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COVID-19 is a global pandemic with over 25 million cases world-
wide. Currently, treatments are limited, and there is no approved
vaccine. Interventions such as handwashing, masks, social distanc-
ing, and “social bubbles” are used to limit community transmis-
sion, but it is challenging to choose the best interventions for
a given activity. Here, we provide a quantitative framework to
determine which interventions are likely to have the most impact
in which settings. We introduce the concept of “event R,” the
expected number of new infections due to the presence of a sin-
gle infectious individual at an event. We obtain a fundamental
relationship between event R and four parameters: transmission
intensity, duration of exposure, the proximity of individuals, and
the degree of mixing. We use reports of small outbreaks to estab-
lish event R and transmission intensity in a range of settings. We
identify principles that guide whether physical distancing, masks
and other barriers to transmission, or social bubbles will be most
effective. We outline how this information can be obtained and
used to reopen economies with principled measures to reduce
COVID-19 transmission.
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The global COVID-19 pandemic that began in late 2019 and
spread rapidly around the world has been slowed by the

widespread use of nonpharmaceutical interventions, including
border and travel restrictions, school closures, work from home
edicts, the banning of mass gatherings, and many other work-
place and venue closures. These have been extremely costly
economically, socially, and for numerous health outcomes (1).
Many jurisdictions have resumed economic and social activities,
although they are doing so in the absence of meaningful levels
of immunity to severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). This has resulted in increasing cases, often
associated with community settings.

Recent rises in COVID-19 cases around the world highlight
the urgent need to understand how economic and social activ-
ity can be resumed while minimizing COVID-19 transmission
risk. This remains unknown despite the pandemic’s large scale,
with over 25 million cases worldwide to date (2). Proposed
actions that aim to reduce COVID-19 risk include face masks,
Plexiglas shields, pedestrian flow management, 1- or 2-m dis-
tancing guidelines, reduced capacity of many venues, and more.
Many organizations must now make arrangements to reopen
while attempting to reduce COVID-19 risk, in the near-complete
absence of information about which measures will be most
effective in their particular setting.

We have developed a conceptual framework and model to
resolve some of the uncertainty around the effectiveness of dif-
ferent interventions. We build on the fundamental mathematical
relationship between the number of people in contact with an
infectious individual, the time for which they are in contact, and
the risk of transmission per unit time. We inform our model with
data from a set of reported events where transmissions occurred
and were well characterized. To guide planners and provide an
accessible framework, we focus on specific events and how trans-
mission opportunities may differ under different interventions.

We center our discussion on what we call “event R,” or Revent,
namely the expected number of newly infected individuals at an
event due to the attendance of a single infected individual.

Basic Model for Event R
Consider an event that lasts a total time T . If an infectious
individual attends and is in contact with a single susceptible indi-
vidual for a time τ with a constant per unit time probability of
transmission β, then the probability that the susceptible indi-
vidual becomes infected is (1− e−βτ ) (ref. 3, chap. 5). (The
constant rate assumption is a simplification that omits many
factors [SI Appendix has a discussion].) If the infectious per-
son is in contact with k others, instead of just one, then the
expected number of new infections as a result of that contact
is k(1− e−βτ ). Now, suppose that instead of being in contact
with the same group of k others, the event involves interacting
with many groups of attendees. We model a simplified version
of this type of mixing by imagining that for a time τ , the infec-
tious attendee is in contact with k others, then joins a new distinct
group of k attendees for time τ , and so on. Over the course of the
event, the infectious individual meets T/τ groups of k individu-
als, therefore contacting a total of kT/τ others, and the expected
number of new infections that arises is

Revent =
kT

τ
(1− e−βτ ). [1]

This fundamental equation relates the event R to the level of
crowding at the event (which determines k), the level of mixing
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T/τ (do people contact mainly their “bubble” of nearby
attendees or do they mix more widely), and the propensity
for transmission by the infectious individual in the physical
setting (β).

