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Postmenopausal osteoporosis (PMOP) is characterized by the uncoupling of bone resorption
and bone formation induced by estrogen deficiency, which is a complex outcome related to
estrogen and the immune system. The interaction between bone and immune cells is
regarded as the context of PMOP. Macrophages act differently on bone cells, depending
on their polarization profile and secreted paracrine factors, whichmay have implications for the
development of PMOP. PMOP, rheumatoid arthritis (RA), and Alzheimer’s disease (AD) might
have pathophysiological links, and the similarity of their pathological mechanisms is partially
visible in altered macrophages and cytokines in the immune system. This review focuses on
exploring the pathological mechanisms of PMOP, RA, and AD through the roles of altered
macrophages and cytokines secretion. First, the multiple effects on cytokines secretion by
bone-bone marrow (BM) macrophages in the pathological mechanism of PMOP are
reviewed. Then, based on the thought of “different tissue-same cell type-common
pathological molecules-disease pathological links-drug targets” and the methodologies of
“molecular network” in bioinformatics, highlight that multiple cytokines overlap in the
pathological molecules associated with PMOP vs. RA and PMOP vs. AD, and propose
that these overlaps may lead to a pathological synergy in PMOP, RA, and AD. It provides a
novel strategy for understanding the pathogenesis of PMOP and potential drug targets for the
treatment of PMOP.
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INTRODUCTION

Postmenopausal osteoporosis (PMOP) is a systemic chronic
bone metabolic disease caused by the uncoupling of bone
resorption and bone formation with estrogen deficiency (1, 2).
Estrogen is also involved in the control of immune function,
leading to a chronic low-grade pro-inflammatory phenotype
under estrogen deficiency with altered cytokine expression and
immune cell profiles in PMOP (3–5). Bone and immune system
are functionally linked by complex molecular networks, in which
accumulating evidence suggests that macrophages either directly
or indirectly through the secretion of various cytokines,
coordinate the coupling between osteoblasts and osteoclasts (6,
7). The relationship among estrogen, macrophages, and the
skeleton could help in understanding the complex mechanism
of PMOP.

The complex crosstalk between bone and immune cells
plays an indispensable role in the pathogenesis of PMOP.
Immunomodulatory imbalances and functional alterations are
also part of the pathological conditions of PMOP, rheumatoid
arthritis (RA), and Alzheimer’s disease (AD). Immunological
studies have demonstrated that different tissue-resident cells of the
macrophage lineage, such as bone-bone marrow (BM)
macrophages, synovial macrophages, and microglia, are
responsible for pathological changes in PMOP, RA, and AD,
respectively. The existence of pathological links in PMOP, RA,
and AD may be explained by searching for the common molecular
network mediated by bone-BM macrophages, synovial
macrophages, and microglia to provide a novel strategy for
potential drug targets for the treatment of PMOP.
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DIVERSITY OF PHENOTYPES AND
FUNCTIONS OF MACROPHAGES

Macrophages, which are immune cells with heterogeneous
phenotypes and complex functions, can be divided into
circulating and resident macrophages (8, 9). Primitive
hematopoiesis is a source of macrophages in embryos, and the
majority of resident macrophages originate from yolk sac
erythro-myeloid progenitors (10, 11). Bone-BM macrophages,
synovial macrophages, and microglia play a key role in
maintaining tissue homeostasis; phagocytosis and removal of
cellular debris and foreign substances; tissue repair, regeneration,
and remodeling; and the development and resolution of
inflammation (12–15). Under physiological conditions, the
bone-BM contains multiple different resident macrophage
populations, including osteal macrophages, hematopoietic
stem cell niche macrophages, and erythroblast island
macrophages (16, 17). Macrophages have remarkable plasticity
that allows them to respond efficiently to environmental signals
and change their phenotypes.

