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ABSTRACT

Purpose: Recent studies have revealed the pathogenic role of interleukin (IL)-22 in atopic 
dermatitis and asthma. However, little is known about the role of IL-22 in the pathophysiology 
of chronic rhinosinusitis with nasal polyps. We aimed to investigate the expression of IL-22 and 
its pathogenic function in type 2 immune reactions of nasal polyps (NP).
Methods: Protein levels of inflammatory mediators were determined by multiplex 
immunoassay, and principal component analysis (PCA) was performed. Immunofluorescence 
analysis and mast cell culture were used to determine the cellular sources of IL-22. Normal 
human bronchial epithelial (NHBE) cells were stimulated using IL-22 in combination with 
diverse cytokines, and thymic stromal lymphopoietin (TSLP) was measured.
Results: IL-22 expression was not up-regulated in NP compared with control tissues, but 
IL-22-high NP revealed distinct features characterized by type 2 inflammatory cytokines 
such as chemokine (C-C motif ) ligand (CCL)-11, CCL-24, and IL-5 on the PCA. Additionally, 
IL-22 positively correlated with type 2 immune mediators and the disease severity in NP. For 
the localization of the cellular sources of IL-22 in eosinophilic NP, it was expressed in cells 
mostly composed of eosinophil peroxidase-positive cells and partially of tryptase-positive 
cells. The human mast cell line, LAD2 cells, released IL-22 mediated by immunoglobulin E. 
Moreover, IL-22 receptor subunit alpha-1 (IL-22Ra1) expression was significantly increased in 
NP. IL-22Ra1 was up-regulated with poly(I:C) stimulation in NHBE cells. Furthermore, TSLP 
production was enhanced when stimulated with a combination of IL-13, poly(I:C), and IL-22. 
Treatment with anti-IL-22Ra1 also inhibited IL-22-induced enhancement of TSLP production.
Conclusion: IL-22 was associated with type 2 inflammatory reactions in NP. The IL-22/IL-
22Ra1 axis was enhanced and might be involved in type 2 inflammatory reactions via TSLP 
production in NP.
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INTRODUCTION

Chronic rhinosinusitis (CRS) is characterized by chronic inflammation of the paranasal 
sinus mucosa that persists for at least 12 weeks.1 Currently, the phenotype of CRS is 
classified into 2 groups: CRS with nasal polyps (CRSwNP) and CRS without nasal polyps 
(CRSsNP), depending on the presence or absence of nasal polyps (NP) during endoscopic 
examination.1 Endotypes can be classified according to the immunological patterns within 
the same phenotype of CRS.2-4 To date, several studies have demonstrated that a number of 
inflammatory markers and various immune cells have been engaged in the pathogenesis 
of CRS.5-11 However, different phenotypes of CRS show a very similar endotype, or its 
different endotypes are often presented in a single clinical phenotype. Thus, such disease 
heterogeneity in patients with CRS remains poorly understood.

Interleukin (IL)-22 is a member of the IL-10 family of cytokines and its signaling pathway 
plays crucial roles in regulating host defense, tissue homeostasis, and inflammation at 
mucosa barrier surface.12 Until now, signaling of IL-22 through its receptor (IL-22R) is known 
to promote antimicrobial immunity, inflammation, and tissue repair.12 In addition, IL-22 is 
also produced by various inflammatory cells, including Th1, Th2, Th17, Th22 cells, natural 
killer cells, and type 3 innate lymphoid cells,13,14 whereas IL-22R is expressed on epithelial 
cells rather than immune cells.15 However, several studies demonstrated that IL-22 plays a 
key role in the pathogenicity of allergic diseases.16-18 Recent studies showed that IL-22/IL-
22R signaling regulates the pathogenesis of CRSwNP via alteration in MUC1 expression.19 
Therefore, in this study, we aimed to investigate the expression level of IL-22 and its 
pathogenic function in patients with CRSwNP.