Interventions for Reducing Event R
In Fig. 1, we illustrate three fundamentally different types of
intervention that can be put in place to reduce the risk of
COVID-19 transmission. Eq. 1 gives us a way to examine when
each will be most effective. Our model makes the simplifying

assumption that susceptible individuals are either in contact
with the infectious individual (i.e., are one of the k) and thus,
transmission occurs with constant rate β or they are sufficiently
distanced that the probability of transmission is negligible. (The
necessary distance is expected to vary with the ventilation, air-
flow, relevant droplet size, and other factors.) In the first type
of intervention, face masks, barriers, hand hygiene, and similar
measures aim to reduce the transmission rate β, reducing the
probability of transmission among the k contacts. In the sec-
ond type of intervention, distancing measures that keep people

Fig. 1. The three types of intervention for reducing Revent in a setting: (Top) reducing transmission β, (Middle) reducing the number of contacts at a given
time k, and (Bottom) reducing mixing by increasing τ .
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apart reduce k itself, limiting the number of people exposed at a
given time. Distancing can mean literally spacing people farther
out, preventing close-range droplet transmission, or reducing
the number of attendees altogether. (For example, in some
high-density and/or low-ventilation settings, aerosol transmission
may mean that this is the best option to reduce k .) In either case,
our model assumes zero transmission probability except among
the k attendees within “transmission reach” of the index case at
a given time. Finally and less well recognized, structuring the

attendees into strict “social bubbles” or cohorts and ensuring
that people keep contact to within their bubble reduces mixing
(increasing τ).

Fig. 2 shows how Revent changes with respect to an event’s
duration for some different settings and interventions. Fig. 2,
Top shows the impact on Revent for events without mixing. When
the event’s duration is short, reducing transmission (for example,
with masks and barriers) and ensuring distancing have similar
impacts, but when the duration is long, reducing transmission
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Fig. 2. The effects of the three types of interventions on Revent. At baseline, k = 10, β= 0.5, T = 20, and τ = 4. In each panel, reducing transmission means
reducing β by half, distancing means reducing k (the number of people in proximity) by half, and “strict bubbles” means ensuring that attendees contact
only k individuals over the whole event rather than mixing with others outside their bubble. (Top) No mixing (τ = T); the horizontal axis is the total event
duration in hours. (Middle) Mixing occurs every 4 h. (Bottom) A setting with a 10 times lower propensity for transmission (β= 0.05). Here, transmission
never “saturates” because 1− e−βτ remains small enough that it is approximately βτ , which is small.
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has much less impact than distancing. As Fig. 2, Middle shows, at
events where individuals mix, strict bubbles can be much more
effective than either distancing or reducing the transmission
rate, and distancing outperforms reducing transmission. How-
ever, when the baseline transmission rate is very low (Fig. 2,
Bottom), distancing and reducing transmission are better than
strict bubbles. Here, contacting three different groups of 10 peo-
ple for 1 h and contacting a single group of 10 people for 3 h will
each result in the same (low) average number of new infections.
We refer to events like these as “linear” events: the expected
number of new infections depends linearly on the number of con-
tacts and the duration. In contrast, if the transmission rate is high
enough that exposure of length τ can lead to a substantial frac-
tion of the first group of k people becoming infected, then it is
far preferable not to move to a new group of k people when that
hour ends. We refer to such events as “saturating.”

Naturally, these interventions can and should be used in
combination. Distancing (reducing k) has an effect that is inde-
pendent of whether other interventions are used: if k is halved,
Revent is halved, whatever the values of other parameters. Trans-
mission reduction (reducing β) and bubbling (increasing τ)
interact, in that they have the effect of reducing each other’s rel-
ative effectiveness. As β is decreased, we are taken closer to a
linear regime where bubbling is ineffective. On the other hand,
increasing τ means that we are closer to reaching saturation, and
so, transmission reduction is less effective. In SI Appendix, we
further explore the effect of combinations of interventions in our
model.

Estimating Transmission Rate from Outbreak Reports
In order to use our model to make recommendations for the
planning of specific events, it is necessary to estimate the trans-
mission rate β since it is the one parameter that is not directly
observable, whereas we may have a good idea of T , k , and τ for
a given new event. Our strategy is to estimate β for many differ-
ent outbreaks that have already occurred in different settings and
use this to inform what values of β are reasonable for novel but
similar settings with a similarly infectious individual. One impor-
tant point to address is that Revent is an expectation of a number
of new infections and so, cannot be directly observed either. We
define ninf to be the number of new infections at the event due
to the index case, so that Revent is the expectation of ninf (which
we can more directly observe).

