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Abstract

Background: Controlling unobserved confounding still remains a great challenge in observational studies, and a
series of strict assumptions of the existing methods usually may be violated in practice. Therefore, it is urgent to
put forward a novel method.

Methods: We are interested in the causal effect of an exposure on the outcome, which is always confounded by
unobserved confounding. We show that, the causal effect of an exposure on a continuous or categorical outcome
is nonparametrically identified through only two independent or correlated available confounders satisfying a non-
linear condition on the exposure. Asymptotic theory and variance estimators are developed for each case. We also
discuss an extension for more than two binary confounders.

Results: The simulations show better estimation performance by our approach in contrast to the traditional
regression approach adjusting for observed confounders. A real application is separately applied to assess the
effects of Body Mass Index (BMI) on Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Fasting Blood
Glucose (FBG), Triglyceride (TG), Total Cholesterol (TC), High Density Lipoprotein (HDL) and Low Density Lipoprotein
(LDL) with individuals in Shandong Province, China. Our results suggest that SBP increased 1.60 (95% CI: 0.99–2.93)
mmol/L with per 1- kg/m2 higher BMI and DBP increased 0.37 (95% CI: 0.03–0.76) mmol/L with per 1- kg/m2 higher
BMI. Moreover, 1- kg/m2 increase in BMI was causally associated with a 1.61 (95% CI: 0.96–2.97) mmol/L increase in
TC, a 1.66 (95% CI: 0.91–55.30) mmol/L increase in TG and a 2.01 (95% CI: 1.09–4.31) mmol/L increase in LDL.
However, BMI was not causally associated with HDL with effect value − 0.20 (95% CI: − 1.71–1.44). And, the effect
value of FBG per 1- kg/m2 higher BMI was 0.56 (95% CI: − 0.24–2.18).

Conclusions: We propose a novel method to control unobserved confounders through double binary confounders
satisfying a non-linear condition on the exposure which is easy to access.
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Background
Controlling unobserved confounding is a great chal-
lenge when estimating the causal effect of an expos-
ure on an outcome of interest in observational studies
[1–4]. Several techniques such as traditional regres-
sion model, marginal structure model, adjustment,
stratification, inverse probability weighing (IPW),
matching based on propensity score cannot deal with
unobserved confounding [5–9]. The observed data
distribution may have compatibility with many contra-
dictory causal explanations due to the existence of
unobserved confounding. In this circumstance, we say
the causal estimand is not identified. On the contrary,
when the causal estimand can be obtained entirely
from observable probability distributions, we say the
query is identified.
Some methods have been developed to alleviate

the problems caused by unobserved confounding.
Instrumental variable analysis (IVA) is the com-
monly used method to eliminate unobserved con-
founding [10]. But in practice, choosing valid
instruments (IVs) is a stumbling block in IVA [11–
13]. The difference-in-differences (DID) is contin-
gent on the availability of repeated outcomes in
both periods, but invokes strict parallel trend as-
sumptions, i.e., confounders varying across the
groups are time invariant and time-varying con-
founders are group invariant [14, 15]. Regression
discontinuity design (RDD) is a quasi-experimental
pretest-posttest design for controlling unobserved
confounding by assigning a cutoff or threshold
above or below to a treatment [16]. Nevertheless,
RDD requires that treatment assignment is suffi-
ciently randomized at the threshold [17]. Negative
controls are widely used in epidemiologic practice
to detect the presence of unobserved confounding.
While a valid negative control outcome needs to be
influenced by the same unobserved confounders of
the exposure effects on the outcome in view, al-
though not directly influenced by the exposure. But
this approach fails to obtain causal estimation of
the exposure on the outcome [18]. Moreover, strict
assumptions of the methods above usually may be
violated in practice and impose restrictions on their
generalization.
In this article, we propose a novel method to con-

trol unobserved confounding through double con-
founders with two values satisfying a non-linear
condition on the exposure. Under the assumption of
ignorable treatment assignment, causal effects can be
identified and estimated using commonly generalized
moment estimate model. Furthermore, we relax the
assumption that observed and unobserved con-
founders are independent in sensitivity analysis and

observe that even when the correlations between
binary observed confounders and unobserved con-
founders are relatively weak, we still obtain the
almost unbiased causal effect estimation. Addition-
ally, we explore the statistical properties of this
method by a simulation study and compare with the
traditional regression approach only adjusting for
observed confounders. Finally, we apply this method
to a cohort from a follow-up survey (136,895 indi-
viduals) from 2007 to 2015 in Jining, China to exam
the causal associations of BMI on other factors,
including SBP, DBP, FBG, TG, TC, HDL and LDL.

