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Abstract: The aim of this paper is to provide an accurate overview regarding the current recom-
mended approach for antihypertensive treatment. The importance of DNA sequencing in under-
standing the complex implication of genetics in hypertension could represent an important step in
understanding antihypertensive treatment as well as in developing new medical strategies. Despite
a pool of data from studies regarding cardiovascular risk factors emphasizing a worse prognosis
for female patients rather than male patients, there are also results indicating that women are more
likely to be predisposed to the use of antihypertensive medication and less likely to develop uncon-
trolled hypertension. Moreover, lower systolic blood pressure values are associated with increased
cardiovascular risk in women compared to men. The prevalence, awareness and, most importantly,
treatment of hypertension is variable in male and female patients, since the mechanisms responsible
for this pathology may be different and closely related to gender factors such as the renin–angiotensin
system, sympathetic nervous activity, endothelin-1, sex hormones, aldosterone, and the immune
system. Thus, gender-related antihypertensive treatment individualization may be a valuable tool in
improving female patients’ prognosis.

Keywords: arterial hypertension; DNA sequencing; gender differentiation of response to antihyper-
tensive treatment; individual therapeutic approach
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1. Introduction

Despite constant progress in understanding its pathology and associated therapeutic
actions by targeting lifestyle changes and novel drug treatment strategies, arterial hyperten-
sion currently represents one of the major causes of cardiovascular morbidity and mortality
in Europe, with severe potential complications [1–4].

Significant distinct individual variations of responses to antihypertensive therapy
suggest that genetic analysis may provide new important data regarding an accurate
definition of prognosis and, most significantly, an adequate choice of treatment, therefore
preventing potential complications (Figure 1). Data regarding the multifactorial genetic
inheritance of essential arterial hypertension have long been considered; however, given
the current rise of genetics and genomics, DNA sequencing could represent a step toward
specific genetic variation-based therapy in hypertensive patients with uncontrolled blood
pressure, despite standard antihypertensive treatment [5].
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ular hypertrophy; CHD—coronary heart disease; HF—heart failure.

Seldom isolated, hypertension is often related to a cluster of cardiovascular risk factors.
Nevertheless, the prevalence, awareness, and treatment of hypertension is variable in male
and female patients. One explanation is that the mechanisms accountable for it may
be different and closely related to a gender factor such as the renin–angiotensin system,
sympathetic nervous activity, endothelin-1, sex hormones and the immune system. Thus,
gender-related antihypertensive treatment individualization may be a valuable tool in
improving female patients’ prognosis.

Therefore, in order to achieve better management and adequate control of specific
antihypertensive patient categories, the purpose of this overview is to emphasize the
importance of the abovementioned issues as they relate to antihypertensive treatment.

2. The Importance of Genetics in Arterial Hypertension

Arterial hypertension currently represents the main risk factor responsible for global
mortality and burden of disease, with a strong correlation between high blood pressure
and cardiovascular disease [6,7].

Thus, a better understanding of the genetic basis of a polygenic disease such as
hypertension might bring antihypertensive treatment one step closer to reaching the rec-
ommended targeted values of therapy. Likewise, a genetic profile could be helpful in
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performing individual risk and prognosis stratifications which are based on the identifica-
tion of specific genetic variants.

Since an adequate definition of expressed sequences in the human genome represents
a useful instrument for defining gene families, proteins and primary patterns of expression
in tissues and in specific diseases, a targeted genetic analysis for hypertensive patients
would allow for the identification of genes responsible for the disease and an accurate
characterization of genomic regions that are linked to arterial hypertension. The study of
genetic variants has evolved in the direction of pharmacogenomics: genomic variation
inducing individual responses to therapy. This concept can be useful in redefining antihy-
pertensive pharmacological therapeutic actions, as well as for understanding the reason
why some individuals respond to standard treatment and others do not.