Macrophages are activated, polarized, and subsequently
secreted various cytokines (Supplementary Table S1) that are
involved in coupling of bone resorption and bone formation
under exposure to various types of stimuli. Under exposure to
lipopolysaccharide (LPS) or T-helper 1 cytokines, such as
interferon-gamma or granulocyte macrophage-colony
stimulating factor, alone or in combination, macrophages are
activated towards an M1 functional program to produce toxic
effector molecules (such as inflammatory cytokines, reactive
oxygen, and nitrogen species), which participate in polarized
June 2022 | Volume 13 | Article 876269
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T-helper 1 responses, regulate oxidative stress, and evoke
inflammatory responses (18–21). Conversely, T-helper 2
cytokines, such as interleukin (IL)-4 or IL-13, can induce
macrophages to polarize into the M2 type including M2a,
M2b, M2c, and M2d, and play a central role in polarized T-
helper 2 responses, the dampening of inflammation,
angiogenesis, immunoregulation, and the remodeling of tissues
(11, 22–25). The diversity of the phenotypes and functions of
macrophages makes them play important different roles in
inflammatory, immune, and metabolic diseases, such as
PMOP, RA, and AD.
ROLE OF CYTOKINES SECRETED BY
BONE-BM MACROPHAGES IN COUPLING
OF BONE RESORPTION AND
BONE FORMATION

Macrophages Directly Regulate Coupling
of Bone Resorption and Bone Formation
Macrophages play a pivotal role in the coupling of bone
resorption and bone formation. Paracrine cytokines, such as
transforming growth factor-b (TGF-b), bone morphogenetic
protein (BMP)-2, BMP-4, BMP-6, and osteopontin, are
secreted by activated macrophages, which have a direct and
critical impact on the physiological and pathological regulation
of bone (Supplementary Table S2). On the one hand, fusion
between cells of the monocyte/macrophage lineage leads to the
formation of osteoclasts, which are the only cells with the ability
to dissolve bone tissue (26). On the other hand, ablation of
macrophages leads to loss of endosteal osteoblasts, reduction in
the number of bone marrow mesenchymal stem cells (BMSCs),
decrease in the ability of BMSCs to differentiate into osteoblasts,
and attenuation of parathyroid hormone-induced trabecular
bone anabolism (27–30). The macrophage-osteoclast axis plays
an essential role in osteoimmunity, regulating the coupling of
bone resorption and bone formation (31).

Uncoupling of Bone Resorption and Bone
Formation: Cytokines Mediate
Inflammatory Responses
Although macrophages in bone-BM are not directly adjacent to
osteoblasts, they can alter the BM microenvironment by mediating
an inflammatory response to affect bone synthesis and catabolism.
Osteocytes are regulated by macrophages that secrete inflammatory
mediators to control the coupling of bone resorption and bone
formation (Supplementary Table S3). Macrophages are vital
modulators of inflammation that rapidly change their phenotypes
and functions in response to local microenvironmental signals and
also play various roles in both the induction and resolution of
inflammation, such as clearing dead cells and debris, presenting
antigens, and recruiting, and activating other immune cells (7, 32–
34). Skeletal homeostasis depends on the balance between the
classically active M1 type and the alternatively active M2 type (35,
36). M2 activation appears to be blunted in macrophages from
Frontiers in Endocrinology | www.frontiersin.org 3
postmenopausal women, leading to an increased M1/M2 response
ratio (32). In ovariectomized (OVX) mice, polarization of M1
macrophages was increased whereas polarization of M2
macrophages was disturbed (37). Therefore, changes in
macrophage-derived cytokines and their phenotypes linked with
inflammation are critical regulators of bone resorption and bone
formation, supporting the theory that the immune system
significantly contributes to the pathological mechanism of
inflammation-mediated bone-loss.

Uncoupling of Bone Resorption and Bone
Formation: Cytokines Mediate Oxidative
Stress
After menopause, due to the influence of estrogen deficiency, the
level of oxidative stress in the body increases, which causes the
imbalance in bone reconstruction and leads to osteoporosis (38–
40). Macrophages secrete regulatory factors related to oxidative
stress, such as reactive oxygen species (ROS), nitric oxide (NO),
and inducible nitric oxide synthase, which induce pathological
changes in the differentiation process and activity of bone cells,
ultimately leading to the uncoupling of bone resorption and bone
formation (Supplementary Table S4). The oxidative stress level
in PMOP depends on the relationship between ROS and the
endogenous antioxidant defense system (41, 42). One of the most
damaging effects of ROS is lipid peroxidation, whose end
product, malondialdehyde, is a potential biomarker of
oxidative stress (43). NO, catalyzed by nitric oxide synthase, is
also an integral part of the response to oxygen deprivation and
has been confirmed to be a key regulator of bone homeostasis
(44–46). The effects of these factors highlight the diversity of the
roles of macrophages in regulating bone homeostasis. Further
studies are needed to clarify the molecular mechanisms
underlying the relationship among macrophages, oxidative
stress and PMOP.