MATERIALS AND METHODS

Patients and tissue samples
Sinonasal and NP tissues were obtained from patients with CRS during routine functional 
endoscopic sinus surgery. All participants provided written informed consent prior to 
the study, which was approved by the Internal Review Board of Seoul National University 
Hospital, Boramae Medical Center (No. 30-2017-78). CRS diagnosis was made based on 
history taking, physical examination, nasal endoscopic exam, and computed tomography 
(CT) findings of the sinuses according to the 2012 European position paper on rhinosinusitis 
and NP guidelines.1 Exclusion criteria are as follows: (1) age younger than 18 years; (2) 
history of receiving treatment with antibiotics, systemic or topical corticosteroids, or other 
immune-modulating drugs during 4 weeks prior to surgery; and (3) having been diagnosed 
with unilateral rhinosinusitis, antrochoanal polyp, allergic fungal rhinosinusitis, cystic 
fibrosis, or immotile ciliary disease. Control tissues were obtained from patients without any 
sinonasal diseases during other types of rhinologic surgeries such as skull base and lacrimal 
duct surgeries. Uncinate process mucosal tissues were obtained, each from control subjects 
and patients with CRSsNP or CRSwNP; NP tissues in patients with CRSwNP were obtained 
for evaluation. As previously described,20-22 each tissue was divided into 3 parts: one was 
fixed in 10% formaldehyde and embedded in paraffin for histological analysis, another was 
immediately frozen and stored at −80ºC for subsequent isolation of mRNA, and the third was 
submerged in 1 mL phosphate-buffered saline supplemented with 0.05% Tween-20 (Sigma-
Aldrich, St. Louis, MO, USA) and 1% PIC (Sigma-Aldrich) per 0.1 g of tissue.23 Then, the 
third samples were homogenized with a mechanical homogenizer at 1,000 rpm on ice for 5 
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minutes. After homogenization, the floating materials were centrifuged at 3,000 rpm for 10 
minutes at 4ºC, and the supernatants were separated and stored at −80ºC for further analysis 
of cytokines and other inflammatory mediators. The atopic status of the study subjects 
was evaluated using the ImmunoCAP® assay (ThermoFisher Scientific, Waltham, MA, 
USA) to detect specific Immunoglobulin E (IgE) antibodies against 6 mixtures of common 
aeroallergens (house dust mites, molds, trees, weeds, grass pollen, and animal danders). 
Subjects were considered atopic if the allergen-specific IgE level was greater than 0.35 
KU/L to more than 1 allergen.24 An asthmatic patient was defined as one who experienced 
chronic airway symptoms (dyspnea, cough, wheezing, and/or sputum) and reversible airflow 
limitation and had forced expiratory volume in 1 second increased by ≥ 12% or 200 mL 
after using a bronchodilator or a methacholine provocation test result of PC20 ≤ 16 mg/mL. 
Disease severity was evaluated by CT images using the Lund-Mackay scoring system. Patient 
characteristics are presented in Supplementary Table S1.

Quantitative real-time polymerase chain reaction (qRT-PCR) analysis
Total RNA was extracted from tissue samples using the TRI reagent (Invitrogen, Carlsbad, 
CA, USA). The 1 µg of total RNA was reversely transcribed into cDNA using the cDNA 
Synthesis Kit (amfiRivert Platinum cDNA Synthesis Master Mix; GenDEPOT, Katy, 
TX, USA). The qRT-PCR was performed. Analysis of IL-22 receptor subunit alpha-1 (IL-
22Ra1; Hs00222035_m1), IL-22Ra2 (Hs00364814_m1), and glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH; Hs02758991_g1) was performed using pre-developed assay reagent 
kits of primers and probes from TaqMan assays (Life Technologies Korea, Seoul, Korea). Pre-
developed assay reagent kits containing primers and probes were purchased from Applied 
Biosystems (Foster City, CA, USA). The expression of GAPDH was used as an internal control 
for normalization. Cycling conditions are as follows: 95°C for 5 minutes, followed by 60 
cycles at 95°C for 15 seconds, 60°C for 20 seconds, and 72°C for 20 seconds. To analyze the 
data, Sequence Detection Software version 1.9.1 (Applied Biosystems) was utilized. Relative 
gene expression was calculated using the comparative 2−ΔΔCT method.