Methods
Notation and preliminaries
Throughout, we let X, Y, C1, C2 and U denote the
treatment, outcome, two observed confounders and
unobserved confounders, respectively (Fig. 1). Fol-
lowing the convention in causal inference, we use
Y(x) to denote the potential outcome of Y under an
intervention which sets X to x, and the observed
outcome Y is a realization of the potential outcome
under the exposure actually received: Y = Y(x) when
X = x. We focus on the average causal effect (ACE)
of X on Y which is the difference in expectation of
potential outcome at two different exposure levels 0
and 1, for instance, ACEX→ Y = E(Y(1) − Y(0)) for a
binary exposure. The conditional ignorability as-
sumption Y(x) ⊥ x ∣ C1, C2 is conventionally made in
causal inference, but it does not hold in the present
of unmeasured confounding U. In this case, latent
ignorability Y(x) ⊥ x ∣ C1, C2, U is more reasonable,
allowing for an unobserved confounder U that cap-
tures the source of non-ignorability of the exposure
mechanism. The model with continuous exposure
and outcome can be developed as follows.

X ¼ F C1;C2ð Þ þ φ U ; εXð Þ ð1Þ

Y ¼ β0 þ β1X þ β2C1 þ β3C2 þ ϕ U ; εYð Þ ð2Þ

where εY and εX are two mutually independent ran-
dom errors with means 0 and variances σ2Y and σ2X
respectively, φ(·) and ϕ(·) are two arbitrary func-
tions. The causal effect of X on Y is interpreted as
β1. Similarly, for binary exposure and outcome, we
can also construct corresponding linear probability
model (LPM) for P(X = 1| C1, C2, U), P(Y = 1| C1, C2,
U), respectively. In addition, the “complementary
log link” of transformation of Y (i.e. − log(1 − Risk),
Risk denotes cumulative completion risk) is also
appropriate for our method [19].
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Identification and estimation of causal effects with
double binary confounders
Obviously, the estimation of regression model
adjusting for C1 and C2 is biased when there exists
an unobserved confounder U. Unfortunately, the no
unobserved confounding assumption usually not
be satisfied in practical studies. Next, we explain
how to identify and estimate the causal effect by
relaxing the no unobserved confounding assumption
in four cases with different types of exposure and
outcome (continuous or binary). It will be shown
below that causal effect β1 in (2) is not identifiable
if the function F(X| C1, C2) is linear with respect to
C1 and C2.
Within the causal framework provided by Fig. 1, we

propose four assumptions and discuss the necessary
and sufficient condition for identification of parame-
ters in the model (2).
Assumption 1: E(ϕ(U, εY)) = 0.
Assumption 2: (C1,C2) ⊥ ϕ(U, εY), i.e. (C1,C2) are not

associated with any confounder (U) of the exposure–
outcome relationship and random errors εY.
Assumption 3: The effect of (X, C1, C2) on Y is linear

(or no interaction).
Assumption 4: The effect of (C1,C2) on X is non-

linear (e.g. with an interaction effect or the quadratic
term of C1 and C2 on X).

Under Assumptions 1 and 2, E(ϕ(U, εY)| C1, C2) = 0
is satisfied. The Assumption 2 is the same as the
exchangeability assumption in instrumental variable
(IV) analysis – an IV is not associated with any
confounder of the exposure–outcome relationship. In
addition, a valid IV must have a main effect on X
and no direct effect on Y, which are called the Rele-
vance and the Exclusion restriction assumption,
respectively [20]. In our method, (C1, C2) can be
regarded as two near-IVs with a non-linear effect on
X and a linear effect on Y as stated in the Assump-
tion 3 and 4.
Theorem 1: The causal effect β1 of X on Y in model

(2) is identifiable if and only if the Assumptions 1–4 are
satisfied.
See Appendix A for the proof of Theorem 1.
Causal effect is identified based on above four

assumptions. And various estimation approaches have
been applied to estimate the causal effect, including
moment estimation, maximum likelihood estimation
and generalized moment estimate model (GMM) with
different assumptions [21–23]. In this section, we aim
to find an efficient estimation of causal effect in the
model (2).
In our estimation approach, the pivotal “orthogonality

condition” is the independence (C1, C2) ⊥ ϕ(U, εY), which
implies the following equation:

Fig. 1 Causal diagram for X (treatment) and Y (outcome) with C1, C2 (observed confounders) and U (other unobserved confounders)
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E Y − β0 − β1X − β2C1 − β3C2
� �

f C1;C2ð Þ� � ¼ 0; ð3Þ

where f(·) = (f1(·),⋯, fK(·))
T is an arbitrary vector function

and 0 is a K × 1 zero vector.
For the case of confounders C1 and C2 with two

values, we chose the function f∗(C1, C2) = (δ(C1 = 0, C2 =
0), δ(C1 = 0,C2 = 1), δ(C1 = 1,C2 = 0), δ(C1 = 1, C2 = 1))T,
we have

