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The purpose of this study was to develop an approach to generate artificial com-
puted tomography (CT) images with known deformation by learning the anatomy 
changes in a patient population for voxel-level validation of deformable image 
registration. Using a dataset of CT images representing anatomy changes during 
the course of radiation therapy, we selected a reference image and registered the 
remaining images to it, either directly or indirectly, using deformable registration. 
The resulting deformation vector fields (DVFs) represented the anatomy variations 
in that patient population. The mean deformation, computed from the DVFs, and 
the most prominent variations, which were captured using principal component 
analysis (PCA), composed an active shape model that could generate random 
known deformations with realistic anatomy changes based on those learned from 
the patient population. This approach was applied to a set of 12 head and neck 
patients who received intensity-modulated radiation therapy for validation. Artificial 
planning CT and daily CT images were generated to simulate a patient with known 
anatomy changes over the course of treatment and used to validate the deformable 
image registration between them. These artificial CT images potentially simulated 
the actual patients’ anatomies and also showed realistic anatomy changes between 
different daily CT images. They were used to successfully validate deformable 
image registration applied to intrapatient deformation.
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I. INTRODUCTION

With recent progress in the development of highly conformal radiotherapy techniques, such 
as intensity-modulated radiotherapy (IMRT), volumetric-modulated arc therapy (VMAT), and 
proton therapy, deformable image registration (DIR) has become very important to radiation 
therapy in compensating for nonrigid variations, automatically delineating target volumes and 
normal tissue contours, and determining dose accumulation for plan evaluation.(1-6) This trend 
has been clearly demonstrated in recent years as more and more FDA-approved commercial 
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DIR tools have become available in clinical radiation therapy, such as MIM Maestro (MIM 
Software, Cleveland, OH), VelocityAI (Velocity Medical Solutions, Atlas, GA), SPICE in 
Pinnacle3 treatment planning system (Philips Healthcare, Cleveland, OH), Smart Segmentation 
in Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA), and atlas-
based segmentation in RayStation treatment planning system (RaySearch Laboratories AB, 
Stockholm, Sweden).

However, the validation of DIR algorithms, particularly in terms of accuracy, has long been 
very difficult,(7-11) mainly owing to the lack of the ground truth of the deformation. A concerted 
effort has been made to validate DIR algorithms for radiation therapy.(12-21) Currently, the most 
common validation method is based on physician-drawn structure contours or physician-picked 
anatomical landmarks.(12,15,18) This validation method is generally time-consuming and labor-
intensive when many contours or landmarks needed to be delineated or picked manually, and the 
method inevitably suffers from inter- and intraobserver variability. In addition, this validation 
method is limited because it cannot provide voxel-by-voxel validation, which is particularly 
important when the DIR is applied to dose accumulation during treatment planning. 

Another DIR validation method uses anthropomorphic phantoms that can be physically 
deformed by a known amount. For example, Kirby et al.(19,20) built a head and neck phantom 
and a pelvic phantom that contain glow-in-the-dark optical markers that are CT transparent 
so the optical markers do not influence DIR results on CT images. When the phantoms are 
deformed, the deformation vector field (DVF) can be measured optically and compared with the 
calculated DVF of DIR algorithms. However, these phantoms cannot mimic realistic situations 
and complex anatomy changes in patients. The imaging noise level from phantoms may also 
be different from that of real patients, which may impact the DIR validation results. 

Additionally, some researchers use mathematical phantoms for validation.(3,21) This method 
capitalizes on known mathematical transformations, normally spline-based deformation such 
as B-splines(21) or thin-plate–splines,(3) and applies a known deformation to a CT image to 
create an artificial deformed CT image. DIR algorithms are tested by registering these two 
images and comparing them with the known mathematical deformation. Again, it is difficult 
for mathematical phantoms to mimic the realistic anatomy changes in patients because simple 
spline-based deformations could be very different from complicated patient anatomy changes 
during radiation treatment. Therefore, mathematical phantoms are inadequate for validating 
the DIR algorithms. 

