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The COVID-19 associated opportunistic fungal infections have posed major challenges in recent times.
Global scientific efforts have identified several SARS-CoV2 host-pathogen interactions in a very short
time span. However, information about the molecular basis of COVID-19 associated opportunistic fungal
infections is not readily available. Previous studies have identified a number of host targets involved in
these opportunistic fungal infections showing association with COVID-19 patients. We screened host tar-
gets involved in COVID-19-associated opportunistic fungal infections, in addition to host-pathogen inter-
action data of SARS-CoV2 from well-known and widely used biological databases. Venn diagram was
prepared to screen common host targets involved in studied COVID-19-associated fungal infections.
Moreover, an interaction network of studied disease targets was prepared with STRING to identify impor-
tant targets on the basis of network biological parameters. The host-pathogen interaction (HPI) map of
SARS-CoV2 was also prepared and screened to identify interactions of the virus with targets involved
in studied fungal infections. Pathway enrichment analysis of host targets involved in studied opportunis-
tic fungal infections and the subset of those involved in SARS-CoV2 HPI were performed separately. This
data-based analysis screened six common targets involved in all studied fungal infections, among which
CARD9 and CYP51A1 were involved in host-pathogen interactions with SARS-CoV2. Moreover, several
signaling pathways such as integrin signaling were screened, which were associated with disease targets
involved in SARS-CoV2 HPI. The results of this study indicate several host targets deserving detailed
investigation to develop strategies for the management of SARS-CoV2-associated fungal infections.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A large number of COVID-19 patients face several health issues
even after recovery. Among these, complications caused by sec-
ondary infections pose major challenges for researchers and
healthcare workers. Fungal infections constitute considerable pro-
portion of such secondary infectious complications [28,64]. These
fungal infections contributed to a significant number of post-
COVID-19 mortality even after recovery from SARS-CoV2 infec-
tions [17]. Various fungal infections were reported with COVID-
19 patients, including candidiasis [24,32,47], mucormycosis
[49,21], aspergillosis [2,6,10,39,51,63,73,75,78,60], cryptococcosis
[3,22], and Pneumocystis pneumonia [50,30] etc.

Although investigations are ongoing and yet to generate com-
plete understanding, COVID associated immunosuppression,
hypoxia, hyperglycemia, host iron depletion in addition to pro-
longed hospitalization, use of corticosteroids, and mechanical ven-
tilation have been hypothesized to increase the risk of occurrence
of fungal infections among patients experiencing COVID-19 disease
[5]. Moreover, efforts by the global scientific community are unrav-
elling the molecular mechanisms of SARS-CoV2 pathogenesis at a
rapid pace. Coordinated efforts have identified several host-
pathogen interactions (HPI) of SARS-CoV2 in a very short time span
[23]. In addition, recent system biological approaches have made it
feasible to study complex, multiple host-pathogen interactions in
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meaningful ways [35]. On the other hand, information about host
targets involved in different diseases are also getting generated
through several discrete investigations. Although COVID-19-
associated fungal infections were not at the center of discussion
for researchers prior to the pandemic, several studies have identi-
fied different host targets involved in such infections. A number of
databases have catalogued these disease targets and made it feasi-
ble to study complex multi-disease pathogenesis using system bio-
logical approaches.

During the present study, host targets involved in COVID-19-
associated fungal infections were screened in addition to the iden-
tification of common targets involved in studied fungal infections.
Moreover, the HPI data of SARS-CoV2 was used to screen its poten-
tial to influence these important fungal disease targets. This data-
based approach was utilized to screen host targets involved in
COVID-19-associated fungal infections and to screen important
targets which might inform further laboratory studies and clinical
investigations for development of appropriate intervention.
Table 1
Screening of human targets involved in studied COVID-19 associated opportunistic
fungal infections from disease target databases.