E Y − β0 − β1X − β2C1 − β3C2
� �

f � C1;C2ð Þ� � ¼ 0; ð4Þ
where 0 is a 4 × 1 zero vector. Define β = (β0, β1, β2, β3)

T,

R� ¼
E Yδ C1 ¼ 0;C2 ¼ 0ð Þð Þ
E Yδ C1 ¼ 0;C2 ¼ 1ð Þð Þ
E Yδ C1 ¼ 1;C2 ¼ 0ð Þð Þ
E Yδ C1 ¼ 1;C2 ¼ 1ð Þð Þ

0
BB@

1
CCA;

Q� ¼
E δ C1 ¼ 0;C2 ¼ 0ð Þð Þ E Xδ C1 ¼ 0;C2 ¼ 0ð Þð Þ E C1δ C1 ¼ 0;C2 ¼ 0ð Þð Þ E C2δ C1 ¼ 0;C2 ¼ 0ð Þð Þ
E δ C1 ¼ 0;C2 ¼ 0ð Þð Þ E Xδ C1 ¼ 0;C2 ¼ 1ð Þð Þ E C1δ C1 ¼ 0;C2 ¼ 1ð Þð Þ E C2δ C1 ¼ 0;C2 ¼ 1ð Þð Þ
E δ C1 ¼ 0;C2 ¼ 0ð Þð Þ E Xδ C1 ¼ 1;C2 ¼ 0ð Þð Þ E C1δ C1 ¼ 1;C2 ¼ 0ð Þð Þ E C2δ C1 ¼ 1;C2 ¼ 0ð Þð Þ
E δ C1 ¼ 0;C2 ¼ 0ð Þð Þ E Xδ C1 ¼ 1;C2 ¼ 1ð Þð Þ E C1δ C1 ¼ 1;C2 ¼ 1ð Þð Þ E C2δ C1 ¼ 1;C2 ¼ 1ð Þð Þ

0
BB@

1
CCA;

the Eq. (4) can be rewritten as R∗ −Q∗β = 0. Solve for
GMM estimator

bβ� ¼ cQ� − 1 bR�;

where the elements of cQ� and bR� are sample means

about X, C1, C2 and C1, C2, Y, respectively. Thus bβ� is a
valid estimator only if Q∗ has full rank. The determinant
of the matrix Q∗ is

det Q�ð Þ ¼ P C1 ¼ 0;C2 ¼ 0ð ÞP C1 ¼ 0;C2 ¼ 1ð Þ
P C1 ¼ 1;C2 ¼ 0ð ÞP C1 ¼ 1;C2 ¼ 1ð Þ
�� E XjC1 ¼ 0;C2 ¼ 1ð Þ − E XjC1 ¼ 0;C2 ¼ 0ð Þ½ � −
E XjC1 ¼ 1;C2 ¼ 1ð Þ − E XjC1 ¼ 1;C2 ¼ 0ð Þ½ �g:

Note that the nonlinearity of E[X|C1,C2] with respect to
C1 and C2 implies

E XjC1 ¼ 0;C2 ¼ 1ð Þ − E XjC1 ¼ 0;C2 ¼ 0ð Þ½ � −
E XjC1 ¼ 1;C2 ¼ 1ð Þ − E XjC1 ¼ 1;C2 ¼ 0ð Þ½ �≠0:

Furthermore, the estimated causal effect bβ1 is
bβ1 ¼

E Y jC1 ¼ 1;C2 ¼ 1ð Þ − E Y jC1 ¼ 1;C2 ¼ 0ð Þ½ � − E Y jC1 ¼ 0;C2 ¼ 1ð Þ − E Y jC1 ¼ 0;C2 ¼ 0ð Þ½ �
E XjC1 ¼ 0;C2 ¼ 1ð Þ − E XjC1 ¼ 0;C2 ¼ 0ð Þ½ � − E XjC1 ¼ 1;C2 ¼ 1ð Þ − E XjC1 ¼ 1;C2 ¼ 0ð Þ½ � :

The estimated causal effect bβ1 is reasonable com-
pared with the “ratio estimator” of a binary IV when
C1 and C2 are regarded as two near-IVs. Denote the
sub-sample average of y and x by y1 and x1 when z =
1 and by y0 and x0 when z = 0. Then Δy=Δz ¼ y1 − y0
and Δx=Δz ¼ x1 − x0 , and “ratio estimator” of an IV
[24] is

β̂IV ¼ y1 − y0
x1 − x0

:

Define g(β) = E[(Y − β0 − β1X − β2C1 − β3C2)f(C1,C2)],
and β can be identified only when rank(Q) = l + 2, l = 2,
where l denotes the number of the observed con-
founders. For any f(·) that makes rank(Q) = l + 2, a GMM
estimate of β is

β̂ ¼ arg min ĝ βð Þ0Ŵ ĝ βð Þ� �

¼ Q̂0ŴQ̂
� � − 1

Q̂0Ŵ R̂; ð5Þ

where Ŵ is denoted as a symmetric and positive
definite weight matrix for K ≥ (l + 2), K = rank(Q). The

elements of ĝðβÞ; Q̂ and R̂ are sample means of the
corresponding elements of g(β), Q and R respectively
[20].
If Ŵ→W as N→∞ in probability where W is positive

semi-definite and N denotes the sample size. The main
general properties about GMM estimators under the ap-
propriate regularity conditions are that,

1. β̂→β in probability as N→∞ where β denotes the
true parameter.