The purpose of this study is to create artificial CT images with known deformations that are 
able to simulate realistic patient anatomy changes so that these images can be used for volu-
metric validation of DIR algorithms at the voxel level. Although generating artificial images 
with known deformation is straightforward, it is not clinically relevant unless a few criteria 
are met. First, the artificial images must be created using population data to represent an entire 
population instead of a single patient. Second, the artificial images must simulate real clinical 
situations; therefore, the deformations cannot be arbitrarily generated and must be anatomi-
cally representative. Here we propose a novel approach to generating artificial images for DIR 
validation. First we used the population-based modeling approach(22,23) to learn the actual 
anatomy changes associated with radiation treatment from cohorts of patients who received 
similar radiation treatments. The anatomy changes learned using this method were modeled to 
generate a random deformation between two CT images that would represent typical anatomy 
changes in a given cohort. This random deformation was used to generate pairs of artificial CT 
images with the appearance of real patient anatomy. The DIR algorithms were then applied to 
the artificial CT images and the registration results were compared against the known deforma-
tion to validate the DIR algorithms. 
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II. MATERIALS AND METHODS

A.  Patient data
Twelve head and neck cancer patients who received IMRT at MD Anderson Cancer Center were 
retrospectively selected for this study and approved by the institutional review board of MD 
Anderson Cancer Center. These patients underwent daily photon irradiation for 32–35 fractions 
at 2 Gy per fraction. Each patient received a simulation CT scan for treatment planning and 
received daily CT scans using treatment room CT-on-rails (GE Healthcare, Milwaukee, WI) 
prior to each irradiation. As a part of our selection criteria, all CT scans should cover parotid 
glands and mandible. In addition, we did not include those patients having significant weight 
loss, tumor shrinkage or neck flexion, for which DIR could not be properly applied to the CT 
images to generate training DVFs. 

B.  Learning anatomy variations 
To ensure that the pairs of artificial images we created would show realistic anatomy changes, 
we first generated a known deformation between those images that would represent realistic 
anatomy changes during radiation therapy in a given cohort. This deformation could be learned 
from a given training dataset composed of patient images with anatomy changes. This learning 
process was derived from the active shape model proposed by Cootes et al.,(24,25) which can 
capture the most prominent shape variations of certain structures in a set of images through 
principal component analysis (PCA).(26) This learning process later on will be applied to generat-
ing both the intrapatient variation model and the interpatient variation model. In our proposed 
method, we first selected a reference image from the training dataset and then performed DIR 
between the reference image and the other images. We used a dual-force demons DIR algo-
rithm,(27) which was shown to have better accuracy and convergence than the original demons 
algorithm.(28) The DVF resulting from this registration can be represented by

 d(x→,t) = {dx(x
→,t), dy(x

→,t), dz(x
→,t)} (1)

where dx(·,t), dy(·,t),and dz(·,t) represent the displacement field matrices from image t,  
t = 1, 2,…, N, to the reference image along the left–right (LR), anterior–posterior (AP), and 
superior–inferior (SI) directions, respectively, and x→ indexes the voxel location. The anatomy 
variations between the reference image and the other images are represented by these DVFs 
in a 3D space. 

To create the active shape model, we let d
→

(t) be the column-wise vectorization of the DVF 
for image t, and let D = {d

→

(1), d
→

(2), …, d
→

(N)} be the matrix consisting of N DVFs. First, we 
calculated the sample covariance matrix of D, denoted by Σ, as

 
  (2)
 

Σ = Σ1
N – 1

N

t = 1
(d→(t) – d–) (d→(t) – d–)T ,

where T denotes the transpose, and the column vector  d– represents the mean deformation over  
N images along a specific direction and is calculated as
  
   
 ΣN

t = 1 d
→(t).

1
N

d– =  (3)



249  Yu et al.: Validation of deformable image registration 249

Journal of Applied Clinical Medical Physics, Vol. 17, No. 1, 2016

The representative anatomy variations in the training dataset can be obtained by calculating 
eigenvalues and eigenvectors of the covariance matrix Σ as 
   
 Σϕ→( j) = λ( j)ϕ→( j), j = 1, 2, …, N; (4)

where λ( j) and ϕ→( j) are the jth eigenvalue and eigenvector of Σ, respectively. Without loss of 
generality, we assumed λ(1) ≥ λ(2) ≥ … ≥ λ(N), and that their corresponding eigenvectors represent 
different modes of variation. The PCA showed that a few of the eigenvectors corresponding to the 
large eigenvalues were able to capture most variations of the deformation. The principal modes, 
ϕ→(1), ϕ→(2), …, ϕ→(T̂), is a subset of {ϕ→(j)| j = 1, 2, …, N} with T̂ as the smallest number satisfying

