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Abstract
Diversity within the fungal kingdom is evident from the wide range of
morphologies fungi display as well as the various ecological roles and
industrial purposes they serve. Technological advances, particularly in
long-read sequencing, coupled with the increasing efficiency and
decreasing costs across sequencing platforms have enabled robust
characterization of fungal genomes. These sequencing efforts continue to
reveal the rampant diversity in fungi at the genome level. Here, we discuss
studies that have furthered our understanding of fungal genetic diversity
and genomic evolution. These studies revealed the presence of both
small-scale and large-scale genomic changes. In fungi, research has
recently focused on many small-scale changes, such as how hypermutation
and allelic transmission impact genome evolution as well as how and why a
few specific genomic regions are more susceptible to rapid evolution than
others. High-throughput sequencing of a diverse set of fungal genomes has
also illuminated the frequency, mechanisms, and impacts of large-scale
changes, which include chromosome structural variation and changes in
chromosome number, such as aneuploidy, polyploidy, and the presence of
supernumerary chromosomes. The studies discussed herein have provided
great insight into how the architecture of the fungal genome varies within
species and across the kingdom and how modern fungi may have evolved
from the last common fungal ancestor and might also pave the way for
understanding how genomic diversity has evolved in all domains of life.
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Introduction
The fungal kingdom is estimated to consist of 2.2 to 3.8 million 
different species, making it the most diverse kingdom within 
the eukaryotic domain1. Fungi are currently organized into  
eight taxonomically distinct phyla2. The most studied and well-
characterized fungi belong largely to the Ascomycota and 
Basidiomycota phyla, which collectively make up the sub-
kingdom Dikarya. The six most basal phyla, also known as 
early-diverging fungi, are relatively understudied com-
pared to Dikarya fungi and include the Blastocladiomycota, 
Chytridiomycota, Mucoromycota, Zoopagomycota, 
Cryptomycota, and Microsporidia phyla2,3.

The diversity within the fungal kingdom is evident from genetic, 
phenotypic, and ecological perspectives. Fungi display a range 
of morphologies from macroscopic, multicellular filamentous 
fungi to environmentally ubiquitous, single-celled yeasts and  
obligate intracellular pathogens associated with animal hosts. 
This diversity is further demonstrated by the variety of ecological 
roles fungi fulfill, the importance of fungi as model organisms in  
scientific research, and the diversity of applications of fungi 
in industrial settings. The diverse and important roles of fungi  
combined with technological advances in high-throughput 
sequencing, also known as next-generation sequencing, have moti-
vated broad efforts to sequence thousands of fungal genomes4–7.  
The phenotypic and ecological diversity across the fungal 
kingdom is reflected, in part, in the diversity observed within  
fungal genomes.

In this review, we focus on recent advances in understanding 
the evolution of fungal genomes. Both small- and large-scale 
variation among fungal genomes contributes to stable or tran-
sient genotypic and phenotypic variation as well as speciation. 
Small-scale genomic changes include changes at the nucleotide 
and gene level, and often influence genomic microevolution, or 
the changes of allelic frequencies within a species (Figure 1a).  
Increased mutation rates and genomic location and context also 
impact the evolution of fungal genomes8–11. Introgression, mei-
otic drive elements, and horizontal gene transfer (HGT) from  
other fungal species as well as cross-kingdom genetic transfer 
from prokaryotes represent additional examples of small-scale  
genomic evolution in fungi12–19. Compounding elements of small-
scale genomic change can mediate genomic macroevolution,  
which refers to evolution at and above the species level.

Macroevolution of fungal genomes is also influenced by large-
scale genomic changes, including structural and organizational  
changes in individual chromosomes as well as karyotypic vari-
ation, which can be attributed to aneuploidy, the acquisition of  
accessory chromosomes, and polyploidy20–24 (Figure 1b).

Advances in sequencing technologies have allowed robust and 
rapid characterization of these small- and large-scale genomic 
changes at a more accurate level than previously possible and 
therefore have provided novel insights into fungal genomic  
evolution25–28. These insights contribute to our understanding of 
fungal genomic evolution and the impacts this evolution can impart 
on gene function, mating, fitness, and speciation29–31. Genomic  
evolutionary mechanisms and dynamics in fungi can provide 

insight into the evolutionary histories and trajectories of species  
throughout the eukaryotic domain.

Small-scale evolution of fungal genomes
Single nucleotide changes, transposition of genetic elements, 
and expansion and contraction of repetitive sequences influ-
ence genome evolution at a small scale. Relatively small-scale  
genomic changes also include the transfer of genetic informa-
tion between and among populations. Here we consider advances 
in understanding how increased mutation rates, fast-evolving  
genomic regions and elements, and allelic transmission influence 
the evolution of fungal genomes.