Certain factors seem to be connected to the genetic individual variability of a re-
sponse to antihypertensive treatment: different metabolic profiles and genetic variations
of metabolizing enzymes, the genetic variability of sodium sensitivity and proteins from
renal tubules (responsible for the regulation of ion transport or variability of response to
diuretics) (Table 1).

Table 1. Factors influencing genetic variability of response to antihypertensive therapy.

Factors Influencing Genetic Variability of Response to Antihypertensive Therapy

1 Genetic variations of metabolizing enzymes

2 Genetic variability of sodium sensitivity

3 Genetic variability of proteins regulating renal tubules ion transport

Concerning etiology, most antihypertensive patients lack an obvious cause and are
diagnosed with essential arterial hypertension, a heterogeneous disease with important
genetic implications. From this point of view, the Genome Wide Association Study (GWAS)
has been an important tool for identifying the genetic implications of essential arterial
hypertension [8]. A GWAS provided the opportunity to type, at a large scale, a multitude
of Single Nucleotide Polymorphisms (SNP) and, in the setting of large consortia, many
studies were published that allowed for the identification of over 100 SNPs that are linked
to high levels of blood pressure (see Table 2) [9–14].

Table 2. Polygenic form of essential arterial hypertension, data from [14].

BP Implication Genes Involved References

Systolic BP ATP2B1, CYP17A1,
PLEKHA7, SH2B3 Levy et al., 2009 [9]

Diastolic BP
ATP2B1, CACNB2,
CSK-ULK3, SH2B3,
TBX3-TBX5, ULK4

Levy et al., 2009 [9]

Systolic or diastolic BP
CYP17A1, CYP1A2, FGF5,
SH2B3, MTHFR, c10orf107,

PLCD3
Newton-Cheh et al., 2009 [15]

Pulse pressure CHIC2/PDGFRA, PIK3CG,
NOV, ADAMTS8 Wain et al., 2011 [16]

Mean arterial pressure CHIC2/PDGFRA, PIK3CG,
NOV, ADAMTS8 Wain et al., 2011 [16]

BP-blood pressure.

At first, identifying the cause of essential hypertension remained a difficult task. Us-
ing the classic GWAS approach and the “common disease–common variant” hypothesis,
genetic variations that could only be responsible for about 3% of essential arterial hyper-
tension genetic causes were highlighted [8]. Thus, the idea that variants too rare to be
identified by the GWAS, as well as those which could explain missing information, emerged.
The use of new techniques such as systemic genetic approaches, related statistical methods,
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analyzing intermediate phenotype, transcript, protein and metabolite levels represented an
important step in identifying rare genetic causes of essential hypertension. [17] In this field,
Exome Chips Based studies and Next generation sequencing are useful tools in underlying
rare variants, genes and pathways responsible for inducing essential hypertension. These
studies were conducted after the 1000 Genomes Project became available, and they allowed
for the development of array-based genotyping platforms (such as Illumina, San Diego,
CA, USA) that provided the opportunity to identify a much greater number of nucleotide
variabilities in comparison to GWAS [18–28].

3. Gender Differentiation of Antihypertensive Treatment

One important inquiry regarding current antihypertensive treatment is whether a
gender-related differentiation of this therapeutic approach should be considered in daily
medical practice. This judgement is based on several facts. The first is that, despite current
gender-neutral recommendations, it is a well-known fact that cardiovascular risks are
different in female patients than they are in male patients, with data reporting a higher
prevalence for worse risk factor profiles for female patients [29–32]. Among the factors that
may influence this trend are advanced onset age of coronary heart disease in women and
delayed medical diagnosis due to a lack of awareness from both health care professionals
and female patients concerning coronary heart disease in women.