2.
ffiffiffiffi
N

p ðβ̂ − βÞ converges in distribution to a normal

distribution with mean zero and variance ðQTWQÞ − 1
QT

WE½ f ðC1;C2Þ f ðC1;C2ÞT �WQðQTWQÞ − 1
σ2
res , where σ2res

is the variance of ϕ(U, εY).
Then we describe a GMM estimator with the effi-

cient instrument (a function of C1, C2) proposed by
Newey and McFadden [25], which has the minimum
variance among all estimators satisfying the Eq. (4).

It also shown that there is an efficient estimator β̂
when the instrument f(C1, C2) is defined as

f eff C1;C2ð Þ ¼ E
∂ψ X;C1;C2;Yð Þ

∂β

	 

jC1;C2

� �T

¼ 1; E XjC1;C2½ �;C1;C2ð ÞT :

From (5), the efficient GMM estimator of β is defined as

β̂
eff ¼ ððQ̂effÞ

T
ŴQ̂

effÞ
− 1

ðQ̂effÞ
T
Ŵ R̂

eff
, where Q̂

eff
and R̂

eff

are the sample means of

Q̂
eff ¼

1 E Xð Þ E C1ð Þ E C2ð Þ
E Xð Þ E E XjC1;C2ð Þ2� �

E C1Xð Þ E C2Xð Þ
E C1ð Þ E C1Xð Þ E C2

1

� �
E C1C2ð Þ

E C2ð Þ E C2Xð Þ E C1C2ð Þ E C2
2

� �

2
664

3
775

Reff ¼
E Yð Þ

E YE XjC1;C2ð Þ½ �
E C1Yð Þ
E C2Yð Þ

2
664

3
775:

The matrix Qeff equals E[f(C1,C2)f(C1,C2)
T] proved in

Appendix B and has full rank if the nonlinearity condi-
tion in Theorem 1 holds. Since Qeff and the positive

definite Ŵ for l = 2 are full rank, β̂
eff

is a valid estimator
which can be simplified as
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β̂
eff ¼ Q̂

eff

 � − 1

Ŵ
− 1

Q̂
eff


 �T
	 
 − 1

Q̂
eff


 �T
Ŵ R̂

eff

¼ Q̂
eff


 � − 1
R̂
eff
:

ð6Þ

We find β̂
eff

does not rely on the choice of Ŵ at this
point. From the above property of the GMM estimator,

the asymptotic variance of β̂
eff

is easily obtained by Qeff

and σ2res

AVAR β̂
eff


 �
¼ Q̂

eff

 � − 1

E f eff C1;C2ð Þ f eff C1;C2ð ÞT
h i

Q̂
eff


 � − 1
σ2Y ¼ Q̂

eff

 � − 1

σ2
res:

Additionally, we show for two binary observed con-
founders that any f(·) which makes the Eq. (4) have the
unique solution leads to the same estimator of parame-
ters as that obtained by f∗(C1,C2) in Appendix B. There-
fore, for the case of two binary observed confounders,

our estimator bβ� is efficient and it is not necessary to
choose an extra function f(·) to improve the efficiency.

Extend to the case of more than two binary confounders
Note that the method proposed is an easy tool to detect
the causal effect in the absence of enough confounding
information. Because of a growing appreciation of the
power gains of multivariate association analyses, more
than two covariates are generally selected to analysis in
practice. In this section, for the case of more than two
binary confounders, we discuss the identification of
parameter β1 in the following model

Y ¼ β0 þ β1X þ β2C1 þ β3C2 þ⋯þ βlþ1Cl

þ ϕ U ; εYð Þ: ð7Þ
Define β = (β0, β1, β2,⋯, βl + 1)

T, Eq. (7) can be rewrit-
ten as Q × β = R, where Q = (1, E(X|C1,C2,⋯Cl), C1,C2,
⋯Cl) denotes a 2l × (l + 2) matrix, β is a (l + 2) vector.
According to the equation Q × β = R, parameter β1 is
identifiable if K = rank(Q) ≥ (l + 2), such that the matrix
Q has full column rank. We extend Assumptions 2–4
to the case of more than two binary confounders as
follows:
Assumption 2*: (C1,C2,⋯, Cl) ⊥ ϕ(U, εY), i.e. (C1,C2,

⋯,Cl) are not associated with any confounder (U) of the
exposure–outcome relationship and random errors εY.
Assumption 3*: The effect of (X,C1,C2,⋯,Cl) on Y is

linear.
Assumption 4*: The effect of (C1,C2,⋯,Cl) on X is

non-linear (e.g. with an interaction effect or the quad-
ratic term of (C1, C2,⋯,Cl) on X).
Thus, under the Assumption 1 and the Assumptions

2*-4*, the causal effect of X on Y can be identified.