Hypermutation
Mutation rates estimate the number of genetic changes occur-
ring within a cell per generation. Isolates with significantly 
higher mutation rates than those of closely related isolates or  
laboratory reference strains of the same species are said to display 
a hypermutator phenotype. Increased mutation rates have been 
extensively characterized in the yeast Saccharomyces cerevisiae  
and have provided the foundation for identifying genetic 
mechanisms underlying human diseases, including a form of 
hereditary cancer known as Lynch syndrome32–36. Hypermuta-
tion in fungi has been shown to promote rapid adaptation to 
novel environmental conditions, to influence overall fitness and 
genomic structural changes, and to be subsequently tempered 
by the emergence of anti-mutator suppressor alleles, among 
other consequences8,9,37,38.

Recently, naturally occurring fungal hypermutator strains have 
been identified and characterized. Clinically and environmen-
tally isolated strains of the human fungal pathogens Cryptococcus 
deuterogattii, Cryptococcus neoformans, and Candida glabrata 
have been found to harbor loss-of-function mutations in DNA 
mismatch repair components and thus display hypermutator  
phenotypes9,39–43. Defects in the mismatch repair protein Msh2 are 
especially prevalent and typically produce single base pair inser-
tions or deletions in homopolymeric nucleotide runs9,44. These  
isolates display higher rates of genomic evolution at the nucleotide 
level and have the ability to more rapidly adapt to novel stres-
sors in vitro, including the ability to develop de novo resistance  
to antifungal drugs in vitro9,39–42,45. Incompatibilities in the mis-
match repair components Mlh1 and Pms1 have also been 
reported to contribute to hypermutation in S. cerevisiae laboratory  
strains46,47. Studies have identified several S. cerevisiae strains  
isolated from humans that encode these same MLH1-PMS1 
incompatible alleles48. Although the S. cerevisiae diploids with 
incompatible alleles isolated from humans were not hypermuta-
tors themselves, their meiotic progeny displayed a wide range 
of mutation rates and included hypermutators, thus providing an 
opportunity to produce progeny with variable fitness under stressful  
conditions47,48. Another mechanism of hypermutation caused 
by a mutation in a DNA polymerase delta subunit was also 
described in C. neoformans; this mechanism of hypermutation 
resulted in genome-wide increases in transition and transversion  
mutations but reduced viability and virulence49,50.

Mobilization of transposable elements throughout the 
genome can mediate hypermutation at a larger scale than the  
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Figure 1. Mechanisms of fungal genome evolution. (a) Forces driving genomic evolution in fungi at the nucleotide and gene 
level Defects in components of the DNA mismatch repair pathway, such as Msh2, contribute to hypermutation. msh2Δ mutants display 
characteristic 1 base pair (bp) insertions or deletions in homopolymeric nucleotide runs. Transposon insertions and the long terminal repeat 
footprints they leave behind also influence small-scale genomic evolution. Mutations in DNA polymerase delta subunits (Pol δ*) have been 
observed in fungal hypermutator isolates and typically generate high rates of transition and transversion mutations. At the gene level, nested 
introns called “stwintrons” have been shown to mobilize within fungal genomes and can trigger alternative splicing and exon skipping. Long 
non-coding RNAs (lncRNAs), including antisense lncRNAs (ASlncRNAs), undergo rapid evolution and add one more layer of complexity 
to the genomic evolution of fungi. INDEL, insertion/deletion polymorphism; Pol, polymerase; TE, transposable element; UTR, untranslated 
region. (b) Forces driving genomic evolution at the chromosomal and nuclear level Chromosomal structural changes influencing large-
scale genome evolution include deletions, inversions, duplications, and centromere (CEN)-mediated translocations. Interspecies horizontal 
gene transfer (HGT) and the expansion and contraction of subtelomeric regions also contribute to fungal genome evolution. Karyotypic 
variations including whole-genome duplication, aneuploidy, and the acquisition of accessory chromosomes represent additional instances of 
large-scale genomic evolution. Orange circles represent centromeres in both the chromosome and nuclear depictions.
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single-nucleotide polymorphism changes in mismatch repair and  
DNA polymerase mutants. Within the past year, two studies have 
reported instances of hypermutation via mobilization of trans-
posons under stress conditions, illustrating that host infection 
can trigger transposition in the human pathogen Cryptococcus 
deneoformans and in the plant pathogen Zymoseptoria 
tritici51,52. Another study has also characterized the evolution-
ary dynamics and genomic impacts of similar bursts of transpo-
son expansion within the genomes of Microbotryum species53. 
These instances of hypermutation provide important examples 
of how elevated genome-wide mutation rates influence rapid 
genomic microevolution, pathogenesis, and the ability of fungi 
to rapidly adapt to novel environments.

