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ABSTRACT

Symmetry and symmetry breaking concepts from physics and biology are 
applied to the problem of cancer. Three categories of symmetry breaking in cancer 
are examined: combinatorial, geometric, and functional. Within these categories, 
symmetry breaking is examined for relevant cancer features, including epithelial-
mesenchymal transition (EMT); tumor heterogeneity; tensegrity; fractal geometric 
and information structure; functional interaction networks; and network stabilizability 
and attack tolerance. The new cancer symmetry concepts are relevant to homeostasis 
loss in cancer and to its origin, spread, treatment and resistance. Symmetry and 
symmetry breaking could provide a new way of thinking and a pathway to a solution 
of the cancer problem.

THE CANCER PROBLEM

Cancer remains unsolved. It is a problem that has 
resisted solution for centuries, in spite of the application 
of immense bodies of knowledge from diverse fields, 
including molecular biology, biochemistry, pharmacology 
and physics [1]. Cancer functions as a complex system 
that enables an unrelenting adaptability to a large range 
of environmental changes, including alterations in 
nutrients, oxygen, pH, temperature, and treatment with 
interventional agents. New ways of thinking about the 
cancer problem are still needed.

A still prevalent cancer paradigm from the time of 
Beale (1860) and Boveri (1902) is that cancer is associated 
with structural abnormalities, from tissue and cell structure 
to DNA organization [2-6]. Cancer also manifests many 
structure-independent functional abnormalities, including 
dysregulated metabolism, epigenetic alterations, and 
transcription factor dysfunction [7-11]. Information 
storage at the level of DNA is another level of disruption 
in cancer that includes mutations and translocations 
[12, 13]. In cancer, the transformation from the well-

regulated homeostasis of the normal cell to the chaotic, 
uncoordinated cancer state has been described as a phase 
transition that involves extensive change in structure, 
function and information [14]. The cancer transition 
involves alterations across all scales, including DNA, 
the cell, and communication among cancer and cancer-
supporting cells. Therein lies the complexity of cancer: the 
myriad of innumerable interactions among the individual 
molecular agents within the cancer cell, among other cells 
types in the cancer microenvironment and across the organ 
systems of the host. 

This cancer feature is similar to a problem in physics 
that is simple in its description, but has withstood exact 
solution since the time of Newton: the three-body problem 
[15]. When two bodies, such as the sun and the Earth, 
interact dynamically through gravitation, their movement 
in space can be computed with ease. Adding just one 
additional body, for example the Moon, introduces a level 
of complexity and nonlinearity to the problem such that 
even an approximate solution is computed with difficulty. 
As more bodies are added, the problem difficulty increases 
in exponential computation time. Therefore, it is not 
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surprising that cancer biology remains at an impasse 
as it confronts a problem that involves a practicably 
uncountable number of interacting cell agents. In the 
three-body or multi-body problems of physics, major 
simplification is introduced by consideration of symmetry, 
resulting in new solutions that can be classified based on 
their symmetry features [16-18]. Analogously, the problem 
of cancer may be better understood and rendered more 
tractable by analysis of its symmetry features. The field 
of biology is filled with underappreciated examples of 
symmetry and symmetry breaking. Normal cell and tissue 
function is a result of tightly controlled maintenance of 
symmetry and concomitant symmetry breaking when 
required. 

SYMMETRY IN PHYSICS AND BIOLOGY

Symmetry is an elemental feature of space and time 
that underlies the geometric and dynamical properties of 
the observable universe [19, 20]. Symmetry is information: 
information about that which remains unchanged or, in 
physics nomenclature, is invariant when an operation on 
a system is carried out. Geometric symmetries are best 
known and are observed throughout the natural world. The 
snowflake is a well-known example; it possesses 6-fold 
rotational and 12-fold reflection symmetry. In the example 
of rotational symmetry, the results of an experiment 
performed in a spaceship far away from gravitational or 
other fields don’t have to be replicated for every direction 
the laboratory is oriented. Physical symmetries also extend 
to the known forces and particles in the universe, such 
as the existence of the negatively charged electron and 
the positively charged, but equal mass, positron. The 
search for the Higgs boson and its recent discovery was 
the result of employing symmetry principles [21]. At an 
information level, symmetry permits a more compact 
system description and simplifies computational problems. 