Similar to the case of two binary observed confounders
C1 and C2, different f(·) for C1, C2, ⋯, Cl in (7) leads to
different estimators. Here, we have

E Y − β0 − β1X − β2C1 − β3C2 −⋯− βlþ1Cl
� �

f C1;C2;⋯;Clð Þ� � ¼ 0:

ð8Þ
Under the conditional expectation (8), the efficient

GMM estimator β̂
eff

of β is β̂
eff ¼ ðQ̂effÞ

− 1
R̂
eff
, with

f eff C1;⋯Clð Þ ¼ E
∂ψ X;C1;⋯Cl;Yð Þ

∂β

	 

jC1;⋯Cl

� �T

¼ 1; E XjC1;⋯Cl½ �;C1;⋯Clð ÞT :
From the above property of the GMM estimator, we

can obtain the asymptotic variance of β̂
eff

in this case

AVAR β̂
eff


 �
¼ Q̂

eff

 � − 1

E f eff C1;⋯;Clð Þ f eff C1;⋯;Clð ÞT
h i

Q̂
eff


 � − 1
σ2
Y ¼ Q̂

eff

 � − 1

σ2
res;

where Q̂
eff

and R̂
eff

are the sample means of

Qeff ¼

1 E Xð Þ E C1ð Þ ⋯ E Clð Þ
E Xð Þ E E XjC1;⋯;Clð Þ2� �

E C1Xð Þ ⋯ E ClXð Þ
E C1ð Þ E C1Xð Þ E C2

1

� �
⋯ E C1Clð Þ

⋮ ⋮ ⋮ ⋮
E Clð Þ E ClXð Þ E C1Clð Þ ⋯ E C2

l

� �

2
66664

3
77775
;

Reff ¼

E Yð Þ
E YE XjC1;⋯;Clð Þ½ �

E C1Yð Þ
⋮

E ClYð Þ

2
66664

3
77775
:

Simulations
In order to investigate the performance of our
method in simulation study, as well as to determine
in which scenario it performs well or badly in com-
parison with the traditional regression approach
adjusting for observed confounders, we perform simu-
lations with four cases. In our simulations, data are
generated based on the causal diagram depicted in
Fig. 1.
In each case (exposure and outcome are continuous

or binary respectively, denoted as Simulation A: ex-
posure and outcome are both continuous; Simulation
B: exposure is binary while outcome is continuous;
Simulation C: exposure is continuous while outcome
is binary; Simulation D: exposure and outcome are
both binary), we take into account two scenarios
where C1, C2 and U are independent, C1, C2 and U
are correlated respectively (For Simulation A, two
scenarios denotes as Simulation A1, Simulation A2,
respectively, similar notation for Simulation B, C, D).
We performed simulation to compare performances
of three methods including crude association without

Liu et al. BMC Medical Research Methodology          (2020) 20:195 Page 5 of 12



adjusting for C1, C2 and U (model 1), model of
adjusting for C1 and C2 (model 2) and the method
we proposed here (model 3). We simulated baseline
covariates and a quantitative exposure in a large
population consisting of 2000 subjects in Simulation
A, 10000 subjects in Simulation B and 100,000
subjects in Simulation C, D.
The data of Simulation A1 were generated for each

individual in the following procedure:

1. C1~Bernoulli(N, 0.5), C2~Bernoulli(N, 0.5).
2. U~N(0, 1).
3. εX~U(0, 1), εY~U(0, 1).
4. X = 0.6C1 + 0.4C2 + 0.6C1C2 + 0.2U + εX.
5. Y = X + 0.4C1 + 0.3C2 + 0.1U + εY.

The data of Simulation A2 were generated for each
individual in the following procedure:

1. ðC1;C2;UÞ � Nðμ;ΣÞ; μ ¼
0
0
0

0
@

1
A;Σ ¼

1 d c
d 1 c
c c 1

2
4

3
5; c ¼ 0:1; d ¼ 0:2.

2. Draw C1 from the first column of multivariate
normal distribution, and discretize it into a binary
variable with probabilityP(C1 = 1) = 0.5.

3. Draw C2 from the second column of multivariate
normal distribution, and discretize it into a binary
variable with probabilityP(C2 = 1) = 0.5.