Despite the fitness benefits of hypermutation in stressful or 
changing conditions, spontaneous mutations can be largely del-
eterious in normal conditions, and thus hypermutation might be 
beneficial only from a short-term evolutionary perspective but  
disadvantageous in the long term54. All organisms, including 
fungi, must therefore strike a balance between high mutation rates 
that provide variation for natural selection to act upon and high  
genomic integrity that allows for long-term survival. Research 
has shown that, in contrast to hypermutation, some fungal spe-
cies, particularly those with relatively long lifespans, can have  
ultra-low mutation rates, such as those observed in the fairy-ring 
mushroom species Marasmius oreades and the pathogenic for-
est fungus Armillaria gallica55,56. On the other hand, some fungi 
have been found to persist in the long term with high mutation  
rates and compromised genome integrity. For example, several 
novel Hanseniaspora species have recently been identified and 
contributed to the characterization of two Hanseniaspora line-
ages with different rates of evolution: a fast-evolving lineage and 
a slow-evolving lineage57. While species in both lineages have  
lost a number of genes involved in regulating the cell cycle and 
maintaining genomic integrity, the fast-evolving lineage has  
undergone rapid genomic changes and represents a group of 
hypermutator species. These species provide a perspective on the  
long-term evolutionary consequences of sustained elevated muta-
tion rates and could provide answers to critical questions in  
the field57.

Fast-evolving regions of the genome
Genomic evolution can occur at different rates that are depend-
ent on genomic context. Rapid evolution within a genome is 
driven by the adaptive potential of alleles and relaxed selective  
constraints as well as the propensity of regions to undergo 
change. Fungal genomic regions that typically experience faster 
evolution than other loci include introns, intergenic sequence,  
centromeres, and subtelomeric regions58–65.

The evolution of introns throughout fungal lineages is dictated 
by retention of ancestral introns, frequent intron loss events, and 
relatively few instances of intron gain58,59,66,67. Due to the large 
variation in intron content across fungal genomes, introns are con-
sidered to be one of the more rapidly evolving genomic elements  
in fungi58,59,66. Spliceosomal twin introns or “stwintrons” were 
recently identified in several orders of ascomycete species68,69.  
These nested introns display intriguing trends of gain and loss 

across fungi and either are removed by complex, multi-step splic-
ing events or trigger alternative splicing and exon skipping. The 
evolutionary dynamics of these newly identified stwintrons may  
provide insight into the evolution of intron gain and loss,  
thus further informing the known evolutionary trajectory of fungal 
genomes.

The breadth and depth of RNA sequencing in fungi has revealed 
that long non-coding RNAs (lncRNAs) are abundant and 
diverse within fungal genomes, are transcribed from inter-
genic and genic regions alike, and carry out a number of distinct  
roles60,61,70. Only recently have fungal lncRNAs been identi-
fied and characterized in fungi other than the model yeasts 
S. cerevisiae and Schizosaccharomyces pombe. These newly char-
acterized fungal lncRNA transcriptomes show little conservation 
between species as well as little consensus in post-transcriptional  
modifications71–73. Across fungi, lncRNAs have been shown to 
regulate gene expression in cis and in trans, influencing mating 
behaviors, sexual development, morphogenesis, cellular metabo-
lism, virulence, drug resistance, and genomic stability61,70,74.  
One class of lncRNAs are antisense lncRNAs (ASlncRNAs), 
which overlap with the open-reading frames of genes in an 
antisense orientation and regulate expression of their cognate 
transcripts. It has been shown that loss of RNAi in fungi is cor-
related with expansion and increased abundance of ASlncRNAs, 
suggesting that these elements play an important role in 
modulating gene expression and therefore in the stability and 
evolution of fungal genomes75–77. Additional deep RNA sequenc-
ing among numerous and diverse fungi complemented with 
molecular genetic analyses will provide further insight into the 
diversity of lncRNAs and their structure, function, evolution, 
and impact on overall genomic evolution.

Despite having a conserved role in proper chromosome segrega-
tion, centromeres are one of the most rapidly evolving sequences 
among eukaryotes62. Previous studies focused on centromere iden-
tification in relatively few ascomycete fungal species, including  
S. cerevisiae, S. pombe, and Candida albicans78,79. These studies 
revealed that centromere length in fungi could range from a few 
hundred nucleotides to 300 kb in length and varied significantly 
among related species. These studies also established that centro-
meres are defined by the binding of a conserved histone H3 variant,  
CENP-A, along with many other conserved kinetochore pro-
teins. Over the past several years, whole-genome sequencing with  
long-read Nanopore and PacBio sequencing platforms has led 
to the identification of centromeres in many other fungi and a  
better understanding of centromere structure and evolution. One 
such study revealed that centromeres across the Schizosaccharomy-
ces group harbor a similar architecture but vary in their sequence, 
suggesting sequence is not critical for centromere function25.  
Centromeres in the plant-pathogenic ascomycete Magnaporthe 
oryzae were found to consist of long AT-rich sequences, a  
feature conserved in related species26.