Our starting point for identifying useful outbreak data was
a database of reported clusters in the scientific literature and
news media (4). From the more than 100 outbreaks described
there, we selected a small number of incidents where there were
enough details reported for us to estimate our parameters. We
obtained reports of outbreaks at a range of events including
parties, meals, nightclubs, and restaurants. For example, 52 of
60 singers became infected after a choir rehearsal in Wash-
ington (5); 5 of 39 passengers were infected in China when a
man took a 2-h bus ride without a mask, whereas none of 14
passengers on his next 50-min bus journey were infected when
he wore a mask (6). Nineteen people were infected by a sin-
gle individual in a nightclub outbreak (7). SI Appendix has the
complete list.
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Fig. 3. (Left) Transmission rate and (Right) saturation vary over reported events. Median transmission rates range from 0.025 (E11: household survey) to
0.58 (E8: lunch) transmissions per contact per hour. Transmission rates are highest for events involving sharing meals, singing, and speaking (presumably
at volume, although we do not have this information). Among the events we described, the choir, birthday parties, call center, and lunch are the most
“saturated.”
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For each outbreak, there was sufficient information to esti-
mate ninf , the contact group size k , the mixing time τ , and
the duration T . Most reported outbreaks list the total number
of infected individuals, including two or three generations of
infection, and individuals who were not at the event in ques-
tion. Since our ninf is defined to be the number of new infections
directly caused by one infected individual at the event in ques-
tion, we selected outbreaks 1) where there was likely only one
infected individual initially at the event and 2) where there was
an estimate of how many people were directly infected by this
individual at the event or there was information about the timing
of the appearance of symptoms in all infected cases. This meant
that we could estimate ninf , using information about the time
interval between infection and the expression of symptoms. For
each event, we selected maximal and minimal values of ninf that
were consistent with the reported data.

T , τ , and k were estimated using the description of the events
where the outbreaks occurred. Often, T was reported, but oth-
erwise, we picked a reasonable number for events of that type.
For example, we selected T =2 h for a funeral. There were no
specific data available for τ and k for any of the outbreaks. τ
was chosen using what was known about the type of event. For
example, in a choir people typically stand in the same place for
most but not all of the duration of the practice, and so, we set
τ =2,T =2.5. We used two different strategies for determining
k . For events with small numbers of people in confined spaces,
we assumed that k was the total number of individuals present.
For events with large numbers of people or larger venues, we
used images of similar events to estimate k (SI Appendix), under
the assumption that two people were in contact if they were
within 2 m of each other. In each case, we selected a range of
values of k based on what was consistent with the information
available.

We took the following approach to incorporating uncertainty
in the parameters from our outbreaks. Given our range for k , we
sampled k from a normal distribution whose mean is the mid-
point of the range and whose standard deviation is 1/4 the range
(so that 95% of the samples lie within the estimated lower and
upper values). We took the same approach for ninf (using our

estimates of upper and lower values and using a normal distribu-
tion to sample primarily within that range). For τ , we interpreted
our estimated τ above as a mean τ̂ and sampled τ from a normal
distribution with standard deviation 0.1τ̂ . In outbreaks with little
to no mixing (T = τ̂), we reflected the samples with the mapping
τr =T − |T − τ |, where τ is the sample from N (τ̂ , 0.1τ̂), and τr
is reflected so that the resampled values are always less than the
total time T .

For each choice of the parameters k ,T , τ , and β, according
to the model the expected number of new infections is given by
Eq. 1. However, given a set of parameters, the actual number
of new infections ninf is an observation of a binomial random
variable X with parameters p=(1− exp(−βτ)) and n = ke =
k(T/τ). We used a standard Bayesian framework to determine
a probability distribution for p and hence, β. (Ref. 8, chap. 2 has
exposition of this case.) The probability that X takes the value i
is given by

Pr[X = i ] =

(
n

i

)
pi(1− p)n−i .

Given that we observe i =ninf and assuming a uniform prior on
p, this gives the likelihood for a given value of p proportional to

pi(1− p)n−i = pninf (1− p)ke−ninf ,

which is a Beta distribution with shape parameters (α,β)=
(ninf +1, ke −ninf +1). After p is sampled from this distribu-
tion, β is then given by

β=− 1

τ
ln(1− p).

For each event, we generated the points in the plot in Fig. 3 by 1)
selecting k ,ninf ,T , τ at random from the distributions described
above; 2) generating a value of p from the above β distribu-
tion; and 3) inverting to obtain a sample of the transmission
rate β.

