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TOR-centric view on insulin resistance and diabetic
complications: perspective for endocrinologists and
gerontologists
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This article is addressed to endocrinologists treating patients with diabetic complications as well as to basic scientists studying
an elusive link between diseases and aging. It answers some challenging questions. What is the link between insulin resistance
(IR), cellular aging and diseases? Why complications such as retinopathy may paradoxically precede the onset of type II
diabetes. Why intensive insulin therapy may initially worsen retinopathy. How nutrient- and insulin-sensing mammalian target of
rapamycin (mTOR) pathway can drive insulin resistance and diabetic complications. And how rapamycin, at rational doses and
schedules, may prevent IR, retinopathy, nephropathy and beta-cell failure, without causing side effects.
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Facts

� Glucose, amino and fatty acids, insulin, insulin-like growth
factor 1 (IGF-1), tumor necrosis factor (TNF) activate the
mammalian target of rapamycin (mTOR) signaling
pathway.

� Overactivation of the mTOR pathway causes insulin
resistance.

� mTOR is involved in diabetic complications.
� mTOR is involved in aging and age-related diseases.
� Rapamycin extends life span in all species tested, including

mice.

Open Questions

� What is the link between cellular and organismal aging?
� Will rapamycin (and other rapalogs) prevent diabetic

complications in humans?
� How to combine rapamycin and insulin?
� Can intermittent schedules of rapamycin prevent type II

diabetes, given that chronic overdosing of rapamycin can
cause glucose intolerance?

Microvascular complications of diabetes such as retinopathy,
nephropathy and neuropathy develop in 30–50% of patients
with diabetes. These complications lead to blindness, renal
failure and foot ulceration.1

There are two forms of diabetes. Type I diabetes (also
known as insulin-dependent or juvenile diabetes) is caused by
absolute insulin insufficiency due to autoimmune destruction
of insulin-producing beta cells of the pancreas. Type II
diabetes (insulin-independent or adult-onset diabetes) is
initiated by insulin resistance (IR) in muscle, liver and adipose
tissues. Initially, an increase in insulin secretion by pancreatic
beta cells compensates for IR. If/when beta cells fail,
then glucose levels increase. When either fasting glucose
levels or oral glucose tolerance test reach 126 and 200 mg/l,
respectively, then diabetes is diagnosed. Although glucose
control with intensive insulin therapy decreases the incidence
of complications, diabetes remains a major cause of new-
onset blindness, end-stage renal disease and lower leg
amputation.2

There are two puzzling observations. First, complications
can precede the onset of type II diabetes. Second, intensive
insulin therapy may initially worsen the progression of
retinopathy in both types I and type II diabetes.

Puzzle One: Complications may Precede Type II
Diabetes

In type II diabetes, the onset of chronic complications may
occur at least 4–7 years before clinical diagnosis of diabetes,
in other words, before hyperglycemia.3–5 The simplest
explanation is that diabetes may be diagnosed too late. Yet,
another possibility is that complications may precede type II
diabetes, if both beta-cell failure and retinopathy are
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independently caused by IR. Regardless of patient’s progres-
sion to diabetes, IR predicts retinopathy, neuropathy and
nephropathy. Neuropathy is already present in 10–18% of
patients at the time of diabetes diagnosis.6 The pre-diabetic
state of IR is a risk factor for neuropathy7,8 and nephropathy9

and is associated with retinopathy.10 Approximately 8% of the
pre-diabetic population has retinopathy.11 Furthermore, reti-
nopathy predicts subsequent risk of diabetes.12

Patients with IR are at increased risk for death and morbidity
due to myocardial infarction, stroke, and large-vessel
occlusive disease due to atherosclerosis.13 The risk of
macrovascular disease is increased before glucose levels
reach the diagnostic threshold for ‘diabetes,’ and 25% of
newly diagnosed diabetics already have overt cardiovascular
disease.14

Puzzle Two: Intensified Insulin Treatment and
Retinopathy

In some cases, intensified insulin treatment, while controlling
glucose, paradoxically worsened diabetic retinopathy, neuro-
pathy and nephropathy.6,15–21 As we will discuss later, insulin
therapy may accelerate complications because insulin and
insulin-like growth factor 1 (IGF-1) activate mammalian target
of rapamycin (mTOR).