Characterization of centromeres in the Cryptococcus pathogenic 
species complex revealed that centromeres in Cryptococcus  
are long, rich with retrotransposons, and syntenic among differ-
ent species80,81. However, centromere lengths vary significantly 

Page 5 of 14

F1000Research 2020, 9(Faculty Rev):776 Last updated: 27 JUL 2020



among three pathogenic species in this complex due to the trun-
cation of retroelements as a result of RNAi loss in one of the  
species81. A more recent study in another basidiomycete group 
of Malassezia species identified short centromeres (less than 
1 kb), which were highly AT-rich and devoid of any repeat con-
tent82. Following the pattern in Schizosaccharomyces and the 
Cryptococcus species complex, centromeres in Malassezia are 
also  syntenic between closely related species.

The nature of centromeres in the Mucoromycota phyla of 
fungi have also been characterized using Mucor circinelloides, 
an emerging model organism83. It is important to note that 
M. circinelloides lacks CENP-A but harbors other conserved 
kinetochore proteins. Identification of centromeres in this spe-
cies revealed a mosaic nature of centromeres where kinetochore 
binding was restricted to a small region, flanked by multiple 
copies of  a retrotransposon. Each of these studies emphasizes 
the fact that fungal centromeres are highly diverse with few con-
served features and are rapidly evolving, even among closely 
related species. Interestingly, all centromeres identified thus far 
are in ORF-free regions that are mostly devoid of transcription, 
and many centromeres are AT-rich in nature. Combining these 
features together might help in predicting centromeres in fun-
gal species where experimental tools have not been applied or 
are not yet available.

Other genomic regions in which rapid evolution has been observed 
are the subtelomeres and the repeat-rich regions of plant patho-
gens that harbor effector genes mediating virulence. Subtelom-
eric loci are prone to rapid expansion and contraction and often  
encode virulence-associated genes as well as biosynthetic gene 
clusters for many secondary metabolites. The impact of rapid 
subtelomeric evolution on virulence has been highlighted in 
the human fungal pathogens Candida auris and Aspergillus  
fumigatus as well as in the plant fungal pathogen Pyrenophora 
teres f. teres63–65. Interestingly, in the emerging fungal pathogen 
C. auris, a particular genetic lineage that has not been involved 
in outbreaks exhibits high mutation rates and genomic instability, 
especially in subtelomeric regions. This subtelomeric variation is 
hypothesized to be attributable to a loss-of-function mutation in  
DCC1, a gene involved in regulating telomere length, genome 
instability, and the cohesion of sister chromatids in yeast64,84.  
Similar to subtelomeric regions, the regions harboring effec-
tor genes, also known as effector compartments, in fungal plant 
pathogens are also prone to frequent expansion and contraction  
events10,11. These regions are enriched in transposable elements 
and are regularly located near chromosome rearrangement 
breakpoints, which contributes to their largely lineage-specific  
identity11. Effector compartments make up the rapidly evolving 
portion of the “two-speed” genomes of many plant fungal patho-
gens. Rapid evolution in these loci is attributed to the expansion,  
contraction, and recombination mediated by repetitive transposons 
within the region as well as repeat-induced mutation (RIP) and  
epigenetic silencing10.

Allelic transmission
The transmission of alleles between species can have a pro-
found impact on genomic evolution. Instances of inter- and intra- 
kingdom HGT, genetic introgression following hybridization, 

and meiotic drive elements have all been shown to be strong forces 
of genomic evolution and have thus received increased atten-
tion over the last decade. Robust whole-genome sequencing of  
isolates within a species as well as the increasing diversity of 
fungal species sequenced have allowed for the identification  
of these allelic transmission events and mechanisms and also  
shed light on their origins12–14,85–91.

HGT refers to the lateral exchange and integration of genetic 
material between two species, unlike the vertical inheritance pat-
tern between parent and offspring92. Previously, prokaryotic spe-
cies were thought to experience frequent HGT events, while 
relatively few HGT events were thought to have occurred in 
fungi. However, advances in whole-genome sequencing have, 
by increasing efficiency and reducing costs, expanded the number  
of fungal genome sequences available and allowed the identi-
fication of numerous HGT events across the fungal kingdom; 
many instances of HGT events in fungi have been extensively 
characterized and reviewed16–19. HGT events appear to be more  
frequent in organisms that have undergone significant niche adap-
tation such as commensal organisms like the saprophytic skin 
commensal Malassezia species, which have acquired a bacte-
rial flavohemoglobin as well as many other bacterially derived  
genes93. Similarly, obligate intracellular pathogens belong-
ing to the Microsporidia and Cryptomycota phyla have expe-
rienced significant HGT, in which up to 2% of genes are esti-
mated to be derived from HGT events85. This work has helped to  
markedly clarify the number of HGT events in Microsporidia 
because only a small number of HGT events involving bacteria- 
and animal-derived genes had been previously documented, and 
these events were thought to be rare16,94–96. In addition to the rela-
tively common HGT of bacterially derived genes in fungi, an excit-
ing new study has identified instances of trans-kingdom genetic  
transfer between an arbuscular mycorrhizal fungal species and 
its symbiotic plant partner97. Another case of trans-kingdom  
HGT was shown in basal fungi (Chytrids) where a key cell-cycle 
regulator protein evolved from a viral protein86. This study pro-
vides key insights into the evolution of cell-cycle regulating 
machinery that evolved differently in fungi and animals. Further  
characterization of genomic diversity within and among spe-
cies across all domains of life will help to identify additional  
instances of HGT.