Measurement of inflammatory mediators in tissue homogenates
As previously described,25,26 the protein concentrations of tissue extracts were determined 
using the Pierce 660nm Protein Assay Kit (ThermoFisher Scientific) and samples were 
thawed at room temperature and vortexed for thorough mixing. Tissue homogenates 
were then assayed for periostin proteins by using commercially available enzyme-linked 
immunosorbent assay (ELISA) kits (R&D Systems, Minneapolis, MN, USA). Multiple cytokine 
analysis kits (IL-1ɑ, IL-1β, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-22, IL-23, IL-33, chemokine 
[C-C motif ] ligand [CCL]-11, CCL-24, chemokine [C-X-C motif ] ligand [CXCL]-1, CXCL-
2, CXCL-8, interferon (IFN)-γ, myeloperoxidase, transforming growth factor-β, S100A8, 
glycoprotein130, and B cell activating factor) were obtained from R&D Systems (Cat. No. 
LMSAHM), and data were collected using Luminex 100 (Luminex, Austin, TX, USA). Data 
analysis was performed using the MasterPlex QT version 2.0 (MiraiBio, Alameda, CA, USA). 
The levels of total IgE, Staphylococcal enterotoxins (SE)-specific IgE (SEA, SEB, and SEC), 
and eosinophil cationic protein (ECP) in nasal tissue homogenates were measured using the 
ImmunoCAP® assay (ThermoFisher Scientific). All assay procedures mentioned were run 
in duplicate according to the manufacturer's protocol. All the protein levels in the tissue 
homogenate were normalized to the concentration of total protein.
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Immunofluorescence analysis
To verify the cellular source of IL-22 in NP tissues, immunofluorescence analysis was 
conducted using primary antibodies directed against anti-IL-22 (1:100; Abcam, Cambridge, 
MA, USA), anti-mast-cell tryptase (1:500; Abcam), anti-eosinophil peroxidase (EPX) (1:200; 
Abcam), and anti-human neutrophil elastase (HNE) (1:500; Abcam). After 24 hours of 
incubation of primary antibodies at 4°C, the secondary antibody Alexa Fluor 488-conjugated 
goat anti-mouse IgG (1:1,000; Abcam) or Cy3-conjugated goat anti-rabbit (1:500; Abcam) 
was incubated for 1 hour at room temperature. Then, the nuclei were stained with DAPI 
(4′,6-diamidino-2-phenylindole) (1:1,000; Sigma-Aldrich) for 2 minutes. The tissues were 
mounted with Fluoroshield Mounting Medium (ab104135; Abcam). Fluorescent images were 
obtained using the CELENA® S Digital Fluorescence Imaging System (Logos Biosystems, 
Annandale, VA, USA). The proportion of IL-22-positive cells on each of the tryptase, EPX, 
and HNE-positive cells was calculated and analyzed in 3 randomly selected fields, and non-
specific signals were excluded.

Human mast cell culture and measurement of cytokine production
LAD2 mast cells were cultured in serum-free media (StemPro-34 SFM; ThermoFisher 
Scientific) supplemented with 2 mM L-glutamine, 100 U/mL penicillin, 50 µg/mL 
streptomycin, and 100 ng/mL stem cell factor (SCF). Cell suspensions were cultured at a 
density of 105 cells/mL, and were maintained at 37°C and 5% CO2. Sensitized cells were re-
suspended at 5 × 104 cells/mL with biotin-conjugated IgE protein (0.5 μg/mL, ABIN457505; 
Antibodies-online, Aachen, Germany) in fresh media (without SCF) overnight and pre-
treated with recombinant human IL-4 (10 ng/mL, 200-04; PeproTech, Philadelphia, PA, 
USA), recombinant human IL-13 (10 ng/mL, 200-13; PeproTech), or SEB (5 ng/mL; List 
Biologic Laboratories, Campbell, CA, USA) for 1 hour. Cells were then treated with 0.5 
μg/mL streptavidin (S4762; Sigma-Aldrich) for 4, 8, and 24 hours at 37°C. Secreted IL-22 
was measured in cell supernatants using the ELISA kit according to the manufacturer's 
instructions (R&D Systems). The detection limit for the assay was 31.3 pg/mL.