   
  (5)
 

λ( j) ≥Σ 100
αT

j = 1

ˆ

λ( j),Σ
N

j = 1

where α is a value between 0 and 100. This equation acknowledges that the first ̂T eigenvectors 
that represent the most prominent variations amount to at least α percent of the total variations 
that deviate from the mean deformation. Normally, α was set to a value between 80 and 95, 
and T̂ « N. The efficiency of the compact space representation can be evaluated by the varia-
tion space reduction, calculated as (N – T̂)/N. In general, a larger α value was used if more 
variations existed in the model. The mean deformation d– and the principal modes of variation,  
ϕ→(1), ϕ→(2), …, ϕ→(T̂), composed the active shape model. 

A new random deformation can be generated from the model using the following equation:

  (6)
 

ϕ ( j),d = d– + bjΣ
T

j = 1

ˆ
→

where bj is generated randomly and represents the deformation contributed by the jth mode of 
variation. To ensure that the deformation is reasonable and realistic, a maximum value, Dmax, 
was enforced on the generation of random values (bj) according to the following equation:

  (7)
 λ

bj
2

Σ
T

j = 1

ˆ

( j)( ) ≤ D2
max.

Essentially, a Gaussian distribution with zero mean and a diagonal covariance matrix composed 
of the eigenvalues λ( j) was assumed in generating the random values, and Dmax is the maximum 
Mahalanobis distance from the mean for the randomly generated parameters. Dmax was chosen 
to include a suitably large proportion of possible deformations. Using this method, we were able 
to generate random DVFs with realistic anatomy changes learned from the patient populations. 
These DVFs could be applied to the previously selected reference image to generate artificial 
CT images that resemble actual patient CT images.

C.  Creating artificial CT images
We applied the learning process described above to our dataset of head and neck cancer patients 
to generate pairs of artificial planning and daily CT images. The first step was to determine 
the interpatient anatomy variation in the population. We chose a patient who represented the 
approximate median of the population as the reference patient in terms of patients’ weight and 
body mass index (BMI). This will facilitate the interpatient registration. As a preprocessing 
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step, all planning CT and daily CT images were first aligned to the reference planning CT 
using cross-correlation coefficient. Next, the largest dimension of a common space for these 
images was determined and all images were cropped to this size. The planning CT images of 
the remaining patients were registered to the planning CT image of the reference patient using 
the dual-force demons DIR algorithm, creating 11 DVFs, EF 1, EF 2, …, EF 11 (Fig. 1). These 
DVFs composed the training dataset for the creation of the interpatient variation model. The 
parameter α was set to 90 in creating the interpatient variation model, meaning that the model 
represented at least 90% of the total variations in the entire cohort.

The next step was to determine the intrapatient variation over the course of treatment. For 
each patient, we registered the daily CT images to their respective planning CT image using 
the dual-force demons DIR algorithm. The resulting DVFs characterize the intrapatient varia-
tions for each patient and reside in the planning CT space of each patient. Mathematically, let  
D
→(1)

i,j (x
→) denote the deformation vector at point x→ for patient i and fraction j. These DVFs should 

be further moved to a common space (i.e., the reference planning CT space). To do so, each 
intrapatient DVF was treated as three 3D images of magnitude of intrapatient variations in LR, 
AP, and SI directions and these images were deformed by the corresponding interpatient DVF 
(EF 1, EF 2, …, EF 11) to transfer them to the planning CT space of the reference patient, 
generating a set of DVFs, termed IF(1,1), …, IF(1,N1); IF(2,1), …, IF(2, N2); …; and IF(11,1), 
…, IF(11, N11), as shown in Fig. 1. Mathematically, f

→

k(x
→) denote the mapping defined by the 

interpatient DVF, EF k, and D
→(2)

i,j (y
→) denote the DVF, IF(i,j). The aforementioned DVF mapping 

can be described as

 D
→(2)

i,j (y
→) = D

→(1)
i,j (f

→

i(x
→)).  (8)

We also registered the daily CT images to the planning CT image for the reference patient, 
producing DVFs named IF(12,1), …, IF(12, N12). These DVFs, denoted by IF(∙,∙), characterized 
the intrapatient variations of the population and composed the training dataset for the creation 
of the intrapatient variation model. The parameter α was set to 95 in creating the intrapatient 
variation model.