The mTOR Pathway

Target of rapamycin (TOR), which in mammals is known as
mTOR, is a cytoplasmic kinase that regulates cell growth and
metabolism in response to mitogens (such as IGF-I and
vascular endothelial growth factor (VEGF)), nutrients (amino
acids, glucose and fatty acids), hormones including insulin
and cytokines.22–25 The nutrient-sensing mTOR pathway is
essential for development and growth of the young organism.
But later in life, when growth has been completed, mTOR
drives cellular and organismal aging.26,27 In particular,
mTOR converts cellular quiescence into senescence.28–37

Senescent cells are hyperfunctional, hypersecretory, pro-
inflammatory and signal resistant (e.g., insulin resistant).38–43

Slowly, but inevitably, these cellular hyperfunctions lead to
age-related diseases.44–47 Not surprisingly, mTOR is involved
in age-related diseases.48–54 Rapamycin slows down aging,
prevents age-related diseases and extends maximal lifespan
in mice.55–70

It is important to emphasize that both glucose and insulin
activate mTOR (Figure 1). Thus, high glucose levels activate
mTOR. By normalizing glucose levels, insulin therapy may de-
activate mTOR. On the other hand, insulin itself activates the
mTOR pathway. Furthermore, hyperinsulinemia itself may
cause IR.71

Hyperactivation of mTOR and IR

Overactivated mTOR causes IR,72–78 mTOR activates S6
kinase (S6K), which in turn causes phosphorylation and
degradation of insulin receptor substrate 1/2. This impairs
insulin signaling (Figure 1). Also, mTOR causes IR by
affecting growth factor receptor-bound protein 10.79,80 Thus,

hyperactivation of mTOR causes IR, by at least two
mechanisms.

For example, in fat-fed rodents, the mTOR pathway is
activated, leading to impaired insulin signaling and IR.74,81

Increased insulin levels (hyperinsulinemia) itself causes IR,
preventable by rapamycin.71 In humans, infusion of amino
acids activates mTOR/S6K1, which causes a feedback IR in
skeletal muscle.75,76 Oral rapamycin blunted mTOR activa-
tion, preventing nutrient-induced IR in humans.82 Also, tumor
necrosis factor (TNF) and pro-inflammatory cytokines impair
insulin signaling by activating mTOR.83 Noteworthy, aging is
associated with pro-inflammation.84,85 Although nutrients
activate mTOR, dietary (calorie) restriction de-activates
mTOR. This may explain why low calorie diet reduces IR.86

In some conditions, physical activity inhibits mTOR/S6K1
signaling in rat skeletal muscle, restoring insulin sensitivity.87

Thus, activation of mTOR in liver, muscle or adipose tissues is
manifested as IR. How is hyperactivation of mTOR mani-
fested in the retina?

mTOR and Retinopathy

Excessive growth of small blood vessels (angiogenesis or
neovascularization) contributes to retinopathy (Figure 2).
VEGF stimulates angiogenesis and causes blood–retinal
barrier breakdown.88,89 Synthesis of VEGF is stimulated via
the insulin/mTOR pathway90,91 in retinal pigment epithelial
cells.92–95 Insulin and IGF-1 are involved in angiogenesis
and diabetic retinopathy.92,15–18,96,97 This explains observa-
tions that intensified insulin treatment may worsen diabetic
retinopathy.6,15,17–19,88,97,98

Rapamycin blocks insulin-induced hypoxia-inducible
factor-1 (HIF-1) and senescence of retinal cells95,99 and
inhibits retinal and choroidal neovascularization in mice.100
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Figure 1 mTOR and IR (via a feedback loop) in fat/muscle/liver cells. Insulin via
insulin receptor substrate 1/2 (IRS1/2) activates the PI3K/Akt/mTOR/S6K pathway.
The mTOR/S6K pathway is also activated by nutrients such as glucose, TNF and
numerous other factors. The mTOR/S6K pathway in turn inactivates IRS1/2, thus
causing IR
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Rapamycin prevents retinopathy in aging-accelerated
rats.101,102 Noteworthy, rapamycin prevented retinopathy
without decreasing VEGF levels.101 Subconjunctival rapamycin
was studied for the treatment of diabetic macular edema.103

mTOR and Nephropathy

Rapamycin decreases renal hypertrophy in diabetic mice and
slows progression of diabetic kidney disease in rats.104–106