Data from the EUROASPIRE V European survey established that, related to cardiovas-
cular risk factors control, women were less likely to perform an adequate level of physical
activity and to achieve targeted values for glycated hemoglobin (HbA1c) and low-density
lipoprotein cholesterol (LDL-C). Additionally, female patients were more likely to be char-
acterized by obesity, non-smoking and with a medical history of diabetes [30–32]. These
data are consistent with findings from other studies: the VIRGO (Variation in Recovery:
Role of Gender on Outcomes of Young AMI Patients) study included more than 3,500 acute
coronary syndrome patients and revealed a higher prevalence for diabetes and obesity in
women, and the SWEDEHEART (Swedish Web System for Enhancement and Develop-
ment of Evidence-Based Care in the Heart Disease Evaluated According to Recommended
Therapies) registry evaluated 51,620 coronary patients who reported gender differences
regarding blood pressure control and LDL-C targets, with a worsening prognosis for
women [33,34]. Similar results were demonstrated by the REACH Registry after analyzing
patients with documented arterial disease; analysis revealed that women were more likely
to be obese and have uncontrolled cholesterol levels [35].

Beyond cardiovascular risk profiles, a gender-related individualization of antihyper-
tensive therapeutic approaches is equally significant. Vynckier et al. reported that, related
to antihypertensive treatment, no gender differences were observed for treated hyperten-
sion (46.3% vs. 46.6%; p = 0.43). Additionally, their results established that women were
less likely to have uncontrolled hypertension (30.0% vs. 23.5%; p = 0.004), even though
they were also more likely to use antihypertensive medication [30].

All these data underline the fact that the prevalence, awareness and, most importantly,
the treatment of hypertension is variable among male and female patients.

One other possible clarification is represented by the fact that the mechanisms re-
sponsible for this pathology may be diverse and closely related to a gender factor, such as
the renin–angiotensin system, sympathetic nervous activity, endothelin-1, sex hormones,
and the immune system. Additionally, particular attention should be paid to the key role
of aldosterone in influencing cardiovascular risk and immune system activation, with
data emphasizing that the efficacy of mineralocorticoid receptor antagonists depends on
aldosterone values, indicating a genetic difference in sensitivity to aldosterone [36]. In
addition, Te Riet et al. demonstrate that high aldosterone levels in combination with high
salt intake may contribute to increased endothelial dysfunction and lead to a rise blood
pressure, independent of the renal effects of aldosterone [37].

The prevalence of hypertension is higher in men compared to women, at least in
young patients under the age of 50. Beyond this age, the prevalence of hypertension is
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greater among women, with menopause and hormonal imbalances, as well as the activation
of the renin–angiotensin system (RAS) and sympathetic and immune systems, contributing
to increased blood pressure values [38–41] (Figure 2).
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Figure 2. The main features and key factors for personalizing treatment in hypertension
with a genetic- and gender-based substrate. HTN—hypertension; RAAS—renin–angiotensin–
aldosterone system.

Last but not least, a recent study by Hongwei et al. indicates that related to specific
blood pressure values, lower values of systolic blood pressure are associated with increased
cardiovascular risk in women compared to men. They add that the risk of acute coronary
syndromes for women with values of systolic blood pressure (SBP) between 110 and
119 mm Hg was comparable to the myocardial infarction risk for men with SBP ≥160 mm
Hg [42].

4. The Past, the Present, and the Future Analysis

Recent discoveries in “classical” pathogenic pathways as well as the identification of
new pathways are as follows: [43]

• Confirmation of the crucial role of the kidneys in the regulation of blood pressure
(BP) and the pathogenesis of hypertension by the intervention of AT1A receptors for
angiotensinogen in the proximal convoluted tubules in the regulation of “pressure
natriuresis”, as well as by stimulating intrarenal sympathetic nerve activity associated
with increased sodium reabsorption and hypertension;

• Deciphering the molecular mechanisms involved in peripheral vascular resistance,
especially the signaling pathways activated by the receptors of hormonal mediators
coupled with G proteins involved in the regulation of vascular tone and BP;

• Discovering the role of interstitial tissue in the skin as a “dynamic reservoir” of sodium,
which buffers the impact of sodium accumulation on intravascular volume and BP;
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• Identifying the important role of inflammation and the immune system in the devel-
opment of hypertension, which also becomes an autoimmune disease (endothelial
immunogens cause the infiltration and activation of T lymphocytes in the vascular
adventitia, followed by the release of cytokines that increase BP).