Uncoupling of Bone Resorption and Bone
Formation: Cytokines
Mediate Angiogenesis
Bone is a highly vascularized tissue, and bone homeostasis
depends on the coupling between bone and blood vessels. The
skeletal microvasculature system plays an important role in the
metabolism of BM microenvironment, osteogenesis, and
maintenance of the balance between bone formation and bone
resorption. Basic and clinical studies have found that the
decrease in local blood supply is related to PMOP. In the OVX
mouse model, the number of microvessels, the type H vessels,
and the expression of vascular endothelial growth factor (VEGF)
are all significantly reduced (47, 48). Macrophages are key
cellular components in the BM microenvironment that
regulate bone homeostasis and angiogenesis. In bone repair,
macrophages can remove dead neutrophils at the injured site
after fracture, and release cytokines, such as VEGF,
erythropoietin, platelet-derived growth factor-BB, matrix
metallopeptidase 2 (MMP2), MMP9, and fibroblast growth
factor 2 (FGF2) (Supplementary Table S5), so as to initiate
the repair cascade that suppresses the pro-inflammatory
June 2022 | Volume 13 | Article 876269
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responses and promotes angiogenic responses (49, 50). During
the inflammatory phase of bone repair, the recruitment of
macrophages is related to angiogenesis, and their numbers are
strongly correlated with the density of blood vessels (51).
Moreover, the coordinated conversion of the pro-inflammatory
M1 and anti-inflammatory M2 phenotypes in macrophages
determines the efficiency of bone regeneration to a great extent
(52). Given their intimate involvement in vascular formation, an
understanding of the multilayered contributions of macrophages
to bone repair and fracture healing is also accumulating.
BIOINFORMATICS IDENTIFIED SHARED
PATHOLOGICAL MOLECULES IN PMOP,
RA, AND AD

Bioinformatics Revealed Potential
Pathological Links in PMOP, RA, and AD
Because the physiological and immune functions are reduced in
postmenopausal women, in addition to the need to prevent
osteoporosis, the prevalence of RA and AD is also quite
noteworthy. A large number of clinical and basic studies have
confirmed the association in PMOP, RA, and AD. With the help
of bioinformatics analysis methods (Supplementary Methods of
Bioinformatics), we integrated multiple databases to screen the
differential genes of PMOP, and then performed enrichment
analysis of the Kyoto Encyclopedia of Genes and Genomes
Frontiers in Endocrinology | www.frontiersin.org 4
(KEGG) pathway, which was also enriched in the RA and AD
pathways (Figure 1 and Table 1). Simultaneously, the two
signaling pathways of neuroactive ligand-receptor interaction
and cytokine-cytokine receptor interaction also undergo
significant changes. Like PMOP, the pathological mechanisms
of RA and AD are also closely associated with two resident
macrophages: synovial macrophages and brain microglia,
respectively. Therefore, we pose the question of what role do
macrophages play in the “two-pairs of disease links”. Searching
for significant common-targets in PMOP, RA, and AD may have
a particularly practical meaning in providing guidance for the
prevention and control of PMOP, RA, and AD.

Common Pathological Molecules Between
PMOP and RA: A Molecular Perspective of
Cytokines Secreted From Bone-BM
Macrophages and Synovial Macrophages
The immune cells involved in RA, macrophages, are the most
numerous immune cells found in the RA synovium and play a
key role in immune/inflammatory reactions and bone loss by
paracrine signaling or via direct cell-cell contact (53–56). In
addition, synovial macrophages are involved in pathological
processes such as matrix degradation, oxidative stress, and
angiogenesis in RA (57–59).

Among other features, RA is characterized by systemic bone
loss, and the risk of osteoporosis is high in patients with RA,
especially in postmenopausal women (60–62). Therefore, to
clarify the pathological links between PMOP and RA, we used
FIGURE 1 | Top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment candidate targets of differential genes in postmenopausal
osteoporosis. Pathways with significant changes (false discovery rate [FDR] < 0.05) were identified. The vertical coordinates represent the KEGG pathway with
significant enrichment, and the horizontal coordinates represent the gene ratio, which refers to the ratio of enriched genes to all target genes. The color of the bubble
graph indicates the significance of the enriched KEGG pathway, the color gradient represents the size of the P-value, and the size of each dot represents the
number of genes.
June 2022 | Volume 13 | Article 876269
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bioinformatics analysis methods (Supplementary Methods of
Bioinformatics) to search for common pathological molecules
between them.