Rapamycin treatment prevented diabetic kidney disease even
without change in blood glucose levels.106

Beta-Cell Hyperfunction and Failure

Glucose, amino acids and fatty acids activate mTOR, thus
causing expansion and hypertrophy of beta cells as well as
increasing insulin secretion. Initially, this hyperfunction
of beta cells compensates for IR, preventing hyperglycemia.
However, it is hyperfunction that eventually causes beta-cell
failure (diabetes). Beta-cell failure depends on genetic
predisposition.107–113

In mice with hyperactive mTOR, islet mass is initially
increased because of hypertrophy of the beta cells. These
mice also exhibit high insulin and low glucose at young ages.
After 40 weeks of age, however, the mice develop progressive
hyperglycemia and hypoinsulinemia accompanied by a
reduction in islet mass due to a decrease in the number of
beta cells. Hyperactive mTOR regulates pancreatic beta-cell
mass in a biphasic manner.114 Rapamycin prevents hyper-
insulinemia in mice on high-fat diet.115,116

How does hyperactivated mTOR cause beta-cell failure?
Initially, mTOR stimulates beta-cell functions causing hyper-
function. Then, chronic hyperstimulation of mTOR renders
beta cells resistant to IGF-1 and insulin, fostering cell
death.107,112,117–124 In theory, a short-term treatment with
rapamycin may re-sensitize cells to insulin and pro-survival
signals.125,126

Potential Applications of Rapamycin

Prevention of negative effects of insulin therapy. By
activating mTOR, insulin therapy can cause its negative
effects. First, mTOR induces HIF, mitogens and cytokines,
contributing to pro-inflammation and neo-angiogenesis
(Figure 3a). Second, hyperactivation of mTOR causes
feedback IR (Figure 3a). These negative effects are

downstream from mTOR (Figure 3). In contrast, therapeutic
effects (glucose utilization) of insulin are mostly upstream of
mTOR (Figure 3). Therefore, pre-treatment with rapamycin
will block negative effects of insulin, while preserving its
positive effect on glucose metabolism (Figure 3b).

Restoration of insulin sensitivity in hyperglycemia.
Glucose activates mTOR, which by feedback loop can cause
IR. In fact, very high levels of glucose cause IR and decrease
glucose uptake.127–129 To overcome resistance, high doses
of insulin may be needed, that is potentially harmful because
of glucose fluctuations. In theory, pre-treatment with rapa-
mycin would reduce IR in such patients. If so, then instead of
high doses of insulin, rapamycin plus regular or low doses of
insulin could be effective.

Prevention of beta-cell failure. Beta cells hyperfunction
may eventually lead to beta-cell failure.107,114,117,118,122–125

As we discussed previously125,126 and here, mTOR renders
beta cells unresponsive to pro-survival factors. In theory,
intermittent or short-term treatment with rapamycin may
decrease hyperfunction of beta cells and restore their
responsiveness to pro-survival factors like IGF-I. In trans-
plant organ recipients, rapamycin is used at high doses and
daily for many years (long-term treatment). In contrast, to
prevent beta-cell failure due to IR, it might be feasible to use
rapamycin as a pulse (intermittent) treatment and at low
doses.125,126 Such therapy might actually preserve and
improve beta-cell functions. During rapamycin treatment,
beta cells would ‘rest’ from hyperstimulation. Following
rapamycin withdrawal, beta cells would re-acquire the
capacity to adapt.

Prevention of diabetic complications and cancer. As we
already discussed, rapamycin prevents retinopathy, neuro-
pathy and atherosclerosis.100,101,104–106,130–132 Metabolic
syndrome and aging stroma increase cancer risk (see
Blagosklonny133,134 and Mercier et al.135). Noteworthy,
rapamycin decreases production of lactic acid by human
cells136 and thus potentially can found application in the
treatment of lactate acidosis. Albeit at lesser degree than