4. Draw U from the third column of multivariate
normal distribution.

5. εX~U(0, 1), εY~U(0, 1).
6. X = 0.6C1 + 0.4C2 + 0.6C1C2 + 0.2U + εX.
7. Y = X + 0.4C1 + 0.3C2 + 0.1U + εY.

The data of Simulation B1-B2, Simulation C1-C2,
Simulation D1-D2 were similarly generated for each in-
dividual. Details are listed in the Appendix C.

Data application
Numerous epidemiological studies have evaluated the
relationships between BMI and SBP, DBP, FBG, TG, TC,
HDL and LDL, respectively, but the causal effects are in-
conclusive due to the existence of unobserved confound-
ing [26–28]. Hence, we use the method proposed in this
article to evaluate the potential causal effect of BMI on
SBP, DBP, FBG, TG, TC, HDL and LDL compared with
the traditional regression approach adjusting for age
(discrete) and gender, adjusting for age (continuous) and
gender and adjusting for age (discrete), gender and other
health factors (including SBP, DBP, FBG, TC, TG, HDL
and LDL) using data from a follow-up survey in Jining,
Shandong Province.

Results
Simulation results
We separately varied across the main effect value α1 of
C1 on X, the main effect value α2 of C2 on X, the inter-
action effect α3 of C1 and C2 on X, the causal effect β1 of
X on Y, the confounding effect β2 of C1 on Y, the correl-
ation coefficient c between C1 and C2 as well as correl-
ation coefficient d between C1 and U.
We changed one parameter at a time while keeping all

others at their basic values, when N = 2000 for Simula-
tion A1-A2, N = 10,000 for Simulation B1-B2, N = 100,
000 for Simulation C1-C2 and N = 100,000 for Simula-
tion D1-D2. Results showed the estimated bias, standard
error (SE) and the mean squared error (MSE) from the
three models for varied effects of C1 on X, the inter-
action effects of C1 and C2 on X, U on X, X on Y, C1 on
Y, U on Y, and the correlations among C1, C2 and U.
The results showed the estimates of the model without
any adjustment (model 1) and the model adjusting for
both C1 and C2 (model 2) were biased. When we used
the method we proposed (model 3) to analyze simulated
data sets, the estimates were unbiased and had accept-
able standard error. And our method had better MSE
than other methods (i.e. model 1 and model 2). Figures 2
and 3 showed the results of Simulation A1, Fig. 4
showed the partial results of Simulation A2, the rest of
results of Simulation A2 and other six different scenarios
were showed in Figure S1, S2, S3, S4, S5, S6, S7, S8, S9,
S10, S11, S12, S13 (Figure S1-S2 for Simulation A2, Fig-
ure S3-S4 for Simulation B1, Figure S5, S6, S7 for Simu-
lation B2, Figure S8-S9 for Simulation C1, Figure S10 for
Simulation C2, Figure S11-S12 for Simulation D1, Figure
S13 for Simulation D2). Specifically, when varying across
the effects of C1 on Y, the biases of unadjusted model
(model 1) had a significant positive linear correlation
with β2 and the ones of adjustment for C1 and C2 (model
2) remained stable. When varying across the effects of U
on Y, the biases of both model 1 and model 2 linearly in-
creased. Our method still had unbiased causal effect esti-
mates and lower MSE than other two methods.
Similarly, when varying across the effects of C1, U on
X, respectively, the biases of model 1 and model 2
monotonically varied. Furthermore, the larger inter-
action effect of C1 and C2 on X, the causal effect esti-
mation had higher precision for our proposed method
(model 3). In order to make sure model 3 remains
the smallest MSE among three models, we suggested
the interaction effect of C1 and C2 on X moderately
larger. Certainly, the bias did not change significantly
from the basic scenario in any of the models when
we changed the causal effect of X on Y. Moreover, when
there existed an correlation between observed con-
founders C1 and C2, our method still got unbiased causal
effect estimated. We still obtained the almost unbiased
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causal effect estimation if P(C1 = 1) = P(C2 = 1) = 0.5 when
observed confounder C1 (or C2) and unobserved
confounders U were correlated.
Compared to the situation of continuous variables, sam-

ple size N needs to be larger for discrete exposure and
outcome variable. Under the linear probability model set-
ting of X, C1, C2, U on Y (i.e. 0 ≤ P(Y|X,C1,C2,U) ≤ 1), the
effects of C1 on X, C2 on X, the interaction effect of C1

and C2 on X, U on X should be relatively small.

Furthermore, our method had better MSE than model 2,
and was similar with model 1, the estimates remained un-
biased. We use R program (version 3.6.1) to reproduce all
simulations and analyses which are available on Github
(https://github.com/LULIU1816/Two-binary-confounder).