All these discoveries have the following important therapeutic consequences: the
blockade of AT1 receptors; renal denervation (using a radiofrequency catheter) in refractory
forms of hypertension; the blockade of G protein-mediated signaling pathways; and the
development of vaccines for hypertension released by the vascular endothelium or against
neurohormonal mediators, such as angiotensin II [43].

Although the complex interactions between BP-regulating systems have been exten-
sively studied in recent decades, their specific role in the production of hypertension is not
yet fully elucidated. What is certain is that many molecules encoded by genes and whose
expression (increased or decreased) is controlled by genetic or epigenetic mechanisms
are involved in these processes. In this context, we will again emphasize the inability of
researchers to establish the causes of hypertension in each patient, including their genetic
vulnerabilities, which is a major obstacle to the development of more personalized and
effective clinical management.

The existence of a genetic component in the production of hypertension has been
suggested by the increased family incidence of the disease (even when different members
of the same family live in different environments, with varying risk factors), as well as its
increased frequency in men and certain ethnic groups, such as in the African American
population. For many years, the inheritance of essential hypertension has been a subject
with two following hypotheses: [44]

• Platt (1947) measured BP in normotensive and hypertensive people as well as in their
relatives, finding a bimodal distribution of BP (patients being a distinct subpopulation
compared to normotensive), which led him to state that hypertension is a Mendelian
monogenic disease caused by a single mutation

• Pickerring (1959) showed that BP has a quantitative, complex character with a contin-
uous distribution (Gaussian) and polygenic determinism; hypertension (defined by
systolic BP values ≥ 140 mm Hg) is only the upper portion (+2.5 standard deviations)
of the continuous BP distribution curve. Over time, the Pickering hypothesis has
been confirmed by extensive epidemiological studies, and it is now considered that
the vast majority of hypertension cases have a multifactorial origin, being produced
by the intervention of several susceptibility genes whose effects are modulated by
interactions between different genes (epistaxis) as well as between genes and the
environment. However, the Platt hypothesis cannot be completely ruled out, as there
are rare forms of hypertension and hypotension that are caused by rare monogenic mu-
tations with high penetrance and significant effects. BP certainly shows a phenotypic
and genotypic heterogeneity.

After establishing a multifactorial etiological model, an attempt was made to deter-
mine the relative contribution of genes to disease determinism. Several recent studies have
estimated that the share of heredity (called heritability) in the etiology of hypertension is
between 31% and 68%, and the first-degree relatives of patients with hypertension have a
three to four times higher risk of developing the disease compared to the general popula-
tion. However, environmental factors (diet, lifestyle, stress, smoking, alcohol, etc.) play an
important causal role, giving HTA the title of “disease of civilization” [45].

The essential problem of hypertension genetics is the identification of genes and the
effects of different allelic variants of these genes in the modulation of BP as well as the
elucidation of the genetic mechanisms involved in hypertension. Resolving these elements
would allow for a correct and complete understanding of the mechanisms of the disease,
the establishment of an “individual pathogenic profile”, and the identification of new
therapeutic targets. Despite ample, perfectly justified efforts, this problem is difficult
to solve.
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The study of rare monogenic syndromes affecting BP has identified mutations with
major effects in more than 20 genes that produce changes in the following: renal excretion
of sodium and/or potassium (e.g., Bartter and Gitelman syndromes, Gordon syndrome,
or Liddle’s syndrome); steroid/aldosterone synthesis (e.g., 17α-hydroxylase deficiency
or familial hyperaldosteronism); or the sympathetic system (e.g., paragangliomas) [45].
The analysis of these rare but high-effect mutations contributed to the understanding
of BP control mechanisms. However, the vast majority of the genetic contribution to
multifactorial hypertension has remained unexplained due to the complexity of the disease
and its polygenic nature, which involves several genes that each have small effects.