Introgression, also known as introgressive hybridization, refers 
to the integration of genetic alleles from one genetic lineage 
into another following hybridization. Population-based stud-
ies in fungi have revealed the high frequency with which intro-
gression can occur. Two recent examples include 1) the loss and  
regain of fermentation capacity by Kluyveromyces lactis, which 
was demonstrated to be a result of introgression of a subtelom-
eric locus from Kluyveromyces marxianus, and 2) finding that 
a lichen-forming Rhizoplaca species likely originated from an 
introgressive hybridization event12,13. In another intriguing study,  
introgression following hybridization was shown to be the pri-
mary force of evolution in the fungal pathogen responsible for  
Dutch elm disease, driving changes in host–pathogen inter-
actions via introgression of virulence-associated genes and  
changes in sexual reproduction via introgression of mating-type 
loci14.
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Population genomics approaches have also revealed the preva-
lence of meiotic drive elements throughout the fungal kingdom. 
Meiotic drive elements are genetic elements that cause non- 
Mendelian patterns of inheritance by either biasing their inherit-
ance in sexual progeny or by killing progeny that do not inherit 
the element, also known as killer meiotic drive elements. Fun-
gal meiotic drive elements were first identified in Neurospora  
many decades ago98. Subsequent studies have further character-
ized the meiotic drive elements in Neurospora, known as Spore 
Killers, and have revealed other Spore Killer meiotic drive 
elements in Podospora87,88,99–102. Over the past several years,  
elegant and thorough research in Schizosaccharomyces species 
has identified several novel meiotic drive elements15,89,90,103,104.  
Studies have also shown that in addition to the genomic loci that 
can act as meiotic drive elements, supernumerary chromosomes 
in the plant pathogen Z. tritici show evidence of meiotic drive91.  
The ability of genetic elements to bias their inheritance without 
conferring any adaptive benefits or potentially reducing fitness  
can greatly influence the genomic landscape and evolutionary  
trajectory of a species.

Large-scale evolution of fungal genomes
Instances of large-scale genomic evolution include chromo-
somal structural rearrangements and numerical increases or 
decreases in chromosome copy number. Chromosomal structural  
changes are rearrangements of chromosome segments that 
result from recombination or DNA damage repair. Numerical 
alterations include variation in the chromosome number due to  
aneuploidy or polyploidy as well as changes due to accessory  
chromosomes. The past several years have seen a significant 
increase in studies characterizing such events.

Chromosome structural variations
Structural variations or chromosome rearrangements occur 
when chromosome segments are shuffled across the genome. 
These structural variations include deletions, inversions, dupli-
cations, and translocations. Chromosome rearrangements are  
known to occur in all eukaryotic genomes105–107. These rearrange-
ments can occur within a single chromosome (intra-chromosomal) 
as well as across different chromosomes (inter-chromosomal). 
Many different mechanisms are known to mediate rearrangements, 
including meiotic recombination, double-stranded break (DSB) 
repair during mitosis, and transposable elements108,109.

The prevalence and mechanisms of chromosome rearrangements 
in fungi have been known for a long time, but recent advances in 
long-read sequencing have highlighted the importance of these 
events in multiple cellular processes. Several studies compar-
ing the genome evolution of closely related species revealed that  
chromosome translocations can drive the evolution of second-
ary metabolite-producing gene clusters, and many of these trans-
locations coincide with transposable elements110–112. Some of 
these rearrangements are also correlated with gene loss, the gen-
eration of genetic diversity, and changes in pathogenicity113. A  
study in the basal Taphrina genus showed that chromosome 
rearrangements can drive the evolution of effector superfamily 
genes and host adaptation as well as speciation114. Another  
study comparing the genomes of 71 ascomycete species sug-
gests that the rate of chromosome rearrangements accelerated the 

process of speciation in these species115. A comparison of two 
different subphyla showed that the number of rearrangements is  
directly correlated with species richness in each respective sub-
phylum. The same study also showed that whole-genome dupli-
cation and pathogenicity might elevate gene order divergence and  
genome rearrangements115.