Figure 2 mTOR and retinopathy. See text for explanation
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Figure 3 Pre-treatment with rapamycin may prevent negative effects of insulin
therapy. (a) Insulin stimulates glucose uptake and metabolism. Simultaneously,
insulin activates the mTOR/S6K pathway, causing induction of HIF-1, IR and cell
senescence. (b) Acute treatment with rapamycin is expected to prevent negative
side effects of insulin, while sparing most effects on glucose metabolism. Short-term
courses of rapamycin are expected to restore insulin sensitivity
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rapamycin, metformin also inhibits mTOR, aging and
cancer.137–145 Rapamycin analogs are used as anticancer
drugs in part because the mTOR pathway is almost
obligatory activated in cancer cells.146–152

Short-Term (Acute) Rapamycin may Reverse IR

Calorie restriction, metformin and thiazolidinediones reverse
IR in part by activating AMPK and by inhibiting the mTOR
pathway.73,77,153,154 In healthy volunteers, a single dose
pre-treatment with rapamycin abrogated nutrient-induced
IR.82 Furthermore, prolonged treatment with rapamycin can
lead to beneficial metabolic switch.155 However, in some
animal models, chronic treatment with rapamycin can cause a
peculiar type of IR at least, which resembles so called
‘starvation diabetes’.

Starvation Pseudo-Diabetes or Benevolent Glucose
Intolerance

As we discussed, overactivation of mTOR causes IR. Yet,
prolonged and profound inhibition of mTOR can cause IR,
especially in certain strains of mice.156–161 This condition
resembles ‘starvation diabetes’, a reversible condition.125,126

First during starvation, low insulin and IR decrease the use of
glucose by the muscle, fat and the liver, thus sparing glucose
for the brain. (The brain crucially depends on glucose and
ketones). As peripheral tissues do not use glucose, starvation
is manifested by glucose intolerance. For example, if the
starved subject ingests glucose, glucose may appear in the
urine. Second, lipolysis is increased, providing fatty acids for
ketogenesis. Third, owing to hepatic IR, the liver produces
glucose and ketones to feed the brain. Therefore, starvation
superficially resembles diabetes. However, this is not a true
diabetes but rather benevolent glucose intolerance or
benevolent pseudo-diabetes. In fact, starvation, fasting and
calorie restriction do not cause ‘diabetes complications’ such
as neuropathy or retinopathy or atherosclerosis.125,126 In
contrast, calorie restriction prevents diabetes and diabetic
complications and extends life span.

By the definition of nutrient-sensing pathways, the nutrient-
and insulin-sensing mTOR pathway is deactivated during
fasting.162 Deactivation of mTOR increases longevity and
health span.47 Rapamycin, which is a starvation-mimetic,
causes lipolysis and some other starvation-like alterations.125

If chronic high-dose rapamycin treatment is associated with
diabetes-like conditions, this must be benevolent pseudo-
diabetes. In contrast to type II diabetes, benevolent IR due to
mTOR deactivation extends life- and health span.126

mTOR-Centric Model

As suggested, ‘having a single mechanism to explain the link
between obesity, IR and type II diabetes would be ideal’.163

Numerous factors (glucose, insulin, amino acids, fatty acids,
TNF and inflammatory cytokines), protein kinase C (PKC)
activates the nutrient-sensing mTOR pathway. In contrast,
adiponectin deactivates mTOR.22,83,164 Logically, overactiva-
tion of the nutrient-sensing pathway is a unifying factor in
metabolic disorders.

It was noticed that complications of type II diabetes and
type II diabetes itself arise together, consistent with the
hypothesis that they share a common antecedent.9

Furthermore, retinopathy and nephropathy may present in
the absence of either overt clinical diabetes or IR.165

According to the mTOR-centric model, retinopathy and
nephropathy as well as IR and beta-cell failure are complica-
tions of mTOR hyperactivation (Figure 4). In addition, IR
causes a compensatory increase in insulin secretion that in
turn may activate mTOR in the retina. Hyperglycemia and
hyperinsulinemia further activate mTOR. Similarly, hypergly-
cemia may activate mTOR and cause metabolic syndrome
and IR in type I diabetes.166 In type II diabetes, both IR and
early complications may be manifestations of mTOR hyper-
activation. Hyperactivated mTOR in fat/liver and in the retina
may cause IR and retinopathy, respectively.