Infection Targets from
DisGeNet

Targets from
Genecard

Invasive aspergillosis 59 239
Cryptococcus neoformans

infection
167 181

Pneumocystis carinii
pneumonia

180 141

Mucromycosis 9 20‘
Candidiasis 73 669
2. Material and methods

2.1. Database

The host targets involved in different COVID-19-associated
opportunistic fungal infections were screened from DisGeNet and
GeneCards. The disease targets involved in invasive aspergillosis,
mucormycosis, invasive candidiasis, Cryptococcus neoformans
infection, and Pneumocystis jirovecii pneumonia, were screened
from both databases. The targets thus obtained from both data-
bases were combined and redundant targets obtained from multi-
ple databases were removed and unique targets involved with a
particular infection were used for further analyses. In addition,
SARS-CoV2 HPI data was obtained from the biological interaction
database BIOGRID.

2.2. Identification of common targets

The human targets involved in all studied opportunistic fungal
infections were screened further for their involvement in single
or multiple opportunistic fungal infections. A Venn diagram was
constructed to identify the disease targets commonly involved in
multiple opportunistic infections associated with SARS-CoV2
infections.

2.3. Construction of disease targets interaction network

The interaction network of disease targets was prepared
through the interaction database STRING [81]. Cytoscape V 3.8.0
was used to visualize interactions. Common interactions were also
identified in the interaction network and network biological
parameters were predicted through network analyzer. Python
package mygene 3.2.2 along with DAVID bioinformatics resources
6.8 [79] were used to map gene symbols.

2.4. Construction of SARS-CoV2 host-pathogen interaction network
and identification of disease targets

The interaction data obtained from BIOGRID was used to con-
struct a network of SARS-CoV2 HPI. BIOGRID v 4.4 was used to
download all SARS-CoV2 and coronavirus-related interactions
(Last modified till 30th Nov 2021). SARS-CoV2 interactions with
human were filtered out and were used further. This interaction
network was superimposed on host fungal disease target networks
constructed in an earlier step in order to predict the potential of
SARS-CoV2 in modulating fungal disease targets.
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2.5. Functional enrichment analysis of disease targets

Functional enrichment analysis of disease targets involved in
COVID-19 associated fungal infections and the subset of these tar-
gets involved in SARS-CoV2 HPI were separately analyzed for func-
tional enrichment analysis. PANTHER Over-representation test
(Released 20210224) with annotated version 16.0 and release date
2020-12-01 was used to analyze over-represented pathway associ-
ated with each gene target set using annotation data set PANTHER
pathways. Fisher’s Exact test with statistical correction using False
Discovery Rate (FDR) was used to screen over-represented path-
ways associated with target sets [80].
3. Results

3.1. Screening of targets

The details of screened human targets involved in different
opportunistic fungal infections are presented in Table 1. The dis-
ease targets commonly involved in different studied opportunistic
infections associated with COVID-19 are presented in Supplemen-
tary Table S1. The numbers of disease targets commonly involved
in different studied fungal infections are presented in Fig. 1 as a
Venn diagram. The roles of common targets in fungal infections
and COVID-19 are presented in Table 2.

3.2. Construction of disease target interaction network

The disease targets interaction network screened 30,280 inter-
actions among targets using STRING with a default threshold con-
fidence (score) cutoff 0.4. Such interactions were further screened
for their involvement in COVID-19-associated opportunistic fungal
infections. Fig. 2 indicates targets interaction network and their
importance in studied infections on the basis of degree value.

3.3. Host-pathogen interaction analysis of SARS-CoV2

BIOGRID v4.4 COVID 19 coronavirus project interactions file
found a total of 25,983 interactions between SARS-CoV2 and H.
sapiens after the removal of HPI involving other organisms. These
HPIs found 18,730 unique SARS-CoV2 and H. sapiens HPIs stored
in BIOGRID available version involving 30 SARS-CoV2 and 5110
H. sapiens targets.

3.4. Screening of SARS-CoV2 interaction with targets involved in
studied fungal infections

During the screening, a total of 357 out of 5110 SARS-CoV2 HPI
human targets were found to be involved in studied fungal infec-
tions. These 357 targets were involved in unique 1445/2110
SARS-CoV2 HPI screened from BIOGRID v4.4. The details of these
HPIs are shown in Table S2 while the HPI network of these targets



Fig. 1. Venn diagram of screened disease targets involved in COVID-19 associated
studied opportunistic fungal infections.
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is presented in Fig. 4. All the studied COVID-19-associated fungal
infection disease targets with high degree value, shown in Fig. 2,
were not directly interacting with SARS-CoV2 as per HPI data.
The details of SARS-CoV2 interacting targets among the top 20
high-degree value nodes irrespective of their involvement in num-
Table 2
Common host target screened to be involved in all studied COVID-19 associated opportun

Common Host
targets

Role in opportunistic fungal infection Role

Caspase
recruitment
domain-
containing
protein 9
(CARD9)

It plays a key role in innate immunity against fungi
through the formation of signaling complexes [4].