The results are summarized as follows: among biological
processes, it is enriched in leukocyte migration, cell
chemotaxis, leukocyte chemotaxis, myeloid, mononuclear cell
migration, granulocyte chemotaxis, monocyte chemotaxis, and
other processes. (Figure 2A). Among molecular functions, it is
enriched in cytokine receptor binding, cytokine activity, growth
factor binding, growth factor activity, immune receptor activity,
growth factor receptor binding, cytokine receptor activity,
Frontiers in Endocrinology | www.frontiersin.org 5
cytokine binding, TGF-b receptor binding, insulin-like growth
factor (IGF) binding, IGF-1 binding, and other functions
(Figure 2B). The results show that the immune system and
immune cells play important regulatory roles in the occurrence
of PMOP and RA. Although the results did not directly enrich
macrophage-related functions in the top 20 Gene Ontology
functions, the related functions enriched in cells (such as TGF-
b and IGF-1) still had great directivity. Cytokines secreted by
macrophages, including TGF-b1, IL-1b, IL-2, IL-4, IL-6, IL-10,
tumor necrosis factor (TNF), IGF-1, VEGFA, FGF2 and MMP2,
which are associated with the functions of regulation of immune
TABLE 1 | Results of KEGG enrichment analysis of RA and AD pathways.

Description Gene Ratio Bg Ratio P-value P-adjust Q-value

Rheumatoid arthritis (hsa05323) 43/1093 93/8112 1.25E-14 3.13E-13 1.48E-13
Alzheimer’s disease (hsa05010) 66/1093 384/8112 0.019899217 0.039433384 0.01871717
June 2022 | Volume 13 | A
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FIGURE 2 | Core cytokine networks of pathological crosstalk in postmenopausal osteoporosis (PMOP) vs. rheumatoid arthritis (RA) and PMOP vs. Alzheimer’s
disease (AD). Gene ontology functional enrichment analysis of common differential genes in PMOP vs. RA and PMOP vs. AD was performed, including biological
processes (A, D) and molecular functions (B, E). Protein–protein interaction (PPI) network topology analysis was performed for common differential genes in PMOP
vs. RA and PMOP vs. AD, and biological process enrichment analysis of core network genes was completed (C, F).
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system process, bone remodeling, regulation of inflammatory
response, response to oxidative stress, and angiogenesis, were
screened from the protein–protein interaction (PPI) core
network, as described above (Figure 2C).

As in PMOP, an imbalanced network of cytokines secreted by
synovial macrophages plays a key role in the pathogenesis of RA.
Among them, secretion of TNF-a, IL-1b, IL-2, and IL-6, or a
combined deficiency of IL-4 and IL-10, promotes and sustains
inflammation, while also acting to promote bone erosion (63,
64). In addition, TGF-b, TNF-a, IGF-1, VEGF, FGF2, and
MMP2 are involved in the hypervascularization as well as the
pannus formation observed in RA (65–67). As a result, the
imbalanced cytokine network could provide clues to identify
pathological links between the two diseases and potentially
suggest some shared pharmacological prevention and treatment.

Common Pathological Molecules between
PMOP and AD: A Molecular Perspective of
Cytokines Secreted From Bone-BM
Macrophages and Microglia
Microglia may play a significant role in the pathogenesis of AD,
which is characterized by deposition of b-amyloid plaques,
hyperphosphorylation of tau protein, oxidative damage,
neuroinflammation, vascular remodeling, autophagy, and
mitochondrial dysfunction (68–71). AD and PMOP are frequently
seen to coincide in clinical practice, and their possible relationship,
concurrent occurrence, and linking mechanism have recently been
highlighted (72–74). Prevention of osteoporosis should be considered
as part of the treatment of patients with AD, especially in
postmenopausal women, and conversely, prevention of AD should
be considered in patients with various degrees of bone loss.