The artificial CT images were generated using the variation models. We first used the inter-
patient variation model in Eq. (6) to generate a random DVF, DE, and inverted it by using an 
iterative method(29) for progressively refining the values of the inverse field. We then applied 

Fig. 1. Illustration of the procedure to create the interpatient variation model and intrapatient variation model based on 
the training data from 12 head and neck cancer patients. 
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the inverse DE to the reference planning CT to generate an artificial planning CT image. Next, 
we used the intrapatient variation model in Eq. (6) to generate a random DVF, DT, which was 
then deformed by DE to the space of the artificial planning CT image space resulting in a new 
DVF, DI, and then we inverted DI and applied it to the artificial planning CT image to generate 
an artificial daily CT image (Fig. 2). Each pair of artificial planning CT and daily CT images 
represents the intrapatient anatomy variations during a treatment course. By varying the Dmax 
value in generating the daily CT images, we produced different degrees of anatomy changes 
that could happen between the planning CT and the daily CT.

Using this procedure, we generated two sets of artificial images, each set including one 
artificial planning CT image and three corresponding artificial daily CT images with varied 
deformation amounts. We used Dmax = 3 for the interpatient variation model to generate the 
planning CT image, and the Dmax was set to 2, 3.5, and 4.5 for the intrapatient variation model 
in generating the three daily CT images. We then used the dual-force demons DIR algorithm 
to register each artificial daily CT image to the artificial planning CT image and generated a 
DVF, DN, for each registration to be compared with the known deformation, DI, which were 
randomly generated from the variation models. We subtracted DN from DI in the LR, AP, and 
SI directions and computed the total magnitude of difference at each voxel as the registration 
error. The registration errors at each voxel inside the mandible and each parotid gland were 
computed, and means and standard deviations (SDs) of these errors were calculated.

 
III. RESULTS 

A.  Dual-force demons DIR algorithm
The dual-force demons DIR algorithm was used to generate the training DVFs. These training 
DVFs should be realistic for the latter anatomy variation learning; therefore, it might be necessary 
to evaluate the dual-force demons DIR algorithm when applying to head and neck CT images. 
This registration algorithm directly calculates correspondences according to image intensity 
under the assumption that the intensity is consistent between two images. Because CT numbers 
are calibrated to the attenuation coefficient of water, this intensity-based method is preferred 
for CT-to-CT registration. This algorithm was originally proposed by Wang et al.(3,27) and was 
validated for both intra- and interpatient registration for head and neck cancer radiotherapy with 
reasonably good results.(12,30,31) Here we also provided a quantitative and qualitative evaluation 
of this algorithm when applying to generate interpatient DVFs. The clinical manual contours of 
left and right parotid glands were used for the evaluation. The contours on the reference plan-
ning CT were deformed to the other 11 planning CT spaces using the interpatient DVFs (EF 1, 
EF 2, …, EF 11). The deformed contours were compared with the manual contours using the 
Dice similarity coefficient (DSC) and the mean surface distance (MSD), as shown in Table 1. 
In addition, we illustrated the comparison of deformed contours and manual contours for one 
patient in Fig. 3. These results showed that the interpatient registration was reasonably good 
mostly by considering the interobserver variability in drawing the contours on different patients. 
However, we acknowledge the existence of registration error in some spatial locations. We also 
found that the dental artifacts did not show significant impact on the DIR algorithm, which was 

Fig. 2. Illustration of the procedure to generate artificial planning CT and daily CT images using active shape models 
learned from the patient population.
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consistent with previous findings.(30,31) This effect is possibly owing to the regularization on 
the DVF in the DIR algorithm.(3) The DVFs generated from the DIR algorithm is reasonable 
in most cases with the present of dental artifacts, therefore minimizing the effect on the PCA 
results in the learning process.
 
B.  Creating artificial CT images
In the creation of the interpatient variation model, a number of 5 principal modes out of a total 
of 11 modes were enough to represent 90% of interpatient variations between the 12 patients, 
and the variation space was reduced by 55%. In the creation of the intrapatient variation model, 
396 deformations were used in the training process, and a number of 12 principal modes out of 
a total of 396 modes were enough to represent 95% of the intrapatient variations, achieving a 
variation space reduction of 97%. The interpatient variation model did not show efficient compact 
space representation because of a small number of training datasets (11 interpatient DVFs). A 
variation space reduction of 97% for intrapatient variation model showed that the intrapatient 
variations were consistent in this population, and a few principal modes of variation were able 
to represent most intrapatient anatomy changes in a head and neck radiation treatment course. 