The
HPI
infla
mem
inte

CAC chemokine
receptor type 6
(CCR6)

CCR6 plays an important role in leukocyte recruitment
during pathogen exposure. It binds to CCL20 and acts as
an important contributor of lung and gut immunity [29].
It is also found that CCR6-mediated dendritic cell influx
acts as a starting defense mechanism against fungal
infection [56].

It is
BAL
is d
pati

Interferon- gamma
(IFNG)

It plays a key role in antimicrobial response and is
produced by immune cells like T-cells and NK cells. It is
proposed as adjunctive immunotherapy for invasive
fungal infections [15].

The
imp
pati
com
ben

C-type lectin
domain family 7
member A
(CLEC7A)

Lectins function as pattern recognizing receptors for
recognizing pathogenic bacteria and fungi and mediate
TLR2 signaling and resultant inflammatory response. It is
also known to promote the fungicidal activity of human
neutrophils [34].

Oth
[25]

Lanosterol 14-
alpha
demethylase
(CYP51A1)

It is involved in sterol biosynthesis. Azoles inhibit its
activity thereby this mechanism contributes to their
antifungal activity [53].

SAR
invo
by n
Is k
repl
ther

Granulocyte-
macrophage
colony-
stimulating
factor (CSF2)

Plays an important role in antifungal defense during
respiratory fungal exposure through mediating
neutrophil antifungal activity and oxidative burst [31].

GM
imm
dur
adm
stra
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ber of studied fungal infections are presented in Table 3 with their
role in fungal infections and COVID-19.

3.5. Functional over-representation analysis of targets involved in
studied fungal infections

The result of PANTHER pathway over-representation analysis is
presented in Fig. 5; results are arranged as per their FDR value.
4. Discussion

While efforts were deployed to manage the COVID-19 pan-
demic through identification of suitable preventive and therapeu-
tic means, opportunistic fungal infections posed additional
challenges for the scientific community and gained wide media
attention. Several opportunistic fungal infections appeared among
COVID-19 patients. For example, the estimated occurrence of inva-
sive pulmonary aspergillosis among COVID-19 patients ranged
from 19.6 to 33.3 % [43]. Similarly, cases of mucormycosis also
surged among COVID-19 patients, especially during the second
wave of the pandemic in certain geographic locations [26]. More-
over, the cases of candidiasis, pneumocystosis, and cryptococcosis
were also reported as emergent fungal infections among COVID-19
patients in addition to aspergillosis and mucormycosis [9]. Several
species of fungi belonging to different genera of commonly occur-
ring opportunistic fungal infections were reported to contribute to
these opportunistic infections among COVID-19 patients. We
therefore screened host targets involved in such infections, in order
to understand the involvement of host in the pathogenesis of these
infections.

On the other hand, several novel characteristics of SARS-CoV2
presented additional challenges to the scientific community. Fortu-
istic infections, their role and interactions with SARS-CoV2.

in SARS-CoV2 Screened Interaction
with SARS-CoV2

publication reporting this interaction indicates that
of SARS-CoV2 are enriched with proteins involved in
mmation, immune signaling, ubiquitination, and
brane trafficking and also suggests that these binary

ractions can be prioritized as therapeutic targets [36]

nsp16

found that CD8 + T cells from COVID-19 patients
F are enriched with CCR6 +. It was suggested that this
ue to the high CCL20 level in BALF of COVID-19
ents [65].

–

level of interferon-gamma is suggested as an
ortant marker for deciding the fate of COVID-19
ents from survival to death and it was proposed that
bined therapies targeting such cytokines may be
eficial for COVID-19 patients [19].