Using a direct experimental approach, we recently showed that 
centromere-mediated chromosome rearrangements, induced by 
targeting DSBs at centromeric retrotransposons with CRISPR, 
can alone drive reproductive isolation and thus play a role in  
speciation116. While centromere-mediated translocation has been 
proposed to occur based on genome comparisons, we showed its 
direct impact on the sexual cycle. Such centromere-facilitated  
chromosome rearrangements have been observed in Malassezia 
and Candida and are proposed to play a role in both chromosome 
and karyotypic evolution in these species82,117,118. Centromere-
mediated chromosomal translocation has also been proposed as 
a driving force during the evolution of the mating-type locus in  
Cryptococcus from an ancestral outcrossing tetrapolar system  
to a derived bipolar inbreeding state80.

Combined, these studies show that structural variations play 
a critical role in the evolution of a diverse array of functions 
in fungal species, including metabolism, pathogenicity, host  
adaptation, and speciation. Their role in the evolution of secondary 
metabolite-producing clusters has been observed in multiple fun-
gal species complexes, suggesting that this is a common mecha-
nism via which metabolic potential can be altered or expanded.  
Additionally, the role of chromosome translocation in specia-
tion has received significant support as a result of these studies.  
Future studies will reveal the unexplored significance of these 
chromosome structural changes in fungi. One key aspect to  
focus on will be the impact of these changes on pathogenic-
ity and how they contribute towards the evolution of virulence in  
fungal pathogens.

Polyploidy
Whole-genome duplication or polyploidy refers to scenarios 
in which a cell or organism possesses three or more complete 
sets of chromosomes compared to the standard haploid karyo-
type. Polyploidy is found across the fungal kingdom, and one 
route to its generation involves whole-genome duplication23,24.  
Indeed, analysis of the whole-genome sequence of Saccharomyces 
revealed that one such whole-genome duplication event was 
responsible for the evolution of this genus and likely involved 
an interspecies hybridization event30,119. Despite the presence 
of polyploidy across the fungal kingdom, studies analyzing the 
polyploidy of fungal genomes have started to re-emerge23. Many  
clinically relevant fungi show variation in ploidy, mainly in 
response to stressful or new environmental conditions. Some fungi 
can also exist in multiple different ploidy states and exhibit ploidy  
transitions from one state to another. Studies in S. cerevisiae, as  
well as C. albicans, found that ploidy variation can drive rapid  
adaptation in response to environmental conditions and vice 
versa120,121.

A well-studied process of ploidy transition is the parasexual 
cycle in C. albicans122. During this process, tetraploid C. albicans  
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cells undergo ploidy reduction to generate more stable diploid 
cells, which can be selectively advantageous123. This process  
is accompanied by concerted chromosome loss and generates  
aneuploidy124. Recent studies have provided intriguing insights 
into this process. Tetraploid C. albicans cells were found to be 
metabolically hyperactive, generating reactive oxygen species 
and DNA DSBs, resulting in increased genomic instability125.  
Another study found that the genome reduction in this para-
sexual cycle involves recombination, similar to meiosis observed 
in other organisms, and thus has been termed para-meiosis126. A  
closely related species, Candida tropicalis, was found to exhibit 
a combination of same- and opposite-sex mating to generate  
polyploidy, which in turn increases genetic diversity127.

Another human fungal pathogen, C. neoformans, has been shown 
to exist in haploid or hybrid diploid states. C. neoformans can 
also exist in a polyploid state, known as titan cells, produced in 
response to host conditions128,129. These titan cells produce haploid 
and aneuploid progeny and thereby enhance stress adaptation130.  
A concerted effort from three independent studies established that 
this phenotype can be induced by multiple environmental as well 
as genetic signals131–133. Similar to C. albicans, the ploidy reduc-
tion in these titan cells is mediated by the activation of meiotic  
genes134. While these studies explore the reduction of a poly-
ploid genome to a more stable state, the exact role of polyploidy 
and the factors responsible for inducing polyploidy are not well  
understood. The presence of different levels of ploidy in 
S. cerevisiae natural isolates hints toward its role in adaptation  
to environmental conditions, but such natural resources have  
not been explored in other fungal species yet.

Aneuploidy
Aneuploidy refers to the stage when a cell deviates from its bal-
anced genome by gaining or losing chromosomes. Aneuploidy 
has been described in a large number of fungi but mainly with 
respect to stress conditions. While aneuploidy is commonly  
thought of as a deleterious state, and in humans is invariably associ-
ated with disease states or is lethal, many studies have found natu-
rally occurring aneuploid isolates in different fungal species20,24.  
It has been proposed that aneuploidy may represent an intermedi-
ate, transient state that can promote evolutionary adaptation135,136.  
Experimental evolution of multiple S. cerevisiae strains showed 
that aneuploidy frequently occurs during the course of evolu-
tion137. Similar results were observed when 47 non-laboratory 
isolates of S. cerevisiae were analyzed138. The gene SSD1  
and its contributions to mitochondrial physiology were identi-
fied as the genetic basis of aneuploidy tolerance in these natural  
isolates139. A genome-wide genetic deletion screen in S. cerevisiae 
found that genes involved in a ubiquitin-mediated proteasomal  
degradation pathway also confer tolerance to aneuploidy140,141.