Data application results
In this section, we used the method proposed in this art-
icle to evaluate the potential causal effects of BMI on

Fig. 2 The Simulation A1 result. Results shows the estimated biases, SE and MSE from the 3 models for varied effects of a C1 on X, b the
interaction effect of C1 and C2 on X, c U on X
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SBP, DBP, FBG, TG, TC, HDL and LDL using data from
a follow-up survey in Jining, Shandong Province. Fur-
thermore, we selected age and gender as near-IVs com-
pared with the traditional regression approaches
adjusting for age (discrete) and gender, adjusting for age
(continuous) and gender and adjusting for age (discrete),
gender and other health factors (including SBP, DBP,
FBG, TC, TG, HDL and LDL). The cohort recruited 136,
895 individuals aged 20- years between 2007 and 2015.
In order to avoid reverse causation, we selected the data

of BMI, age, gender in 2014 and SBP, DBP, FBG, TG,
TC, HDL and LDL in 2015(N = 7013), respectively. Age
and gender were divided into two discrete variables 0, 1.
Age was discretized by median 40 as 0 and 1. Subject
characteristics showed at Table 1. Proportion of female
was 41.01%. Kolmogorov-Smirnov test is one of normal-
ity tests when the sample size over 5000. The median
SBP was 120 (95% CI: 109–160) mmHg, the median
DBP was 75 (95% CI: 66–101) mmHg. The median FBG
was 5.20 (95% CI: 4.80–8.20) mmol/L, the median TC

Fig. 3 The Simulation A1 result. Results shows the estimated biases, SE and MSE from the 3 models for varied effects of a X on Y, b C1 on Y, c U on Y
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was 4.64 (95% CI: 4.01–6.76) mmol/L, the median TG
was 1.04 (95% CI: 0.60–4.67) mmol/L, the median HDL
was 1.29 (95% CI: 1.10–1.87) mmol/L, the median LDL
was 2.76 (95% CI: 2.23–4.30) mmol/L. And, the median
BMI was 24.68 (95% CI: 21.83–32.07) kg/m2.

Results of our proposed method and the traditional re-
gression approach adjusting for age and gender are
showed in Table 2. Firstly, we examine whether two in-
dependent or correlated available confounders satisfy the
non-linear condition on the exposure. Results confirmed
the interaction between age and gender on BMI (P =
2.82 × 10−9). Traditional regression approach implied the
significant associations between SBP, DBP, FBG, TG,
TC, HDL, LDL and BMI, respectively. BMI had obvi-
ously positive correlation with SBP, DBP, FBG, TG, TC
and LDL while obviously negative correlation with HDL.
However, our proposed method revealed the causal ef-
fect of BMI on indicators including SBP, DBP, TG, TC,
LDL. In addition, the causal effects of BMI on HDL and
FBG were not significant. SBP increased 1.60 (95% CI:
0.99–2.93) mmol/L with per 1- kg/m2 higher BMI and
DBP increased 0.37 (95% CI: 0.03–0.76) mmol/L with
per 1- kg/m2 higher BMI. Moreover, 1- kg/m2 increase
in BMI had potential causality with a 1.61-SD increase
in TC (β, 1.61; 95% CI: 0.96–2.97), a 1.66-SD increase in
TG (β, 1.66; 95% CI: 0.91–55.30) and a 2.01-SD increase
in LDL (β, 2.01; 95% CI: 1.09–4.31). However, BMI had

Fig. 4 The Simulation A2 result. Results shows the estimated biases, SE and MSE from the 3 models for varied effects of a the correlation
between X and C1, b the correlation between C1 and C2

Table 1 Subjects characteristics in Jining, Shandong Province

Variables N = 7013 Pa

Age (years, Median(95% CI)) 40(31–70) < 2.2×10-16

Female (n, %) 2876 (41.01%)

SBP (mmHg, Median(95% CI)) 120 (109–160) < 2.2×10-16

DBP (mmHg, Median(95% CI)) 75 (66–101) < 2.2×10-16

FBG (mmol/L, Median(95% CI)) 5.20 (4.80–8.20) < 2.2×10-16

TC (mmol/L, Median(95% CI)) 4.64 (4.01–6.76) < 2.2×10-16

TG (mmol/L, Median(95% CI)) 1.04 (0.60–4.67) < 2.2×10-16

HDL (mmol/L, Median(95% CI)) 1.29 (1.10–1.87) < 2.2×10-16

LDL (mmol/L, Median(95% CI)) 2.74 (2.23–4.30) < 2.2×10-16

BMI (kg/m2, Median(95% CI)) 24.68 (21.83–32.07) 6.96×10-07

aKolmogorov-Smirnov test
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no potential causality with HDL (β, − 0.20; 95% CI: −
1.71-1.44). The effect of FBG per 1- kg/m2 higher BMI
was 0.56 (95% CI: − 0.24-2.18). To conclude, the poten-
tial causal effects of BMI on SBP, DBP, FBG, TG, TC,
HDL and LDL were almost consistent with previous
studies. Furthermore, the results showed the robustness
of the novel method.