–

er lectins are involved as a receptor for SARS-CoV2 –

S-CoV2 host interactions upregulate proteins
lved in cholesterol metabolism, including CYP51A1
sp6. Cholesterol metabolism
nown to play an important role in SARS-CoV2
ication and it is also suggested as an important
apeutic target for SARS-CoV2 [61,69].

E, M, S, nsp2, nsp4, nsp6,
ORF3a, ORF3b, ORF6,
ORF7a, ORF7b, ORF8,
ORF14

-CSF is shown to be involved in both antiviral
unity and pro-inflammatory hypercytokinaemia

ing COVID-19. Therefore, its blockade and
inistration both are suggested as therapeutic
tegies [48].

–



Fig. 2. STRING interaction network of host targets screened with studied COVID-19 associated opportunistic fungal infections. Target node sizes and colors are arranged as
per their relative degree values, which represent their interactions and therefore their centrality in the presented network. Vide table S1 for greater details. Large/dark color
and small/light color nodes indicate highest to lowest degree values of given targets.
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nately, unprecedented global coordination unveiled several aspects
of SARS-CoV2 pathogenesis within a very short time. Several recent
studies have identified interactions of SARS-CoV2 with the host
and their influence on pathogenesis. A number of open-access
databases have collated these interactions and provided them for
analysis. BIOGRID is one such biomedical interaction repository
with its version 4.4.205 comprising 2,392,652 protein and genetic
interactions and these numbers are continuously increasing. It has
a separate COVID-19 coronavirus curation project providing coro-
navirus related HPI with literature backed evidence used during
the study [52].

In contrast, comparatively less information is available about
COVID-19-associated fungal infections. Still, the targets involved
in these infections are identified and compiled in disease target
databases such as DisGeNet and GeneCard, etc. [68,58]. Such data-
bases compiling information about disease targets and molecular
host-pathogen interactions have greatly revolutionized the under-
standing of molecular pathogenesis of diseases. In addition, the
network biological methods coupled with visualization tools such
as Cytoscape have made it feasible to infer meaningful information
from such large, complex interaction datasets [66].

It is reported that COVID-19 may increase the chance of occur-
rence of several other fungal, bacterial and viral infections, espe-
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cially during prolonged hospital stay [42]. These infections are
associated with severe COVID-19 disease and poor outcomes
[18]. The overlapping symptoms of COVID-19-associated fungal
infections add to the difficulty in diagnosis [5] and management
of patients. We maintain that such overlapping symptoms may
have their roots in overlapping pathogenic mechanisms and thus
disease targets and may hint at possible intervention strategies
(Fig. 1) from the perspective of patient management. The screening
of disease targets found several important findings during our
analyses. Six host targets, including CARD9, CCR6, IFNG, CLEC7A,
CYP51A1, and CSF2 were found common among all studied fungal
disease targets (Table S1, Fig. 1). Among these targets, CARD9 and
CYP51A1 were also found to be involved in host-pathogen interac-
tions with SARS-CoV2. The biological implication of these targets in
fungal infections and COVID-19 are presented in Table 2. It indi-
cates that these targets are primarily involved in response to fungal
infections, at the same time they are involved in immune signaling
during SARS-CoV2 infections (Table 2). Screening of such dual-edge
targets involved in both SARS-CoV2 and associated fungal infec-
tions could unravel their potential for serving as sites for therapeu-
tic intervention.

Although the fungal disease target interaction analysis through
STRING found that there are several important targets on the basis



Table 3
SARS-CoV2 interacting nodes with high degree value in fungal infections target network and their role in fungal infections and COVID-19.

Sr.
No.

Human Target Role in fungal infection Role in COVID-19 Interaction
with SARS-
CoV2

1 Albumin (ALB) Human albumin enhances the pathogenic potential of Candida
by providing multiple benefits to fungi, such as increased iron
access, growth, and adhesion [55]

Hypoalbuminemia is considered a risk factor for SARS-
CoV2 patients and therefore albumin infusion is considered
an important factor to improve outcomes [62].