Transmission rates range from a low range of 0.02 to 0.05
transmissions per contact per hour (from household studies, a
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Fig. 4. Probability of observing a single choir outbreak with between 30 and 52 new infections given a particular λ and β.
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funeral) to a much higher rate of 0.5 to 0.6 transmissions per
contact per hour (choir, party, lunch), with events involving
speaking, singing, and eating (parties, meals) generally higher
than those without (Fig. 3, Left). We also estimate turnover
(1− τ/T ) and saturation (1− e−βT ) (Fig. 3, Right); broadly, sat-
urating events with high turnover have the highest Revent and
therefore, are the highest risk.

Sources of Bias
Despite our attempts to account for the many sources of uncer-
tainty in our data when we obtain our posterior distributions
for β, there are two important ways in which our estimates of
β are biased upward. To illustrate this point, we consider the
choir practice event E2 where we have estimated β to be in the
range 0.25 to 1.3 transmissions per contact per hour. Suppose
we want to use this range of β to predict how many people will
become infected on average at another similar choir practice if
an infectious individual attends.

The first problem comes from the fact that it is unlikely that
β is the same for all infectious individuals at all choir practices.
It will vary based on the individual, the ventilation, the size of
the room, the seating arrangement, and any protective measures
taken. We can imagine that among all of the choir practices
that occurred in the relevant time period, there was a distribu-
tion of β values. Since larger β will more probably lead to a
larger outbreak, the β for this event is unusually large for sim-
ilar events of its kind. It might be possible to adjust for this
effect using carefully collected datasets (9), but fundamentally,
this would require knowledge of exposures that led to very few
or no further infections, and this is seldom collected systemati-
cally. However, our results show that β can be this high for events
of this type, and that is still an important piece of information
for planners. Heterogeneity in transmission and “superspread-
ing events” is increasingly recognized in infectious disease and
in COVID-19 (10, 11), and “chopping off the tail” has recently
been proposed as a way to reduce transmission considerably (12).
Substantially reducing the upper tail of large and rapid clus-
ters requires planning for precisely the infectious index cases
that lead to large reported outbreaks (such as those described
here).

The second source of bias would occur even if β values were
constant for all similar events. Even for fixed β, there will be
variability in the number of new infections that occur (this being
a binomial random variable in our model). The larger this ran-
dom number, the more likely it is that the event will be reported.
Here, we show that the second type of bias is small for the larger
outbreaks.

As an example, we consider the choir outbreak E2. Suppose
that over the first few months of 2020, there was a number of
choir practices in the United States where one or more of the
attendees were infectious. We model this number as a Poisson
random variable with rate λ. In each such choir practice, we
assume transmission occurs according to our model. (For sim-
plicity, we assume T = τ =2.5 h and k =60.) We assume that an
outbreak is reported with a probability depending on the num-
ber of new infections ninf : the probability of being reported is
1− e−αninf , α=0.1. This choice of α leads to an outbreak of
the size 52 of 60 being reported with probability 99.5% and an
outbreak of only 10 being reported with probability 63%.

Now, we can ask, given a particular λ and β, what the proba-
bility is that we observe a single choir outbreak with between 30
and 52 new infections over the period of interest? Fig. 4 shows
this probability for a range of λ and β. The likelihood is con-
centrated around λ=1 and a range for β that is similar to our
estimates shown in Fig. 2. Assuming a constant β over all choir
practices with an infectious individual, from this model we esti-
mate that there was only one such choir practice and that β
lay in a range from 0.3 to 0.7. The reason for this estimate is

that the only way for 30 or more people to be infected at a sin-
gle choir practice is for β to be so large that, if there were any
other such choir practices at all, with very high probability the
resulting outbreak would be detected. These conclusions remain
for other values of the parameter α and for other models of
when outbreaks are reported. However, if there was a number
of other choirs in which β was much smaller, then exposures
in those rehearsals might not have caused outbreaks that were
reported.

Applications to Minimizing Transmission in New Settings
Transmission rates can be used to explore the impact of interven-
tions in new settings. For example, consider a crowded indoor
event such as a sporting event, crowded conference evening,
rally, or rock concert, where k would be about 15 and the dura-
tion T would be approximately 3 h. We would expect some
mixing (τ of 1 h) and an indoor transmission rate in the range
of 0.2 to 0.4/h. This gives Revent in the range 4 to 14; if β=0.4,
the event is 70% saturated (1− e−βT =0.70), and Revent =14.
Spacing people so that k is halved reduces Revent from 14
to 7; halving β reduces Revent to 8, and strict bubbles of 15
reduce Revent to 10. Reducing both transmission and density
reduces Revent to four. Therefore, if the organizers can feasibly
only take one of these actions, distancing is the most effec-
tive. However, assuming that masks and ventilation can achieve
a 50% reduction in transmission, these permit more atten-
dees (and higher revenues) than distancing if venue capacity
is an issue.