Thus, in order to establish the exact genetic mechanism in hypertension, one step
forward could be an accurate identification of genes and their allelic variants that are
responsible for blood pressure modulation; this might establish an individual pathogenic
profile and bring to light new therapeutic targets of antihypertensive treatment.

5. Identification of Susceptibility Genes Involved in Multifactorial Hypertension

The identification of susceptibility genes involved in multifactorial hypertension
is based on linkage and gene association studies, which aim to establish a significant
association of a certain chromosomal region or an allelic variant with the disease and are
based on the hypothesis of “common disease–common variant”; this hypothesis starts
from the premise that the main alleles of susceptibility can be identified in all patients with
the same condition [46].

Chain assays were performed in families of patients based on the assumption that
patients (usually affected siblings) will more commonly share a certain allele (of a candidate
gene) compared to healthy people in the same family. Association studies are performed in
a population to compare the incidence of a certain gene polymorphism with its incidence
in a control group; if a specific allele of the polymorphic locus has a significantly higher
presence in individuals with the disease compared to those unaffected, then it can be
assumed that the allele is involved in the pathogenesis of the disease.

Despite the complexity of the disease and its technical difficulties, several gene vari-
ants that confer susceptibility to hypertension were identified in the “pregenomic” period,
especially genes encoding various components of the renin–angiotensin system, ion chan-
nels, or enzymes involved in the synthesis of aldosterone. The following were identified:
the ADD1 gene (α-bringing, hydrostatic pressure change sensor, located on chromosome
4p16); the AGT gene (for angiotensinogen, located on chromosome 1q42-q43); the REN
gene (for renin, located on chromosome 1q32); the ACE gene (for the angiotensin converting
enzyme located on chromosome 17q23); the AT1R gene (for the angiotensin receptor lo-
cated on chromosome 3q21); the GJA5 gene (for connexin 40, from the junctional structures
of endothelial cells in the efferent arteriole and the juxtaglomerular apparatus) for the beta
subunit of the non-voltage-dependent sodium channel type 1, located on the 16p13-p12
chromosome); and the CYP11B2 gene (for aldosterone synthesis, located on chromosome
8q21) [46].

In recent years, “case–control” association studies (based on the “common disease—
common variant” hypothesis) have been conducted at the genome-wide level (GWAS),
accelerating the decipherment of the genetic architecture of BP and HTN. Using genotyping
with “high throughput” techniques (SNPs-type DNA microgrids/microchips), about one
million genetic markers covering the entire genome can be investigated in a single scan of
the human genome. Genotyping of tens of thousands of patients with the same disease and
a control group of healthy individuals allowed for the identification of genomic regions
that were significantly associated with the disease; these are regions in which variants of
disease susceptibility genes are located. The discovery of the causal gene variant (in the
identified chromosomal region) and the determination of the mechanism by which this
variant participates in the development of the disease obviously require other studies, such
as the following: fine mapping to minimize the size of the region in which the susceptibility
gene could be found; analysis of DNA sequences in the determined minimum interval
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to identify the present gene/genes, each with numerous allelic variants; and functional
testing of candidate gene variants to experimentally determine the functional effect of the
identified gene and its role in disease pathogenesis [47].

From 2008 to 2011, seven GWAS studies for BP and/or hypertension were performed
on large populations of different ethnic origins [43,47]. In total, 41 SNPs significantly
associated with BP and/or hypertension were identified. In the chromosomal regions
(≈100 Kb) or loci defined by these “signals”, the identification of some causal genes proved
to be difficult (see Table 2), and only a few genes (NPPA, NOS3, UMOD) were clearly
associated with a particular SNP located in the sequence of a gene. Most SNPs were located
in regions rich in genes, and then, the “nearest gene” was taken into account (see table). At
other times, SNPs involved “regulatory sequences” (binding sites for transcription factors
or microRNA molecules) for more distant and yet-to-be identified risk genes.