E
nsp11
nsp14
nsp15
nsp16
ORF7b
S

2 Actin, cytoplasmic
1 (ACTB)

Fungal infection, such as Candida is already known to affect
cellular actin during the study of interactions between
Candida and HEp2 cells [70]. Candida is also known to
stimulate actin polymerization by C. albicans phagosomes
which help them to escape growing yeast from macrophages
[27]

SARS-CoV2 interaction with the actin cytoskeleton and
related functions is important for viral pathogenicity,
infection and other necessary functions [38].

E
nsp4
ORF10
ORF7b
ORF8

3 Glyceraldehyde-3-
phosphate
dehydrogenase
(GAPDH)

It is identified as an important adhesion factor for fungal host
interaction during the study of Penicillium marneffei [44]

GAPDH is suggested to play various roles in responses
against SARS-CoV2 infection and therefore proposed as an
inhibitor for coronaviruses through IFN gamma and NO
pathways [8]

M
E
nsp13
nsp4
nsp6
ORF10
ORF8
S

4 Tumor suppressor
p53 (TP53)

p53-like proteins from C. albicans are essential for virulence,
hyphal growth, and antifungal resistance [33]. Some antifun-
gal agents also induce p53 dependent apoptosis in cancer cells
[14]

Coronavirus can induce cell cycle arrest through p53-
dependent mechanisms and inflammatory cytokines also
positively correlate with p53 [11]

E
nsp4
nsp8
ORF10
ORF3b
ORF7a
ORF8
S

5 Epidermal growth
factor receptor
(EGFR)

EGFR signaling contributes to mucormycosis and inhibition of
its signaling is proposed as an approach to management of
mucormycosis [76]

GFR signaling is an important mechanism for the
pathogenesis of SARS-CoV2 and its inhibition is suggested
as an important target for the management of COVID-19 by
inhibition of SARS-CoV2 replication [37]

S
M
nsp4
ORF3a
ORF7b

6 Fibronectin (FN1) Fibronectin plays an important role in the pathogenesis of
Candida spp. by acting as an epithelial surface receptor [12,41]

SARS-CoV2 modulates extracellular matrix proteins
expression, including fibronectin expression and it is
suggested as a biomarker to track disease severity in
COVID-19 patients [45]

nsp6

7 TLR4 TLR4 signaling my influence fungal infections by modulating
pro-inflammatory immunity and regulatory T cells [46]

SARS-CoV2 binding to TLR4 is suggested to increase ACE2
expression and subsequent viral entry and
hyperinflammation [1]

S
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of degree value (Fig. 2), the SARS-CoV2 was also found to interact
with several of these targets but not all (Fig. 4). The host-
pathogen interaction network displayed in Fig. 3 indicates that
SARS-Cov2 M, ORF7b, and nsp4 targets have maximum number
of interactions as per available HPI data and these targets are
involved in several interactions with host including opportunistic
fungal infections targets.

Degree value is an important network biological parameter
indicating the centrality of a node in a particular network and
therefore Fig. 2 represents targets with the maximum number of
interactions on the basis of different node sizes. Though TNF, IL6,
ALB, CD4, ACTB, GAPDH, IL1B, IL10, TP53, STAT3, EGFR, TLR4,
CXCL8, INS, CD8A, PTPRC, ITGAM, FN1, IL4, VEGFA were top 20 fun-
gal disease targets according to degree value (Fig. 2), but SARS-
CoV2 was screened to perform host-pathogen interactions with
ALB, ACTB, GAPDH, TP53, EGFR and TLR4, FN1 among these top
20 targets (Fig. 4). The role of these targets in opportunistic fungal
infections and COVID-19 indicated that they could play an impor-
tant role in the etiology of this association (Table 3) and could
merit independent future investigation. Similarly, among the tar-
gets commonly involved in all studied fungal infections, only
CARD9 and CYP51A1 were screened with known HPI with SARS-
CoV2 (Table 2, Fig. 4). The role of CARD9 signaling is already
reported in protection against fungal infections [16]. Certain arti-
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cles hypothesized the role of pioglitazone (thiazolidinedione) in
modulating lung injury in COVID-19 patients, which is an inhibitor
of the NF-kB and MAPK pathways by reducing expression of CARD9
[13,72]. Though it is reported that CARD9 plays a protective role in
fungal infections, it is known to play an ambivalent role in viral
diseases as in cases of influenza and coxsackievirus [54]. Therefore,
this dual-edge sword needs experimental investigations to under-
stand the role of CARD9 signaling in modulating fungal infection
susceptibility among COVID-19 patients.

