
AL590652.1

FOXP4-AS1
Z94721.1

(d)

Figure 3: Construction of necroptosis-related lncRNAs prognostic signature in ovarian cancer. (a) )e optimal values of the penalty
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Figure 4: )e predictive value of the prognostic model in both the training and test cohorts. Time-dependent ROC curve of ovarian cancer
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Figure 5: Continued.
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OC, but the accuracy is inadequate. )e different clinical
outcomes in patients with the same staging indicate that the
traditional staging system is not fully functional to predict the
prognosis. Relevant biomarker tumor of prognosis needs to be
investigated urgently. Many aspects of ovarian cancer biology
are regulated by lncRNAs [11]. Necroptosis is a sort of cell
death which is regulated, acting as a double-edged sword in the
cancer development. Key mediators of its pathway alone or in
combination can promote tumor metastasis and progression
[12]; however, necroptosis, on the other hand, has also been
reported as a fail-safe mechanism that protects against tumor
development when apoptosis is impaired [13]. Most certainly,
necroptosis plays a big part in cancer. )e lncRNAs related to
necroptosis may be novel molecular biomarkers and thera-
peutic targets for OC. Owing to the important role of nec-
roptosis in cancer, its related lncRNA has aroused more
attention. With unprecedented accumulation of tumor data in
international public databases, now is the new era of data
technology for OC research [14, 15].

lncRNAs were involved in development, progression,
and metastasis of cancer through various signal pathways
[16, 17]. Recent report introduced a prognostic risk model of
NRLs in gastric cancer [18], while the significance of NRLs in
OC prognosis was yet unknown. Twenty-one specific NRGs
were differentially expressed between normal and OC
samples. Based on it, we identified the 8 lncRNA prognostic
signatures related to necroptosis (AC245128.3, AL355488.1,
AC092794.1, AC068888.2, AL590652.1, AC008982.2,
FOXP4-AS1, and Z94721.1) as an adjunct to established
clinical prognostic factors for OC. Until now, a number of
studies of FOXP4-AS1 (lncRNA forkhead box P4 antisense
RNA 1) in cancer had been reported. An experimental study
demonstrated that by sequestering miR-3184-5p to upre-
gulate FOXP4-AS1, high expression of FOXP4-AS1 boosted
cell proliferation and inhibited apoptosis, demonstrating an
oncogenic effect in prostate cancer [19]. Zhao et al. [20]
found FOXP4-AS1 had a significant influence in cervical
cancer development. Additionally, FOXP4-AS1 acted as an
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unfavorable prognostic factor in neoplastic disease, such as
nasopharyngeal carcinoma, mantle cell lymphoma, and
colorectal cancer [21–23]. Also, AC092794.1 was used to
construct a risk signature for lung adenocarcinoma [24]. So
far, little is known regarding the effect of other lncRNAs. In
consequence, it is necessary to conduct experiments to
further clarify their biological functions in OC.

To explore the signature feasibility, univariate and
multivariate COX analysis, and ROC analysis were applied
to compare this prognostic feature with clinical indexes.
)e samples were separated into high-risk and low-risk
subgroups based on the median risk score. High-risk
individuals had a worse clinical result. )e findings
revealed that the NRL signature might be a predictive
factor for OC patients, which was reliable and stable. It
was also suggested that the risk model of the 8 NRLs is

superior to other clinicopathological factors. )e rele-
vance of the NRL signature in OC was further shown by
correlative immune algorithms. )e immune cell en-
richment analysis revealed a close connection between
necroptosis and tumor immunity. )e high-risk and low-
risk groups had significantly different immune scores,
stromal scores, and ESTIMATE scores. High-risk groups
might be more prone to be hot tumors and responding to
immunotherapy.

Precision medicine, focused on identifying prognosis-
specific predictors of survival, will bring new therapeutic
strategies, drug discovery, and gene-oriented treatment.)is
research, therefore, is under way. As well as predicting
prognosis, the NRLs signature has the additional advantage
of references of clinical rational administration. )e newly
acquired NRLs knowledge might aid us in gaining a better
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Figure 8:)e immune status difference between the low- and high-risk ovarian cancer patients. (a) Violin plots of tumor purity for the low-
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Figure 9: )e sensitivity of chemotherapeutic medicines in different risk groups. (a) Paclitaxel. (b) Gemcitabine. (c) Etoposide.
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grasp of OC, which may follow by significant innovations
and clinical solutions for treating cancers.

However, there are several deficiencies in this study. )e
study had a limited sample size; hence, the real-world data of
multicenter clinical cohort are needed to validate the
prognostic signature. In addition, due to the lack of re-
searches on necroptosis in OC, its mechanism remains to be
further explored through functional experiments. We are
currently collecting clinical specimens and data in prepa-
ration for future study.

5. Conclusions

In summary, a novel necroptosis-related prognostic risk
model consisting of 8 lncRNAs (AC245128.3, AL355488.1,
AC092794.1, AC068888.2, AL590652.1, AC008982.2,
FOXP4-AS1, and Z94721.1) was identified for OC patients.
Furthermore, the lncRNA signature may be used to guide
personalized treatment and enhance the prognosis of OC
patients. Given the scarcity of studies on the mechanism and
interactions among various NRLs in OC, further research is
needed to confirm the clinical utility and reveal the un-
derlying pathways.
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