In contrast, consider elementary and high schools. In elemen-
tary schools, students remain in the same class group throughout
the day, and in high schools, each class has a new mix of stu-
dents. For 1 wk of high school with T =24, τ =3, k =10, and
β=0.3 (based on similar cases in our data), Revent is 47. Halving
β reduces Revent to 28, and halving k reduces Revent to 24. How-
ever, if we structure into fixed classes as in elementary schools,
with τ =T , this reduces Revent to 10 and is more than twice as
effective as the other measures. In this setting, reducing trans-
mission with masks is far less effective than grouping students
into static and smaller groups.

As an example of a more complicated situation where our
methods can be applied, consider an elementary school in which
each class has k =25 students. One proposed model for social
distancing in the school setting is that bubbles are formed of only
two classes, so that students spend most of their contact time with
the students in their class, but for 2 h a week, the two classes in a
bubble meet for some activity. We suppose that an infected indi-
vidual (who may be asymptomatic and so, remain undetected) is
in the class for 5 d of 6 h/d (T =30 h) before either the infected
individual stops coming to class or the class is shut down for other
reasons. We suppose that β=0.05 when masks are not used and
β is halved to 0.025 when masks are used. Under these assump-
tions, without masks, Revent for the student’s own class is 19.4,
and for the other class, Revent is 2.4, for a total expected num-
ber of primary infections of 21.8. Wearing masks reduces Revent

to 13.2 in the student’s own class and to 1.2 in the other class.
In terms of infections saved per hour of mask wearing, masks
during the bridging time are much more worthwhile (0.2 fewer
infections per hour wearing a mask within class vs. 0.6 in the case
of the activity with both classes.)

Discussion
We propose that organizers, workplaces, businesses, and so on
seek to determine if their setting is likely to be linear or saturat-
ing and whether people mix strongly or remain in small groups
(or bubbles) (Fig. 5). In all events, interventions that increase
distancing (reducing k) are effective. In events that are already
static, the relative importance of reducing transmission (reduc-
ing β) is much greater in the linear setting. For events where
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Fig. 5. Four different kinds of events depending on whether they are (Left) linear (low transmission probability) or (Right) saturating (high transmission
probability) and whether they are (Upper) static (same contacts for whole event) or (Lower) dynamic (high turnover of contacts). We select representative
parameters for each type of event, determine the number of new infections, and show how the three interventions effect this number. Interventions are
reducing transmission (halving β), introducing distancing (halving k), and strict bubbling (setting τ = T). The parameters used for the plots are funeral:
k = 10, τ = 2, T = 2, and β= 0.05; birthday party: k = 9, τ = 3, T = 3, and β= 0.05; public transport: k = 15, τ = 1, T = 4, and β= 0.05; and school: k = 20,
τ = 3, T = 24, and β= 0.3.

there is mixing, bubbling (reducing τ) is an extremely power-
ful intervention in the saturating case but is less significant in
the linear case. If there is substantial heterogeneity in transmis-
sion, many potential index cases will have a low transmission
rate, but the rate is high enough often enough to have driven
a global pandemic. Accordingly, when assessing the risk for an
event, exploring transmission rates in the broad range we have
estimated here (0.025 to 0.6 transmissions per contact per hour)
from reported outbreaks is warranted.

Saturating situations may not only make reducing transmission
challenging, but also, they may make it difficult to estimate the
effectiveness of masks and other physical barriers to transmis-
sion. This is because in saturating settings, even an intervention
that halves the transmission rate may not have much impact on
the number of infections. This effect may help to explain the
variable evidence for the benefits of masks in reducing transmis-
sion, with some studies showing no benefit (13), while the overall
picture shows significant benefit in some cases (14). In contrast,
the evidence that transmission is impacted by physical distance
is quite strong. Distancing of 1 m or more significantly reduces
transmission, and greater distances reduce it further (14). Strict
bubbling can be effective and has the added advantage that con-
tact tracing is made easier when individuals have fewer contacts
and can identify them, but strict bubbles are hard to maintain
over time due to social, family, and workplace activities. Much of
this logic is already in place as, for example, school boards act to
reduce class sizes, limit interactions between classes, recommend
masks in hallways, and so on (15).