CYP51A1 encodes for cytochrome P450 superfamily of enzymes
involved in drug metabolism and synthesis of several important
molecules. Some infectious organisms also modulate the expres-
sion of CYP51A1 affecting disease pathogenesis [57]. Studies have
identified the role of CYP51A1 in fungal diseases and their role is
already established in antifungal drug resistance [74,77]. Frequent
use of antifungal agents pose an additional challenge of develop-
ment of drug-resistant pathogens mediated therapeutic failure
and requires development of new antifungals, which is a difficult
task [7]. Due to the important role of CYP51A1 in fungal infections
and their screened interactions with SARS-CoV2, it requires a legit-
imate appraisal to understand its role in COVID-19-associated
opportunistic fungal infections. Table 2 summarizes the biological
potential of common fungal disease targets and their possible
implications in SARS-CoV2 and fungal infections.



Fig. 3. Host-pathogen interaction network screened from BIOGRID. Viral targets are
shown in blue color while human targets are shown in red color nodes. Sizes of the
viral nodes are arranged as per their relative degree value, while the interaction of
SARS-CoV2 with targets involved in COVID-19 associated studied opportunistic
fungal infections are shown in green color. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Functional enrichment analysis of fungal disease targets and the
subset of those involved in HPI with SARS-CoV2 reveals several
important pathways indicating their importance in the develop-
Fig. 4. Interactions of SARS-CoV2 with human targets involved in studied opportunistic f
colored as per their involvement in different set of studied infections. Sizes of the human
For instance, CARD9 and CYP51A1 were screened as targets involved in all 5 studied infec
interpretation of the references to color in this figure legend, the reader is referred to th
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ment of SARS-CoV2-associated opportunistic fungal infections
(Fig. 5). It is reported that integrin activation is important for
SARS-CoV2 infection [67], and this pathway is enriched with stud-
ied disease targets. Integrins are involved in host-pathogen inter-
actions with several fungi, bacteria and viruses, and their role in
the pathogenesis of pulmonary pathogens is already reviewed in
literature [71]. Pneumocyctis carinii induces integrins upregulation
possibly leading to enhanced adherence of pathogen to lung cells
[59]. Moreover, some fungi such as Pneumocystis and Candida pos-
sess integrin-like molecules that mediate fungal adhesion [20,40].
The common involvement of integrin signaling in pulmonary infec-
tions and their modulation by SARS-CoV2 and fungal pathogens
also indicate several caveats about the role of this mechanism in
COVID-19-associated opportunistic fungal infections.

This large data-based analysis screens pathways and targets
that might be used to develop management strategies. Although
the findings of this study screen and predict several targets and
pathways involved in COVID-19-associated opportunistic fungal
infections, the limitation of computational studies must be consid-
ered while making interpretations as with other experimental
approaches. The study is based on existing databases compiling
different disease targets and host-pathogen interactions from dif-
ferent investigations. As information in these databases are regu-
larly updated, addition of more targets will lead to incremental
accumulation of knowledge on the subject and would demand
revisiting the current investigation findings. Finally, computational
methods also have some limitations due to the background algo-
rithm analyzing the result. Nevertheless, the experimental evalua-
tion of large data involves huge economic and labor efforts.
Therefore this study holds its value by screening several important
targets and pathways. In conclusion, the current investigation has
added value to the existing knowledge by identifying important
ungal infections. Viral proteins are presented in blue color while human proteins are
protein nodes are arranged as per their involvement in number of studied infections.
tions and therefore presented as largest nodes in interaction network and so on. (For
e web version of this article.)



Fig. 5. Pathway over-representation analysis of disease targets involved in COVID-19 associated studied opportunistic fungal infections (A) and subset of these targets
involved in SARS-CoV2 HPI (B) through PANTHER pathway over-representation test.
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targets for management of COVID-19-associated opportunistic
fungal infections.
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