Microglia show altered morphology and reduced arborization,
and their activation increases with the progression of AD (75, 76).
Activated microglia exhibit many morphologic and
immunophenotypic features of peripheral macrophages, such as
pro-inflammatoryM1 and immunosuppressiveM2 phenotypes (77,
78). Activated microglia assume diverse phenotypes, which mediate
the different pathological processes of AD by releasing various
substances, such as inflammatory cytokines, growth factors,
chemokines, neurotrophins, and superoxide (79–82).

We a l so used bio in format ics ana lys i s methods
(Supplementary Methods of Bioinformatics) to search for
common pathological molecules between PMOP and AD.
Among biological processes, it’s enriched in the regulation of
inflammatory response, response to LPS, ROS metabolic process,
and other processes (Figure 2D). Among molecular function, it
is enriched in the cytokine receptor binding, cytokine activity,
growth factor activity, growth factor binding and receptor
binding, and other functions (Figure 2E). Cytokines secreted
by macrophages, including TGF-b1, IL-1b, IL-2, IL-4, IL-6, IL-
10, IL-18, TNF, IGF-1, C-X-C motif chemokine ligand 8
(CXCL8), VEGFA, FGF2, MMP2, and MMP9, which are also
associated with the functions of regulation of immune system
process, bone remodeling, regulation of inflammatory response,
response to oxidative stress, and angiogenesis, were screened
from the PPI core network, as described above (Figure 2F).
Frontiers in Endocrinology | www.frontiersin.org 6
The results indicated that the pathological changes in bone-BM
macrophage-mediated PMOP are partially similar to the
pathological changes in microglia-mediated AD.

The delicate balance between their pro-inflammatory and anti-
inflammatory actions and their neurotoxic and neuroprotective
actions determines the role of microglia in AD. Microglia activate
and drive inflammatory processes by inducing the pro-
inflammatory molecules, such as IL-1b, IL-6, IL-18, and TNF-a,
leading to accumulation of extracellular amyloid-b peptides, tau
hyperphosphorylation, and activation of other inflammatory
participants (83, 84). They also produce various anti-
inflammatory, chemokines and growth factors, such as IL-2, IL-4,
IL-10, CXCL8, FGF2, IGF-1, and TGF-b1, which have been shown
to exert neuroprotective effects against amyloid-b-induced
neurodegeneration (85–88). Other microglia-derived factors such
as VEGFA, MMP2, and MMP9, are associated with disruption of
the blood-brain barrier, leading to neuroinflammation and
progression of AD (89–91). Combined with the role of
macrophages in PMOP mentioned above, simultaneous tracing of
the common pathological molecular network associated with
cytokines (bone-BM macrophages and microglia) in PMOP and
AD may reveal the key pathological links between the two diseases.
EXPLORATION OF MULTIFUNCTIONAL
POTENTIAL ACTIVE COMPONENTS FROM
CHINESE HERBS TARGETING COMMON
PATHOLOGICAL MOLECULES OF PMOP,
RA, AND AD

Because of the common pathological molecules of PMOP,
RA, and AD, it is of great importance to seek effective drugs to
prevent the occurrence of complications. Chinese herbs have anti-
PMOP, anti-RA and anti-AD properties due to their actions against
multiple targets, pathways, and systems. Therefore, taking
the cytokines secreted by macrophages as the entry point,
combined with the results of bioinformatics analysis, we
summarized potential active components extracted from Chinese
herbs, such as icariin, querzcetin, and naringin, which were
simultaneously applied in the treatment of PMOP, RA, and AD
(Tables 2 and 3). From the side, this also reflects the roles of altered
macrophages and cytokines on PMOP, RA, and AD.
CONCLUSIONS AND PERSPECTIVES

PMOP is caused by dysregulation of the homeostatic connection
between bone and the immune system, leading to bone loss. This
review has outlined the direct and indirect effects of cytokines
secreted by bone-BM macrophages on the coupling of bone
resorption and bone formation. The principal mechanisms of
these effects include inflammatory/immune responses,
angiogenesis, and oxidative stress. Some overlapping cytokines of
PMOP, RA, and AD in bioinformatics analysis may
immunologically link two diseases, serving as either shared
June 2022 | Volume 13 | Article 876269
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susceptibility factors or molecular links. Therefore, based on the
thought of “different tissue (bone-BM, synovial, and brain)-same
cell type (macrophages)-common pathological molecules
(cytokines)-disease pathological links (PMOP vs. RA and PMOP
vs. AD)-drug targets (active compounds extracted from Chinese
herbs)” and the methodologies of “molecular network” in
bioinformatics, may lead to a paradigm shift in the understanding
of the pathogenesis, prophylaxis, and treatment of PMOP.
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TABLE 2 | Summary of potential active components from Chinese herbs to be applied in PMOP and RA.