Human bronchial epithelial cell culture
Normal human bronchial epithelial (NHBE) cells were purchased from Lonza (CC-2540; 
Basel, Switzerland) and cultured in BEGMTM bronchial epithelial growth medium (CC-3170; 
Lonza) at 37°C in a humidified environment containing 5% CO2. NHBE cells were plated on 
12-well culture plates coated with 6-10 µg/cm2 collagen (C8919; Sigma-Aldrich) and were 
grown to 80% confluence. Before treatment, NHBE cells were maintained in BEGM in the 
absence of hydrocortisone for at least 2 days. For IL-22Ra1 expression after stimulation 
of major cytokines and poly(I:C), NHBE cells were treated with recombinant human IL-4 
(100 ng/mL; R&D Systems), IL-13 (100 ng/mL; R&D Systems), IL-17A (100 ng/mL; R&D 
Systems), IFN-γ (100 ng/mL; R&D Systems), and poly(I:C) (5 μg/mL; InvivoGen, San Diego, 
CA, USA). Supernatants were removed after 24 hours of stimulation and cells were used for 
RNA extraction. For TSLP measurement, NHBE cells were stimulated with recombinant 
human IL-4 (100 ng/mL; R&D Systems), IL-13 (100 ng/mL; R&D Systems), IL-22 (1 or 10 or 
100 ng/mL; R&D Systems) for 72 hours. Additionally, in each experiment, NHBE cells were 
stimulated with poly(I:C) (5 μg/mL; InvivoGen) 1 hour after treatment with IL-4, IL-13, and/or 
IL-22. Anti- IL-22Ra1 (2.5 µg/mL; R&D Systems) was added to confirm the reversibility of IL-
22-induced thymic stromal lymphopoietin (TSLP) production. Cell culture supernatants were 
collected and used for measuring TSLP with the ELISA (R&D Systems).
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Statistical analysis
Statistical analyses were performed using GraphPad Prism software 7.0 (GraphPad Software 
Inc., La Jolla, CA, USA). Data were analyzed with Mann-Whitney U and Kruskal-Wallis 
tests with Dunn's multiple comparison test. Correlations were tested by Spearman's rank 
correlation coefficients. The Pearson correlation test was also used to determine variable 
relationships. If the data were not normally distributed, the Spearman correlation coefficient 
was utilized. The significance level was set at an α value of 0.05. Factor analysis based on 
principal component analysis (PCA) was used to describe the patterns of inflammatory 
mediators in varying IL-22 concentrations (interquartile range).

RESULTS

Expression of IL-22 in CRS
ELISA assays were performed to examine the expression of IL-22 at protein levels. The 
expression level of IL-22 was significantly increased in CRSsNP compared to control 
and CRSwNP, whereas there was no significant difference in IL-22 expression between 
control and CRSwNP (Fig. 1A). Next, to determine the influence of IL-22 expressions on 
the pathogenesis of NP development, we performed exploratory factor analysis using PCA 
according to the concentration of IL-22 expression.

The PCA retained 9 components, accounting for 68.6% of the overall variance in the data 
(Supplementary Table S2). On the PCA plot, the first and second components accounted 
for 14.9% and 12.1% of the variance in the dataset, respectively, but there were overlapping 
patterns of inflammatory mediators according to the IL-22 concentration (Fig. 1B). However, 
distinct differences were observed in the third component which accounted for 10.5% of the 
variance in the dataset (Fig. 1C). NP with very high IL-22 levels seemed distinguishable from 
the other groups by type 2 inflammatory markers such as CCL-11, CCL-24, and IL-5.