Aneuploidy has been previously known to play a crucial  
role in drug resistance in pathogenic fungi like C. albicans and 
C. neoformans142–144. In both cases, drug resistance involved 
amplification of fluconazole target genes like ERG11 and genes  
responsible for the expression of drug efflux pumps, either 
by isochromosome formation in C. albicans or aneuploidy in 
C. neoformans. Newer studies have shown that aneuploidy can 

play roles in osmotic stress, flocculation, and ethanol survival as 
well as responses to starvation conditions in S. cerevisiae145–147. 
We have also shown that aneuploidy can be essential to overcome 
reproductive barriers between two strains harboring chromosomal  
translocations116. Overall, aneuploidy seems to be a conserved 
fungal response to stress or harsh environmental conditions. How-
ever, the advances discussed here reveal a role for aneuploidy  
in adaptation to growth conditions as well as pathogenic-
ity in fungal species. With their well-characterized role in drug  
resistance, mechanisms leading to aneuploidy also present  
potent targets for drug development.

B chromosomes
Accessory, supernumerary, or B chromosomes are all different 
names for extra chromosomes that are present in a cell beyond 
the reference karyotype. These extra chromosomes segregate  
in a non-Mendelian fashion, are dispensable, and do not undergo 
recombination or pairing with the main, essential (also known 
as A) chromosomes21,22. Accessory chromosomes are well  
studied in animals and plants but have also been observed in sev-
eral plant fungal pathogens. Earlier reports suggested that these 
chromosomes are required for virulence and can be horizon-
tally transmitted148,149. More recent studies have focused on the 
characterization of these chromosomes at the molecular level in  
Z. tritici and M. oryzae. In Z. tritici, B chromosomes were found 
to be epigenetically indistinguishable from the core set of chro-
mosomes, whereas the B chromosome (also known as a mini- 
chromosome) in M. oryzae was found to be more enriched with 
transposons relative to the core chromosomes150,151. B chromosomes  
in both of these species were also found to harbor active  
centromeres26,150. However, the B chromosomes in Z. tritici are  
unstable and frequently lost during vegetative growth152.

Interestingly, the stability of B chromosomes also depends on 
the host genotype and thus plays a vital role in host–pathogen 
interactions153. The mini-chromosome in M. oryzae was pro-
posed to be involved in the shuffling of AVR effector genes  
between the mini-chromosome and core chromosomes, thus aid-
ing in host adaptation151. While the exact function of genes present 
on these accessory chromosomes is still unknown, they sig-
nificantly influence the pathogenicity of the fungi in which they  
are present. For this purpose, an in-depth characterization of 
accessory chromosomes is essential and should include genetic  
as well as epigenetic approaches. The identification of B chro-
mosomes in more species will advance the field and may 
reveal new insights into their roles in pathogenesis, adaptation,  
evolution, and possibly speciation.

Role of technological advances in understanding 
genomic evolution
A multitude of advances in high-throughput sequencing, also 
known as next-generation sequencing, and molecular biology  
methods have helped to reveal and characterize the forces driv-
ing evolution in fungal genomes. Efficiency and improved 
affordability of high-throughput whole-genome sequencing on 
Illumina sequencing platforms have promoted some of the larg-
est advances in our understanding of fungal genome evolution 
by enabling the sequencing of numerous strains within a single  
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species. The whole-genome data of various isolates within a spe-
cies provides a pan-genome resource that spans the population  
variation within a species and also provides an opportunity to 
assess genomic microevolution and potentially macroevolution 
from a population genetics and genomics approach. Pan-genome 
sequencing has been especially helpful for identifying rates and  
dynamics of intraspecific genomic exchange, including the evo-
lution and propagation of meiotic drive elements, as well as 
identifying inheritance of interspecific genetic material, includ-
ing HGT events and instances of hybridization leading to  
introgression.