Table 1. The parotid contours on the reference planning CT were deformed to other 11 patients and compared with 
the manual contours using Dice similarity coefficient (DSC) and mean surface distance (MSD). 

 Right Parotid Left Parotid 
  DSC MSD DSC MSD
 Patient No (%) (mm) (%) (mm)

 1 74.3 3.3 74.6 3.1
 2 72.7 3.0 79.2 2.4
 3 63.9 3.8 70.1 3.1
 4 59.7 5.1 70.7 4.0
 5 53.6 6.1 58.4 5.3
 6 84.6 1.8 82.5 2.2
 7 69.1 3.9 80.4 3.2
 8 33.5 2.9 63.2 3.4
 9 51.3 5.4 71.7 3.7
 10 64.8 3.7 82.2 2.1
 11 82.5 2.2 86.0 2.0
 Mean 64.6 3.7 74.5 3.1
 SD 14.8 1.3 8.6 1.0

SD = standard deviation.

Fig. 3. Parotid contours on the reference planning CT (a) was deformed to another patient using the dual-force demons 
DIR algorithm. The deformed contours were compared with the manual contours (red colorwash) on this patient’s plan-
ning CT (b). 
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Two sets of artificial CT images, representing two different simulated patients, are shown 
in Fig. 4, each set containing one planning CT image (Dmax = 3) and three corresponding daily 
CT images with varied deformation amounts (Dmax set to 2, 3.5, and 4.5). We observed a dif-
ference between the planning CT images in the two sets and subtle anatomy changes from the 
planning CT to the daily CT images within each set. These images realistically simulated the 
clinical ones and were useful for the validation of DIR in a clinical environment. The registra-
tion errors in the mandible and parotid glands between the planning CT and daily CT images 
are quantified in Table 2, compared against the mean deformations for each organ between the 
artificial planning CT and daily CT images in Table 3. Note that Dmax stipulates the maximum 
Mahalanobis distance from the mean in generating the random values (bj) in Eq. (7). Smaller 
random deformation could be generated with a larger Dmax. Therefore, it is not a surprise that 
the mean deformation in simulation set 1 is smaller for Dmax = 4.5 than that for Dmax = 3.5 
in Table 3. The results illustrated the feasibility of using known deformation for quantifying 
deformable registration errors. In addition, the registration errors at each voxel inside the 
parotids and mandible, exemplified in Fig. 5 with the registration error color-coded, show that 
registration error ranged from 0 mm to 3.3 mm in this illustration, with the largest error in the 
lateral right parotid region.

 

Fig. 4. Two sets of artificial CT images generated from active shape models with each set in a row. The first column 
is the artificial planning CT, and the other three columns are artificial daily CT images with varied levels of variations 
specified by Dmax.

Table 2. Quantitative registration evaluation for the mandible and the parotid glands between the artificial planning 
CT and daily CT images shown in Fig. 4. The registration error was evaluated by comparing the calculated deforma-
tion against the known deformation generated randomly from the variation models. 

   Daily CT Dmax = 2.0 Daily CT Dmax = 3.5 Daily CT Dmax = 4.5
 Simulation  Mean±SD Mean±SD Mean±SD
 Set Organ (mm) (mm) (mm)

 
1
 Left parotid 0.74±0.49 1.06 ±0.62 0.71±0.46

  Right parotid 0.69±0.51 1.05±0.81 0.75±0.55
  Mandible 0.68±0.38 0.96±0.54 0.96±0.58
 

2
 Left parotid 0.69±0.79 0.78±0.67 0.83±0.68

  Right parotid 0.60±0.48 0.73±0.58 0.93±0.64
  Mandible 0.71±0.39 0.85±0.52 0.98±0.61
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IV. DISCUSSION

We proposed a method to generate artificial CT images for DIR validation by learning the 
anatomy changes associated with radiation treatment from patient populations. This method 
captured the most prominent anatomy variations in a population and generated a compact 
representation of the variations using an active shape model. Artificial CT images generated 
with this method could potentially simulate patient anatomy changes during radiation treat-
ment; therefore, using these artificial CT images for validation is clinically feasible. Because 
this process is purely mathematical, there is no need to build a physical phantom, which makes 
DIR validation simple and usable in many clinics with their own patient data. We demonstrated 
the efficacy of the proposed method by generating artificial planning CT and daily CT images 
in an IMRT course for head and neck cancer that have complicated anatomy changes during 
radiation treatment and may pose challenges for deformable registration. However, testing our 
method on the head and neck site with success provided us with confidence that this method 
can be used on other sites as well.