Discussion
In this paper, we present a simple and intuitive
method to identify and correct for confounding bias
in observation studies using a confounder–exposure
nonlinear condition. In cases where the independence
assumption between observed confounder and unob-
served confounder is violated, a sensible approach
shows the almost unbiased causal effect estimation if
P(C1 = 1) = P(C2 = 1) = 0.5. In this sense, our proposed
method can be viewed very much as a tool for identi-
fying causal effect in epidemiology.
To identify and estimate causal effect with unobserved

confounders, different approaches require different un-
testable assumptions, such as DID needs an untestable
common trend assumption. Fortunately, the approach
proposed in this paper requires the nonlinearity assump-
tion of at least two observed confounders (C1,C2,⋯,Cl)
and treatment variable X, as well as the conditional ex-
pectation of unobserved confounders given observed
confounders U is 0. Furthermore, the observed data con-
tain (C1,C2,⋯,Cl) and X which can be utilized to test
our nonlinearity assumption. This is exclusive to our
method compared with other methods.

For binary variable, the parameter estimates from
the LPM can be directly interpreted as the effect of
the exposure on the prevalence rate of the outcome
which is consistent with the ACE. Conversely, logistic
regression or log-linear regression are not applicable
in causal inference, since they do not provide a direct
interpretation of bivariate associations. However, error
terms of LPM with ordinary least square estimation
are heteroskedastic and predicted probability can be
above 1 or below 0. Therefore, we adopt GMM to
deal with these problems. Additionally, our proposed
method has no assumption on the independence
among observed confounders. This can be widely
used in epidemiology to obtain the causal inference of
the exposure on the outcome.
Another advantage is the accessibility of two observed

confounders satisfying nonlinear condition. Further, we
find out that using GMM still fairly reliable in our pro-
posed method if the number of observed confounders is
over two.
A number of factors must be considered before imple-

menting the method. First, the independence assumption
between observed and unobserved confounders is
essential for causal estimate correction. One strategy to
overcome this limitation is to select other observed con-
founders with the probabilities of binary values 0.5. Sec-
ond, interaction between observed confounders and
unobserved confounders on exposure is sufficiently
strong. Finally, our method cannot identify the reverse
causation. Requiring a priori knowledge or using the idea
of Cross-lagged Panel Analysis may avoid this problem.

Table 2 The causal effect of BMI on SBP, DBP, FBG, TG, TC, HDL and LDL

double confounding variables model regression adjusting for age (discrete) and gender

β SE 95%CI β SE P-value

BMI→ SBP 1.60 0.62 0.99–2.93 0.25 0.01 3.83×10-74

BMI→DBP 0.37 0.18 0.03–0.76 0.22 0.01 3.90×10-51

BMI→ FBG 0.56 0.86 −0.24-2.18 0.11 0.02 1.98×10-09

BMI→ TC 1.61 0.58 0.96–2.97 0.11 0.02 5.67×10-13

BMI→ TG 1.66 1.36 0.91–55.30 0.27 0.02 2.19×10-51

BMI→ HDL −0.20 0.92 −1.71-1.44 −0.20 0.02 4.12×10-19

BMI→ LDL 2.01 0.84 1.09–4.31 0.12 0.02 2.21×10-11

regression adjusting for age (discrete), gender and other health factors regression adjusting for age (continuous) and gender

β SE P-value β SE P-value

BMI→ SBP 0.15 0.02 < 2×10-16 0.24 0.01 4.19×10-70

BMI→DBP 0.10 0.02 1.67×10-07 0.22 0.01 1.63×10-50

BMI→ FBG 0.07 0.02 1.58×10-03 0.10 0.02 1.66×10-09

BMI→ TC −0.02 0.02 0.23 0.11 0.02 1.87×10-12

BMI→ TG 0.09 0.02 1.57×10-05 0.27 0.02 6.24×10-51

BMI→ HDL −0.11 0.03 8.71×10-06 −0.20 0.02 7.45×10-19

BMI→ LDL 0.04 0.02 0.02 0.12 0.02 5.12×10-11
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Identifying causal effects across studies of differing design
can therefore prove valuable in further research, whilst
agreement with the result of Mendelian Randomization
and randomization experiment strengthens confidence in
the resulting findings and subsequent inference.

Conclusions
In conclusions, we propose a novel method to control
unobserved confounding through double or more binary
confounders satisfying a non-linear condition on the ex-
posure which is easy to access. In particular, our method
can handle general cases regardless of a continuous or
categorical exposure and outcome. Various simulations
show better estimation performance by our approach
and suggest that our method will be more widely used
in observational studies to explore causal association.
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