The technological advancements of the long-read PacBio and 
Oxford Nanopore Technologies sequencing platforms have 
been critical in both further understanding macroevolution in 
fungi and significantly advancing the identification and char-
acterization of chromosome structural variations. Using these  
technologies, many fungal genomes were sequenced and com-
pared to develop synteny plots, and these synteny plots have 
allowed the detection of chromosome translocations. Some of 
these translocations were found to result in loss or gain of effector 
genes and also to have contributed to the evolution of secondary  
metabolite genes. A striking example of the advantages long-
read sequencing technologies can have over short-read sequenc-
ing techniques was recently demonstrated in S. pombe, in which 
PacBio and Nanopore sequencing platforms were able to accu-
rately predict 16-fold more genomic structural variations than  
short-read technologies27,28. Additionally, long sequencing reads 
often span repetitive regions and transposons, allowing suffi-
cient coverage of unique flanking regions, which is essential for  
assembling repeat-rich regions of genomes. This particular fea-
ture has allowed the identification of centromeres in many fungal  
species, especially in cases where centromeres harbor repeti-
tive elements or transposons. Another significant feature of long-
read sequencing methods is the ability to capture telomere repeat 
sequences, thus allowing telomere-to-telomere genome assem-
bly. The identification of telomere repeat sequences at the ends  
of mini-chromosomes or B chromosomes provided support for 
their existence and helped differentiate these supernumerary ele-
ments from core chromosomes. Similarly, it was also helpful in  
the determination of chromosome number in several species. 
Another type of technique that has helped to achieve enhanced 
fungal genome assemblies is chromosome conformation cap-
ture, which includes methods such as Hi-C154,155. By defining the  
interactions between DNA sequences, Hi-C has aided in resolv-
ing genome assembly conflicts, thus improving assemblies156,157.  
It is important to note that these long-read sequencing tech-
niques are highly error-prone and thus need to be corrected with  
less error-prone short-read Illumina sequencing prior to gene  
prediction or gene calling for annotation.

Conclusions and future perspectives
Research over the last decade has provided unprecedented insight 
into the evolution of fungal genomes from both micro- and  
macro-evolutionary perspectives. The ease, efficiency, and afford-
ability of sequencing combined with great community efforts 
have promoted research and given rise to findings that illuminate  
how small-scale genomic changes such as hypermutation, 

mobilization of various genetic elements, allelic transmission, and 
rapidly evolving regions can impact the evolution of fungi. Due  
to advances in long-range whole-genome sequencing technologies 
and the generation of telomere-to-telomere assemblies, research-
ers can now characterize the evolution of ploidy and chromo-
some structure, particularly in highly repetitive regions, with  
high accuracy and confidence. Advances in understanding fun-
gal genome evolution at the nucleotide, gene, chromosomal, and 
nuclear levels are illustrated in Figure 1. Long-read sequenc-
ing platforms will continue to be important technologies for 
further characterization of highly repetitive regions, such as  
centromeres, transposon-rich regions, subtelomeric loci, and 
telomeric repeats. Studies employing these techniques in a vast  
array of species will shed light on evolutionarily missing 
links while also providing a better understanding of already  
existing processes.

Methods and techniques that attempt to further improve long-
range sequencing and its accuracy as well as resolve artifacts  
and biases generated through library preparation, sequencing itself, 
and subsequent analyses will also improve our understanding  
of fungal genome evolution.

Improvements are still especially needed in RNA sequencing 
and sequencing library preparation. Because of the high abun-
dance of some RNA species, like ribosomal and translational 
RNAs, it remains difficult to detect rare RNA species, such as  
non-coding RNAs and alternatively spliced transcripts. Devel-
opments on this front will aid in efforts to further identify and 
characterize lncRNA transcriptomes in fungi and can help to  
determine how lncRNAs vary at the pan-genome level and  
influence genomic evolution.

Continued progress with sequencing and other genomic tech-
nologies will provide more insight into the driving forces and 
consequences of genomic evolution. Additional sampling and 
sequencing of novel fungi and less well-characterized species  
will provide further insight into genomic diversity in the fungal 
kingdom. Owing to the variety of fungal niches and lifestyles, 
sufficiently culturing fungi for sequencing efforts can be tedi-
ous and often impossible based on current knowledge and tech-
niques. Therefore, advances in single-cell sequencing methods  
could be highly advantageous to characterize the genomes of 
unculturable species or species that are difficult to isolate. This 
will also help the sequencing and study of fungi beyond Asco-
mycota and Basidiomycota, which have been the focus of the  
majority of research until now. Studies involving fungi from  
Zygomycota and Chytridiomycota are only beginning and 
are already providing exciting insights into the diversity and  
uniqueness of these fungal phyla.

In addition to the analyses conducted on the nuclear genomes  
presented in many of the studies discussed here, it will be inter-
esting to conduct population genomics studies on mitochondrial 
genomes in parallel to characterize the diversity, inheritance  
dynamics, and evolution of these important organelles. Research 
focused on identifying and characterizing fungal-associated  
viruses, or mycoviruses, is also garnering increased attention, 
and developments on this subject will be interesting, especially 
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with regard to their propagation dynamics and impacts on host 
genome evolution. These potential future research avenues present  
great and exciting opportunities to further advance the field  
of fungal genetics.
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