Correlations between IL-22 expression and inflammatory markers in CRS
To elucidate the role of IL-22 in CRSwNP, we evaluated the correlation between IL-22 
and other major inflammatory mediators (Fig. 2A). We found that there was a positive 
correlation between IL-22 expression and type 2 immune mediators, whereas IL-22 showed 
no or negative correlations with type 1 and 3 cytokines or proinflammatory mediators in 
CRSwNP patients. We also observed a significant correlation between SE-specific IgE and 
IL-22 in NP tissues, although there was no correlation between total IgE and IL-22 levels 
in NP tissues (Fig. 2B). Moreover, on subgroup analysis according to the IL-5 activity, 2 we 
found a higher positive association between IL-22 and IL-5 expression in CRSwNP patients 
who had high IL-5 (> 12.98 pg/mL) activity (r = 0.5904, P = 0.0061) than in those with low 
IL-5 (≤ 12.98 pg/mL) activity (r = 0.2700, P = 0.0354). Additionally, IL-22 expression in NP 
tissues was significantly associated with disease severity based on CT scores. In contrast, 
IL-22 expression positively correlated with various inflammatory mediators (type 1, 2, and 3 
inflammatory cytokines and pro-inflammatory mediators) but showed no association with 
disease extent in CRSsNP patients.

The cellular source of IL-22 in NP
For localization of the cellular sources of IL-22 in eosinophilic NP, we performed double 
immunofluorescence staining of the NP with abundant eosinophils and mast cell infiltration 
(Fig. 3). We found that IL-22 was expressed mostly in EPX-positive cells, but not in HNE-
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*P < 0.01, and †P < 0.001 using the Kruskal-Wallis test with Dunn's multiple comparison test.



positive cells. Moreover, a part of tryptase-positive cells also expressed IL-22. Thus, LAD2 
cells, a human mast cell line, were cultured and stimulated with IgE, IL-4, IL-13, and SEB to 
confirm whether human mast cells can produce IL-22 and to identify upstream inducers. 
IL-22 was released from LAD2 in response to IgE stimulation in a dose-dependent manner, 
while IL-4, IL-13, and SEB were not (Fig. 4).

IL-22/IL-22Ra1 signaling pathway in NP
The IL-22 receptor complex consists of the receptor chains IL-22Ra1 and IL-10Ra2.13 
Additionally, there is a soluble, secreted receptor of IL-22 (IL-22Ra2) which exists as a 
natural antagonist to IL-22.13 In this study, IL-22Ra1 was significantly higher in NP than in 
control and CRSsNP, whereas IL-22Ra2 was not upregulated in CRSwNP, compared with 
CRSsNP (Fig. 5A and B). The ratio of IL-22Ra1/IL-22Ra2 was the highest in NP (Fig. 5C). 
These findings imply that the IL-22/IL-22Ra1 axis is mainly activated in NP. Therefore, to 
confirm what conditions could promote IL-22Ra1 expression, NHBE cells were cultured 
and stimulated with IL-4, IL-13, IL-17A, IFN-γ (each 100 ng/mL), and poly(I:C). We observed 
that IL-22Ra1 expression on NHBE cells was up-regulated by poly(I:C) stimulation (Fig. 5D). 
Moreover, previous studies revealed that the expression of TSLP was induced by poly(I:C) in 
nasal epithelial cells of NP.27 Thus, we tested whether the IL-22/IL-22Ra1 axis could promote 
TSLP expression under poly(I:C) stimulation. NHBE cells stimulated with IL-4, IL-13, or IL-22 
alone did not promote TSLP production (Supplementary Fig. S1A); however, when NHBE 
cells were stimulated with additional poly(I:C) in each experimental protocol, we were able 
to detect significantly up-regulated TSLP expression (Supplementary Fig. S1B). Furthermore, 
we found that the combination of IL-13 and poly(I:C) showed much enhanced production 
of TSLP on 100 ng/mL of IL-22. Treatment with anti-IL-22Ra1 also inhibited IL-22-induced 
enhancement of TSLP production (Fig. 5E and F).
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DISCUSSION