Conclusion for Endocrinologists

Rapamycin and other rapalogs (everolimus, temserolimus)
are widely used in the clinic for almost two decades. Their
clinical applications range from transplantation to cancer
treatment. Rapamycin and other rapalogs have been used in
children56 and pregnant women.167 There were no side
effects of high-dose rapamycin in healthy volunteers.82 Even
in chronic high-dose administration, rapalogs are generally
well tolerated. Despite common misconception, rapamycin
and other rapalogs prevent cancer and viral infections in
organ-transplant patients.152,168 They improve immune
response in old animals.169 Rapamycin was used to treat
insulinoma,170,171 polycystic kidney disease,172 systemic
sclerosis173 and prevention of atherosclerotic in-stent
restenosis.130–132 Now is the turn of diabetic complications.
As I discussed here, rapalogs can be considered for
prevention of side effects of intensive insulin therapy, for
reduction of doses of insulin, for prevention of diabetic
complications and atherosclerosis, for prevention of beta-cell

beta-cell
adaptation
and failure

systemic
insulin

resistance

retinopathy
neuropathy

Figure 4 Consequences of sustained mTOR activation. In the liver, muscle and
fat tissues, sustained mTOR activation causes systemic IR. In the beta cells, mTOR
initially increases beta-cell function, causes beta-cell hypertrophy and adaptation to
IR. Beta-cell hyperfunction and IR eventually may cause beta-cell failure and type II
diabetes. In the retina and the kidney, hyperactivation of mTOR may lead to
retinopathy and nephropathy, respectively
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failure and for the treatment of lactate acidosis. For these
applications, rapamycin may be used at low doses and short-
term or intermittent schedules. In theory, treatment of type II
diabetes with insulin, if needed, may especially benefit from a
combination with short-term or low-dose rapamycin.

Conclusion for Gerontologists

It is commonly assumed that aging and diseases of aging are
distinct processes and that aging merely renders organism
vulnerable to diseases rather than causing them. Thus, aging
is believed to be driven by accumulation of molecular damage.
Age-related conditions and diseases, such as IR and
diabetes, are not caused by accumulation of molecular
damage.44 In fact, IR can be reversed by low-calorie diet,
weight loss and metformin, without affecting putative mole-
cular damage. Linking gerontology and diabetology, the
hyperfunction theory suggests that aging is not caused by
damage but instead is driven by signal transduction pathways,
the same pathways that are involved in age-related dis-
eases.44,47,174,175 Age-related diseases are continuation and
exacerbation of the aging process. For example, hyperactiva-
tion of nutrient-sensing pathways such as mTOR and PKC in
hepatocytes, adipocytes, retinal and beta cells stimulates
cellular functions and also cause feedback insulin/signal
resistance. These hyperfunctions eventually may culminate in
beta-cell failure (diabetes) and nephropathy as well as
accelerate atherosclerosis. In turn these diseases may result
in organ failure (renal and heart failure, for instance), leading
to organismal death.46
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40. CoppŽ JP, Patil CK, Rodier F, Sun Y, Mu–oz DP, Goldstein J et al. Senescence-
associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS
and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.

41. Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle
arrest: terminology for TOR-driven aging. Aging (Albany NY) 2012; 4: 159–165.

42. Cahu J, Bustany S, Sola B. Senescence-associated secretory phenotype favors the
emergence of cancer stem-like cells. Cell Death Dis 2012; 3: e446.

43. Tominaga-Yamanaka K, Abdelmohsen K, Martindale JL, Yang X, Taub DD, Gorospe M.
NF90 coordinately represses the senescence-associated secretory phenotype.
Aging (Albany NY) 2012; 4: 695–708.

44. Blagosklonny MV. Answering the ultimate question ‘what is the proximal cause of aging?’.
Aging (Albany NY) 2012; 4: 861–877.

45. Blagosklonny MV. Why men age faster but reproduce longer than women: mTOR and
evolutionary perspectives. Aging (Albany NY) 2010; 2: 265–273.

mTOR and diabetes
MV Blagosklonny

5

Cell Death and Disease



46. Blagosklonny MV. Prospective treatment of age-related diseases by slowing down aging.
Am J Pathol 2012; 181: 1142–1146.

47. Blagosklonny MV. How to save Medicare: the anti-aging remedy. Aging (Albany NY)
2012; 4: 547–552.

48. Blagosklonny MV. Aging and immortality: quasi-programmed senescence and its
pharmacologic inhibition. Cell Cycle 2006; 5: 2087–2102.