Active component
from Chinese
herbs

Targets Pharmacodynamic mechanism in PMOP Ref Pharmacodynamic mechanism in RA Ref

Icariin IL-6 a. Diminished LPS induced IL-6 and TNF-a on
osteoclasts, and decreased PGE2 production by
inhibiting COX-2.
b. Inhibited IL-1b in OVX rats.
c. Reduced MMP-9 in RANKL-induced osteoclast
formation from RAW 264.7 cells.
d. Reduced MDA in hypoxia-induced oxidative
damage of osteoblasts.

(92–
94)

a. Inhibited IL-6, TNF-a, and IL-1b in RA-FLS cells.
b. Wangbi capsule, whose main effective substances include
icariin, reduced PGE2 and IL-1b in adjuvant induced arthritis rat
model.
c. Inhibited MMP in induction of type II collagen-induced
arthritis.
d. Reduced MDA levels in LPS-induced synovitis.

(95–
98)IL-1b

TNF-a
PGE2
MMP9

Luteolin NO a. Decreased the 3-morpholinosydnonimie-induced
production of NO, TNF-a, and IL-6 in osteoblasts.

(99) a. Reduced NO, TNF-a, and IL-6 in LPS-induced RAW 264.7
macrophages and ConA-induced T lymphocytes.

(100)
TNF-a
IL-6

Quercetin TNF-a a. Significantly decreased TNF-a in OVX rat model.
b. Reduced IL-6 and TNF-a in RANKL-induced
osteoclasts.

(101,
102)

a. Down-regulated the content of TNF-a, IL-1b and IL-6 in
collagen-induced arthritis mice.

(103)
IL-6

Naringin NO a. Enhanced NO synthesis in OVX rat model.
b. Prevented TNF-a-inhibited BMSCs osteogenic
differentiation of BMSCs.

(104,
105)

a. All flavonoids, including naringin, inhibited NO production
from LPS-induced macrophage cells.
b. Inhibited IL-6 and IL-1b in TNF-a-induced RA-FLS.

(106,
107)TNF-a
June 2022 | Volume 13 | Article 8
TABLE 3 | Summary of potential active components from Chinese herbs to be applied in PMOP and RA.

Active
component from
Chinese herbs

Targets Pharmacodynamic mechanism in PMOP Ref Pharmacodynamic mechanism in AD Ref

Icariin COX-2 a. Inhibited LPS-induced bone resorption and TNF-a expression, also
inhibited COX-2 and PGE2 synthesis on osteoblasts or osteoclasts.
b. Increased NO production in BMSCs and osteoblasts, and inhibited
osteoclast-mediated bone resorption.
c. Reduced production of ROS and MDA in osteoblasts.

(92,
94,
108,
109)

a. Decreased expression of TNF-a and COX-
2 in hippocampus of rats with LPS-induced
brain dysfunction.
b. Inhibited the release of ROS, NO, and
PGE2 in microglia.
c. Reduced MDA content in hippocampus of
aluminum-poisoned rats.

(110–
112)

PEG2
TNF-a
NO
MDA
ROS

Naringin NO a. Enhanced NO synthesis in OVX rats.
b .TNF-a: as shown in Table 2.

(104,
105)

a. Reduced hippocampal NO production in a
mouse model of AD.
b. Reduced TNF-a levels in ICV-STZ rats.

(113,
114)TNF-a

Quercetin ROS
TNF-a

a. Protected against TNF-a-induced impairments in BMSCs
osteogenesis.
b. Reduced ROS and TNF-a levels when coculturing osteoblast-
osteoclast or triculturing osteoblast-osteoclast-endothelial cells on
hydroxyapatite loaded with quercetin.

(115,
116)

a. Reduced ROS and TNF-a levels in high-
cholesterol-fed aged mice.
b. Reduced TNF-a and -IL-6 expression and
reversed neurodegeneration to restore
memory function.

(117,
118)
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