IL-22 is essential not only for the host defense against extracellular pathogens, but also for 
tissue repair and wound healing. However, uncontrollably continued production of IL-22 
can lead to certain diseases. To date, IL-22 has been known to have different functions, 
depending on the nature of the affected tissue and the local cytokine milieu. However, the 
role of IL-22 in the allergic airway diseases is still controversial (pro-inflammatory effects 
vs. anti-inflammatory properties).28 In this study, we showed that, in patients with CRSwNP, 
IL-22 expression was positively correlated with type 2 inflammatory cytokines. In addition 
to eosinophils, mast cells might be the potential source of IL-22 in NP tissues responding to 
subsequent IgE-mediated signals. The up-regulation of IL-22Ra1 was observed in NP tissues 
and was induced in NHBE cells by poly(I:C) treatment. Moreover, the enhancement of the 
IL-22/IL-22Ra1 axis promoted TSLP production in NHBE cells.
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Previously, some studies have demonstrated that IL-22 can act a dual role in airway inflammation: 
anti-inflammatory or pro-inflammatory.18,29,30 Our study found that IL-22 expression and its 
correlation with other inflammatory mediators were different according to the CRS phenotype. 
Specifically, IL-22 expression was correlated with various inflammatory mediators (type 1, 2, and 3 
cytokines and pro-inflammatory mediators) in CRSsNP, whereas there were positive correlations 
between IL-22 and type 2 cytokines in CRSwNP. Consistent with our findings, one cluster analysis 
study examined the up-regulation of IL-22 in 2 different phenotypes: the CRSsNP group and 
the IL-5-high CRS group which consist mostly of CRSwNP patients. They concluded that IL-22 
might play different roles according to the cytokine milieu.2 Prior studies reported the association 
of IL-22 with disease severity, demonstrating that significantly higher level of IL-22 expression 
was detected in serum and sputum of patients with severe asthma than in those with moderate 
asthma.30-32 In accordance with these findings, we also observed that CRSwNP patients showed a 
significantly positive correlation between IL-22 expression and disease extent based on CT scores.

It is known that IL-22 is produced by immune cells, including helper T cell subsets and 
innate lymphocytes. Recently, one study described that IL-22 was expressed in CD4+ cells 
and ECP/EPX+ cells, not in CD68+ cells in the case of CRSwNP patients.19 Another study also 
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demonstrated that skin mast cells are a predominant source of IL-22 in patients with psoriasis 
and atopic dermatitis.33 Interestingly, in this study, double immunofluorescence staining and 
LAD2 cell culture revealed that mast cells are another cellular source of IL-22 in NP tissues. 
Additionally, CRSwNP patients with high IL-5 activity showed a stronger correlation between 
IL-22 and IL-5 levels than those with low IL-5 activity. Taken together, our findings suggest 
that IL-22 may play a key role in type 2 airway inflammation in CRSwNP.

It is known that IL-22Ra1 activates the signal transducer and activator transcription-3 signaling 
pathway, but IL-22Ra1 expression is restricted to cells within epithelial cells, hepatocytes, and 
acinar cells.15 A previous study described that nasal epithelial cells obtained from the ethmoid 
mucosae of CRSwNP are associated with significantly decreased expression of IL-22R1, 
implying impaired protective function.34 Some studies on the protective role of IL-22 in airway 
inflammation demonstrated that IL-22 inhibits the expression of lung epithelial cell-derived 
cytokines and attenuates the development of allergic airway inflammation.35,36 However, in this 
study, the up-regulated expression of IL-22Ra1 was observed in NP tissues. This implies that 
IL-22 produced by eosinophils and mast cells act on epithelium via IL-22Ra1. The enhanced 
IL-22/IL-22Ra1 axis may contribute to the development of nasal polypogenesis by initiating 
TSLP expression under IL-13 and poly(I:C). However, this is still unclear and should be further 
investigated when and how the role of IL-22 switches between protective and pathologic ones.

In conclusion, this study indicates that IL-22 may play a pathologic role in patients 
with CRSwNP. Eosinophils and mast cells may be the major cellular sources of IL-22 in 
eosinophilic NP tissues. RNA viral infection may mediate up-regulation of IL-22Ra1, 
activating IL-22/IL-22Ra1 signaling in airway epithelial cells. The enhanced IL-22/IL-22Ra1 
axis promotes TSLP production under a type 2 microenvironment in airway epithelial cells, 
and such a pathway may contribute to the development of NP.
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