The active shape models have been widely used in varied image-processing applications 
such as model-based image registration and segmentation.(32-35) A similar technique using PCA 
to capture prominent variations has also been used to create respiratory models from 4D CT 
images.(36-38) An important characteristic of this technique is the compact representation of 
variations learned from the population. This method can disregard the redundant information in 

Fig. 5. Illustration of the spatial distribution of registration errors at each voxel inside the parotids and mandible on an 
axial slice. The registration error was computed by comparing the calculated deformation with the known deformation 
generated randomly from the variation models. The registration error is small in most areas inside both structures.

Table 3. The mean magnitude of deformation for organs of interest between the artificial planning CT and daily images 
shown in Fig. 4. They were computed from the known deformation generated randomly from the variation models.

   Daily CT Dmax = 2.0 Daily CT Dmax = 3.5 Daily CT Dmax = 4.5
 Simulation  Mean±SD Mean±SD Mean±SD
 Set Organ (mm)         (mm)              (mm)

 
1
 Left parotid 9.15±0.71 17.40±0.94 9.26±0.99

  Right parotid 7.86±0.70 14.60±0.88 7.73±0.86
  Mandible 7.66±0.68 14.70±1.22 8.65±0.76
 2 Left parotid 8.64±0.69 10.70±0.89 19.55±1.00
  Right parotid 7.13±0.68 8.13±0.83 16.74±0.91
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the population data and keep the most essential representation of the variations, thus enabling 
the generation of artificial images with the most common variations that one can observe. We 
investigated the efficiency of this compact representation method. For the two models of varia-
tion that were created in this study, we plotted the percentage of total variations captured by 
the model versus the number of principal modes needed (Fig. 6). We found that five principal 
modes were able to represent 90% of the total variations for interpatient variation and six prin-
cipal modes were able to represent 90% of the total variations for intrapatient variation models. 
However, due to a different number of total modes (11 for interpatient and 396 for intrapatient 
variation models), intrapatient variation model showed much higher efficiency in variation space 
reduction. Also, because of a small number of total modes for interpatient variation model, 
the interpatient variation reached 100% much faster than the intrapatient variation in Fig. 6.

Learning based on the PCA modeling is limited by the training data. The artificial images 
can represent only the variations learned from the training DVFs. To provide a basis for realistic 
simulations of clinical CT images and optimally capture the variation that can be encountered 
in the clinic, the training DVFs need to contain as much of that variation as possible. However, 
using more training DVFs is not necessarily better for this approach because of limitations in 
computational resources. In addition, the training DVFs contain a lot of redundancy, so the 
variations could be represented by a small number of principal modes. Therefore, it would be 
interesting to investigate what amount of training DVFs is necessary to build an acceptable 
model. To do so, we studied the number of modes needed to represent 90% of the total varia-
tions in the training DVFs as a function of the amount of training DVFs, using training DVFs 
that were used to create the intrapatient variation model. As shown in Fig. 7, when the training 
DVFs were not enough, the number of modes needed to achieve 90% of the total variations 
increased as the number of training DVFs increased. But at a certain stage, adding more train-
ing DVFs did not contribute to new representative variations and the number of modes needed 
stayed approximately the same, indicating that the training DVFs were enough to represent most 
variations at that stage. In this example, a minimum of about 26 training DVFs were needed 
for the active shape model to capture more than 90% of the total variations in the population.