6. Susceptible Genes and their Function

High blood pressure has been shown to be more difficult to decipher than its significant
heritability might have suggested. Many identified susceptibility genes have new functions
in known pathogenic pathways or are likely to intervene in new pathogenic pathways. The
elucidation of these aspects requires further studies but will certainly lead to improving
the etiological diagnosis, establishing an individual profile of the disease and optimizing
therapy by finding “customized solutions”. In support of this idea, we will refer, in
conclusion, to the pharmacogenomics of antihypertensive drugs.

Despite the existence of many classes of effective drugs and many types of drugs in
each class, the rates of BP control among hypertensives are disappointing (below 35%),
which is mainly due to their low efficacy in some people. In addition, the therapeutic
responses to a drug or a combination of drugs differ greatly between patients, as they
are highly variable [48,49]. The solution to this drawback is to individualize therapy
based on personal genetic information; in short, the pharmacogenomics of hypertension.
To date, polymorphisms have been identified in several genes involved in the action
of some drugs, which explain the individual variations of their effects: the ACE gene
(encodes the angiotensinogen) and the angiotensin inhibitors; the ADD1 gene (encodes
α-aducine, hydrostatic pressure sensor) and thiazide diuretics; the ADRB1 gene (encodes
the adrenergic receptor b1) and beta-blockers; or the KCNMB1 gene (encodes the beta
subunit of the calcium-activated potassium channel) and anti-calcium or beta-blocker
drugs. However, the clinical potential of hypertension pharmacogenomics will need to
be clearer and more accurate for practitioners to benefit from a rapid test that provides
information on the use of first-line antihypertensive drugs. It is estimated that these goals
will be achieved by 2022.

7. Discussion

Blood pressure control remains an element of utmost importance in patients with
cardiovascular diseases and one of the first actions to be considered for patients already
diagnosed with coronary artery disease or with heart failure [50–52].

Current guidelines recommend similar antihypertensive therapeutic approaches for
both male and female patients without making any gender differentiation concerning tar-
geted blood pressure values or for any other specific choice of antihypertensive agents [53].

Additionally, when considering first-line antihypertensive therapeutic agents, women
are more likely to be given diuretics and men are more likely to receive β-blockers,
angiotensin-converting enzyme inhibitors (ACEI), and calcium channel blockers (CCB)
[54–56]. One explanation for these therapeutic predilections could be the fact that related to
side effects, women treated with ACEI tented to develop cough more often. Additionally,
CCB may be avoided in women because of their greater susceptibility to vasodilatation
in comparison to men. All these data emphasize the need to focus on implementing
gender-related guideline parameters for antihypertensive treatment. Current data suggest
that there still is insufficient evidence-based information regarding female patients, at
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least when regarding the gender individualization of treatment [32,57]. Thus, guideline
recommendations are based on clinical trials, typically with a higher prevalence of male
patients [58–60]. Such was the case of the SPRINT (The Systolic Blood Pressure Interven-
tion) trial, which was a landmark trial regarding blood pressure goals of antihypertensive
treatment and characterized by a low female patient enrollment rate and a short follow-up
period [61–63].

One another important issue remains the implication of genetics and genes, as well as
of different allelic variants of genes in the induction and modulation of arterial hypertension.
Thus, the Genome-Wide Association Study (GWAS) and array-based genotyping platforms
became important tools for better understanding the genetic implications of essential
arterial hypertension, and they represent an important step toward a more accurate idea
regarding the pathogenic mechanisms of hypertension. The goal would be to establish an
“individual pathogenic profile” and identify new therapeutic targets.

8. Further Directions—Genetic Testing, Advantages, and Limitations in an
HTN Setting

Arterial hypertension is genetically intricate, which might clarify why the identifica-
tion of underlying genes has not been as successful as it has for other diseases.

Essential hypertension is a multifactorial pathology in which genetics and the environ-
ment both play important roles. It is estimated that a 30–60% variation in blood pressure
between individuals can be attributed to genetic factors. The study of hypertension is
especially important in children because, with age, it can be modified under the influence
of environmental factors. Numerous studies have shown that elevated BP in childhood in-
creases the risk for adult HTN and metabolic syndrome, even with positive environmental
changes and healthy growth (mental, social, and dietary) [64].