Our framework gives an opportunity to estimate the trans-
mission rate β, a fundamental parameter for infectious dis-
ease models. Models can then be used to predict outbreak
sizes and to simulate outbreaks and interventions under dif-
ferent scenarios for team size, work from home arrangements,
and other structures. Finally, the Revent framework and trans-
mission rate estimates can help to determine the numbers of
people who would need to be tested, and the numbers in iso-
lation, in different organizational or event structures after a case
is detected.

Our fundamental relationship focuses on Revent, which can be
seen as an average over a number of heterogeneities, including
variation in individual infectiousness. It identifies the potential
for superspreading events, particularly saturated and highly mix-
ing events, which can have very high Revent. The total number
of infections associated with an activity will depend not only
on Revent but also, on the frequency of the event, the total
attendance, and the prevalence of the disease in the popula-
tion. For example, while Revent for a 30-min bus ride is likely
to be low, transit authorities must make decisions that account
for the number of transit users and the frequency with which
they take transit, as well as COVID-19 prevalence. With both
benefits and expected transmissions depending on the num-
ber of people engaged in an activity or event, societies must
decide which events and activities have an acceptable COVID-19
cost–benefit balance. Decision makers must also consider ongo-
ing community transmission subsequent to events; individuals
attending one type of event may be likely to attend others, ampli-
fying the effects. Dynamic transmission models can help explore
the impact of superspreading events in the context of broader
transmission (16).

Complex settings such as universities have a population
engaged in a series of “events”: classes, movement between
classes, dining halls, dormitories, and transportation to campus.
While we would suggest that within a class, assigned seating,
distancing, and mask use will likely combine to reduce trans-
mission considerably, close contact in dormitories and dining
halls could still result in transmission. Our framework could help
design measures targeted to each activity, but these would likely
need to be supplemented with rapid contact tracing and case
finding. It is essential to support exposed individuals so that they
are able to isolate themselves without suffering economic, social,
and educational consequences.

A range of new outbreak settings will likely be reported as
more activities reopen (17, 18). The largest outbreaks reported
to date have naturally included cases arising over many days
and have taken place in long-term care facilities (19), meat- and
poultry-packing facilities (20), correctional facilities (21), and
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other high-transmission environments (9, 22). These may be sat-
urating, mixing environments, which in our framework, helps to
explain high case volumes, although we did not find that the call
center (23) was saturating. These settings have a fixed popula-
tion and long durations, whether individuals are present full time
(patients and inmates) or for full working days (staff). In a closed
setting with a fixed population, if the event’s duration is defined
to be the duration of infectiousness, event R is the classic “basic
reproduction number,” R0 (the expected number of new infec-
tions an individual is expected to create in a fully susceptible
population).

The possibility that some individuals are infectious but never
develop symptoms (24) could mean that they attend a setting for
a period T of many days, creating a saturating setting even if
the transmission rate is low. In this case, mask use and physical
barriers to transmission may be ineffective; physical distancing
is likely to be more effective, and strict bubbling is the best. In
addition to the risks posed by asymptomatic individuals [who
may after all not be as infectious as others (25)], even for those
who eventually develop symptoms it has been estimated that over
40% of transmission occurs before symptom onset (26), over a
period of a few days (although this was in contexts where symp-
tomatic transmission was likely to be low due to control measures
in place). In our framework, with the transmission rates we
have acquired from reported short outbreaks, a time period

of several days places some activities firmly in the saturating
mode.

While we do not currently have data to determine the relative
COVID-19 risks for most activities, we should begin collecting
this information prospectively, noting k , the extent of mixing,
outbreaks’ duration and location, and how many individuals are
infected by a single index case in a given setting. This informa-
tion, along with data about the ventilation and built environment,
could help us to formulate “precision” COVID-19 measures
aimed specifically at each event or workplace. Centers for dis-
ease control that maintain contact tracing programs, together
with workplace, venue, and facility staff, could collate these data.
If digital contact tracing apps are introduced (27), these could
provide extremely rich data on the parameters in our framework,
on Revent itself, and on the settings in which exposure occurred
but infection did not. Our framework, together with these data,
can then inform what the most effective, feasible measures are
for particular settings.

Data Availability. All study data are included in the article and SI
Appendix.
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