This study is limited by the registration errors of the DIR algorithm used to create the training 
DVFs, including the interpatient registration error and the intrapatient registration error. The 
interpatient registration error is the major source of uncertainty for this study. The results shown 
in the Results section A indicated that large registration error might exist at some locations and 
this error could propagate into the variation models. Interpatient registration error has effects on 
both the interpatient and intrapatient variation models. It affects the interpatient variation model 
directly, but the effect could be mitigated by PCA unless strong pattern of errors existed in most 
patients used for the training. Interpatient registration error affects the intrapatient variation 

Fig. 6. Percentage of total variations represented as a function of the number of principal modes needed in creating the 
active shape model. The total number of principle modes for interpatient variation and intrapatient variation is 11 and 
396, respectively.
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model indirectly when it was used to relocate the intrapatient DVFs through Eq. (8). This effect 
is possibly smeared out by a large amount of intrapatient DVF samples and relatively small 
intrapatient deformation. Intrapatient registration error, in general, is small and affects intrapa-
tient variation model only. We did not include those patients having significant anatomy changes 
that prevent DIR from working properly, while normal tumor shrinkage or weight loss cases 
were included. This further reduced potential intrapatient registration error. On the other hand, 
models built from this training dataset may not be able to simulate those real clinical situations 
with large anatomical changes. A potential solution is to construct a tumor shrinkage model(39) 
and simulate the changes in artificial CT images, which will be a subject of our future research.

This study focused on simulating intrapatient anatomy changes during radiation therapy. 
Although both interpatient and intrapatient variation models were created to generate the artifi-
cial CT images, we used the artificial CT images to validate the DIR algorithms for intrapatient 
registration only. The interpatient variation model is simply used to generate a random new 
patient that is not the same as the reference patient. The variation in this model is limited and 
may not be realistic because interpatient variation is more susceptible to registration errors 
due to large interpatient anatomical variations. The interpatient variation model needs further 
investigation because the interpatient variations are much more complicated than the intrapa-
tient variations. More training datasets are required to account for an acceptable percentage of 
interpatient variations. 

Another limitation of this study is that we used only one DIR algorithm to create the inter- 
and intrapatient variation models for artificial CT image generation. This could possibly create 
a bias if we attempted to validate the DIR algorithm used to create the models. The inherent 
patterns or regularization in the DIR algorithm might be incorporated in the variation models, 
which favors the evaluation of this DIR algorithm. To overcome this limitation, one may use 
different DIR algorithms to create the variation models, which will add variations to algorithm 
specific patterns or regularization in the models, thus potentially removing the bias. In addi-
tion, this approach is also limited by the accuracy of training DVFs, the ability of these DVFs 
to represent high spatial frequency deformations, and the failure of DIR algorithm to produce 
realistic tissue deformation in featureless subvolumes. For example, the regularization in DIR 
algorithm tends to smoothing DVFs, thus possibly reducing the capability of representing the 
complexity and discontinuities of the deformation in some real patients. 

The anatomy changes might be correlated to the time point during a treatment course,(40) 
which suggests the possibility to construct a model as a function of time so that the artificial 
CT image can be simulated for a specific stage in the treatment course. This will be a subject 
of our future study. Our current approach using active shape models took into account anatomy 

Fig. 7. The number of principal modes needed to achieve 90% of the total variations as a function of the number of train-
ing deformation vector fields (DVFs). The number of principal modes was obtained through interpolation. For example, 
with 20 training DVFs, four and five principal modes achieved 88% and 91% of the total variations, respectively. After 
interpolation, 4.7 principal modes were needed to achieve 90% of the total variations. 
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shape changes only. However, the same anatomy may appear differently on CT images under 
different scanning conditions. These tissue appearance changes also may be learned from patient 
populations by taking advantage of active appearance models.(41) On the other hand, using an 
appearance model may reduce the impact from noise and artifacts. Our current approach is 
limited by transferring noise and artifacts from template image, thus leaving a signature of the 
underlying deformation, which may potentially skew the DIR accuracy. In addition, in actual 
clinical situations, some structures may contain objects that appear and disappear in different 
scans — for example, air pockets in the rectum or esophagus. Such objects will create a non-
correspondence issue and affect the DIR. Therefore, artificial images simulating this situation 
must be created to thoroughly validate DIR algorithms. A previous study(42) has demonstrated 
the possibility of adding a simulated tumor or other objects to an existing image. In our future 
research, we will include the active appearance model and the noncorresponding objects to arti-
ficial CT images to generate more realistic artificial images for the validation of DIR algorithms.

 
V. CONCLUSIONS

We proposed a method to learn the anatomy changes during radiation therapy in patient popu-
lations and created active shape models for the purpose of generating artificial CT images to 
validate DIR algorithms. Artificial CT images generated from this method potentially simulated 
the actual patient anatomy changes during radiation treatment. We demonstrated the practica-
bility of the proposed method in simulating anatomy changes during IMRT for patients with 
head and neck cancer. 
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