Genetic testing has become an increasingly used form of medical investigation, with
its most varied indications useful for identifying the risk of developing certain diseases and
helping to establish the best therapeutic conduct in some pathologies, such as cancer. More
recently, nutrigenetics favors the choice of diet and lifestyle according to an individual
genetic profile. Therefore, the benefits of genetic testing are indisputable, but there are still
a number of limitations and challenges.

Genetic testing involves the analysis of DNA and chromosomes but also the analysis
of proteins or certain metabolites for the detection of genotypes, mutations, phenotypes, or
hereditary karyotypes related to a disease.

A key moment in the evolution of genetic testing was the sequencing of the human
genome, which was the culmination of an international project that was worked on for 13
years. This colossal scientific achievement has facilitated a solid technological platform
for studying the genes associated with certain diseases. Another notable step was the
introduction of new sequencing techniques, which offered multiple benefits such as rapid
cost reduction, much higher resolution levels, increased availability, and an increased scope
of genetic testing, especially for single-gene disorders. With the reduction in costs and
the emergence of new methods, there is the possibility of sequencing the entire exome
or genome, leaving in second place the targeted testing of genes that are considered by a
clinician to correlate with the pathology and phenotype of a given patient’s disease [65].

A promising area for the application of targeted genetic testing to personalized
medicine is the forecast of responses and adverse reactions to antihypertensive drugs.
The identification of genetic markers of drug response will empower the design of ran-
domized controlled trials in a much smaller series of patients than is currently possible,
thus diminishing the costs and times from drug design to clinical use and finally providing
patients and doctors with a larger number of tools to combat hypertension, which is one
the most central risk factors for cardiovascular disease and pathology [66].

In order to achieve its goal, genetic testing must be chosen and interpreted in the
context of genetic consultation and genetic counseling. Since genetic consultation is a
specialized and complex medical act, genetic examinations are recommended, although
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these would depend on a patient’s personal and family history, physical and clinical
examination, paraclinical examinations, etc.

Despite the spectacular evolution of genetics and genomics, many challenges remain
today, including technical, interpretive, and ethical difficulties. Some mutations remain
unidentified or are difficult to decrypt. There are situations in which a genetic test is
negative, despite a patient’s symptoms being suggestive of a particular syndrome. The
causes of this contradictory result can be multifactorial, and a negative test does not
necessarily exclude genetic disease (X). Another limitation is the so-called VUS (variants of
unknown significance), i.e., genetic variations with unclear pathological significance. On
the other hand, the confirmation of a diagnosis for a genetic condition does not guarantee
the existence of a treatment to improve it. In turn, predictive or presymptomatic tests do
not provide certainty about the future development of a disease or its degree of severity.

These uncertainties and limitations can lead to significant emotional implications in
patients who want more answers. While, for some patients, the results of genetic tests
offer a sense of peace or hope, they can also create feelings of fear, anxiety, guilt, anger,
discrimination, etc. Therefore, at all stages of the genetic testing process, the psychological
support of patients is crucial [67].

Additionally, one final aspect that is just as important as the rest is understanding the
family and patient’s perception of HTN and any underlying disease that may contribute
to it is importance in resolving any misconceptions and encouraging their adherence to
physician recommendations. In order to achieve therapeutic goals, the family must be
provided with an adequate education. This education should include appropriate doses of
medication, recommended sodium intake, any dietary changes, exercise expectations, and
any other behavioral changes.

9. Conclusions

Since arterial hypertension remains one of the most influential cardiovascular factors
for morbidity and mortality rates, an extensive attempt to provide the optimal antihyper-
tensive medical approach should be considered an important goal in our cardiological
practice. An important step toward improving the rate of precise controlled blood pressure
values is through identifying genetic underlying pathways and mechanisms account-
able for inducing arterial hypertension, as well by the gender-based individualization of
antihypertensive therapy.
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