49. Blagosklonny MV. An anti-aging drug today: from senescence-promoting genes to anti-
aging pill. Drug Disc Today 2007; 12: 218–224.

50. Tsang CK, Qi H, Liu LF, Zheng XFS. Targeting mammalian target of rapamycin (mTOR)
for health and diseases. Drug Disc Today 2007; 12: 112–124.

51. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and
age-related disease. Nature 2013; 493: 338–345.

52. Nair S, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin.
Cell Cycle 2012; 11: 2092–2099.

53. Williamson DL. Normalizing a hyperactive mTOR initiates muscle growth during obesity.
Aging (Albany NY) 2011; 3: 83–84.

54. Blagosklonny MV. Rapamycin extends life- and health span because it slows aging.
Aging (Albany NY) 2013; 5: 592–598.

55. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K et al. Rapamycin fed
late in life extends lifespan in genetically heterogenous mice. Nature 2009; 460: 392–396.

56. Major P. Potential of mTOR inhibitors for the treatment of subependymal giant cell
astrocytomas in tuberous sclerosis complex. Aging (Albany NY) 2011; 3: 189–191.

57. Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML
et al. Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol 2010; 176:
2092–2097.

58. Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML
et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred
female mice. Cell Cycle 2011; 10: 4230–4236.

59. Comas M, Toshkov I, Kuropatwinski KK, Chernova OB, Polinsky A, Blagosklonny MV et
al. New nanoformulation of rapamycin Rapatar extends lifespan in homozygous p53-/-
mice by delaying carcinogenesis. Aging (Albany NY) 2012; 4: 715–722.

60. Komarova EA, Antoch MP, Novototskaya LR, Chernova OB, Paszkiewicz G,
Leontieva OV et al. Rapamycin extends lifespan and delays tumorigenesis in
heterozygous p53þ /� mice. Aging (Albany NY) 2012; 4: 709–714.

61. Levine AJ, Harris CR, Puzio-Kuter AM. The interfaces between signal transduction
pathways: IGF-1/mTor, p53 and the Parkinson disease pathway. Oncotarget 2012; 3:
1301–1307.

62. Donehower LA. Rapamycin as longevity enhancer and cancer preventative agent in the
context of p53 deficiency. Aging (Albany NY) 2012; 4: 660–661.

63. Halloran J, Hussong SA, Burbank R, Podlutskaya N, Fischer KE, Sloane LB et al. Chronic
inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-
cognitive components of behavior throughout lifespan in mice. Neuroscience 2012; 223:
102–113.

64. Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE et al.
Rapamycin slows aging in mice. Aging Cell 2012; 11: 675–682.

65. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al.
Late life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 2013;
12: 851–862.

66. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL et al. With TOR, less is
more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab
2010; 11: 453–465.

67. Khanna A, Kapahi P. Rapamycin: killing two birds with one stone. Aging (Albany NY)
2011; 3: 1043–1044.

68. Longo VD, Fontana L. Intermittent supplementation with rapamycin as a dietary restriction
mimetic. Aging (Albany NY) 2011; 3: 1039–1040.

69. Ye L, Widlund AL, Sims CA, Lamming DW, Guan Y, Davis JG et al. Rapamycin doses
sufficient to extend lifespan do not compromise muscle mitochondrial content or
endurance. Aging (Albany NY) 2013; 5: 539–550.

70. Kolosova NG, Vitovtov AO, Muraleva NA, Akulov AE, Stefanova NA, Blagosklonny MV.
Rapamycin suppresses brain aging in senescence-accelerated OXYS rats. Aging (Albany
NY) 2013; 5: 474–484.

71. Ueno M, Carvalheira JB, Tambascia RC, Bezerra RM, Amaral ME, Carneiro EM et al.
Regulation of insulin signalling by hyperinsulinaemia: role of IRS-1/2 serine
phosphorylation and the mTOR/p70 S6K pathway. Diabetologia 2005; 48: 506–518.

72. Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K
cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies.
Curr Biol 2004; 14: 1650–1656.

73. Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via
raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell
Biol 2006; 26: 63–76.

74. Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian
target of rapamycin pathway in liver and skeletal muscle of obese rats: possible
involvement in obesity-linked insulin resistance. Endocrinology 2005; 146:
1473–1481.
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