The complement of symmetry is symmetry 
breaking [22-24]. Broken symmetry can result from 
explicit or from spontaneous symmetry breaking. Explicit 
symmetry breaking is the most familiar and occurs, for 
example, when the side of an apple is cut off or when an 
egg is dropped on the floor and shatters. Spontaneous 
symmetry breaking is conceptually more difficult, but 
occurs throughout the universe with regularity. When a 
magnet is heated above a certain temperature called the 
Curie point the magnetization is lost as all the individual 
magnetic particles assume random orientations in a 
symmetric pattern. When the temperature is reduced 
below the Curie point in the spaceship laboratory far 
from the Earth’s magnetic field the individual particles 
re-coalesce into a magnet, but the north-south orientation 
of the magnet is not predictable—this is an example of 
spontaneous symmetry breaking. Similarly, when water 
freezes, the axis orientation of the ice crystals is random. 
In the language of physics, at the exact transition point 

of instability the lowest energy solution that respects the 
initial symmetry ceases to be the lowest energy solution 
and a new, but asymmetric solution becomes the new 
low energy solution. In biology, an organism utilizes 
symmetry breaking along well-defined axes for functional 
diversification on every scale, from molecular assemblies, 
to subcellular structures, to cell types themselves, to 
tissue architecture [25]. Normal cell and tissue function 
is a result of tightly controlled maintenance of symmetry 
and symmetry breaking when required, for example during 
development. 

In physics, symmetry is most often preserved and 
therefore forms a basis for the search of fundamental 
particles and forces. In biology symmetry breaking occurs 
continuously and indeed, is a condition for life [26, 27]. 
This symmetry breaking is, however, always incomplete: 
completely broken symmetry is complete disorder, which 
could not sustain life. Correspondingly, perfect order and 
global symmetry would also be incompatible with life. 
The informational content of a perfectly symmetric system 
is inadequate for the complex functions of life. Life exists 
in the intermediate realm between order and disorder. 
Cancer may be a state of broken symmetry beyond that 
of the normal homeostasis and the controlled system of 
sustainable life. 

SYMMETRY BREAKING

The complexity of any system can be described 
and quantified by three components: combinatorial, 
geometric and functional [27]. Each of these components 
can be characterized by their symmetries, which can then 
be applied to understanding specific features of cancer. 
While each component can be described independently, 
it is important to note that biology makes use of all three 
together. 

Combinatorial symmetry breaking

Combinatorial complexity at the cellular level refers 
to the number of configurations—genetic or phenotypic 
—in which cells can be exchanged while maintaining the 
overall functional invariance of the system [27]. In most 
normal tissues, cell division results in identical or nearly 
identical daughter pairs. In cancer, cell division is often 
an asymmetric process that can be thought of as a series 
of symmetry breaking events. When occurring over many 
cell divisions a population of cancer cells displays tumor 
heterogeneity where a high number of cells have slightly 
different genetic and phenotypic states. This is one key 
feature that enables the profound adaptability of cancer. 
A complete picture of cancer’s combinatorial complexity 
and symmetry also requires consideration of the cells in 
the microenvironment, including immune cells, tumor 
macrophages and many others. 
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Combinatorial complexity is quantified as:

Kc = log(N!/ni!) 
for N cells of i types with ni of each type (! denoting 
the factorial operation) [27]. In normal tissues, there is 
a relatively small number of cell types within a given 
organ, each with similar function for a given class (e.g., 
epithelial, lymphoid, vascular). In cancer, new cell types 
emerge within the cancer mass, manifested as tumor 
cell heterogeneity (TCH). In order to appreciate the 
immense combinatorial complexity of biological systems, 
consider 1 gram of tissue with 109 cells and only three 
different cell types. In this case Kc = 4.8 x108 (since Kc 
is the logarithm of the combinations, the actual number 
of combinations is on the order of 10 followed by 100 
million zeros). As the tissue volume and number of cancer 
and cancer-supporting cell types increases, global cancer 
combinatorial complexity increases further to astronomical 
levels. As with the three-body problem in physics, the 
problem can benefit by consideration and quantification 
of system symmetries and symmetry breaking. It is 
possible that combinatorial complexity mathematics 
could be applied as a measure of genomic TCH, leading 
to a new way to monitor how a tumor cell population is 
evolving and adapting over time. For example, what level 
of intervention is needed to effectively disrupt the cancer 
complexity and does combinatorial complexity increase or 
decrease after treatment with a therapeutic agent? 

How does the cancer state of broken symmetry and 
a combinatorial complexity beyond that of normal tissues 

originate and evolve? A key hallmark of cancer is its ability 
to metastasize. It is thought that a key step in metastasis 
is the transformation of epithelial cells to mesenchymal 
cells [28]. Whereas epithelial cells may undergo malignant 
change and then grow within a tumor, these cells do not 
readily spread to distant sites in the organism. In contrast, 
when an epithelial cell is transformed to a mesenchymal 
cell the potential for cell spread outside the tissue of 
origin increases greatly. This is known as epithelial-to-
mesenchymal transition or EMT. Mesenchymal cells have 
the physical configuration and other cellular machinery 
designed for movement. Known transcription factors and 
other cellular constituents are now recognized as key for 
maintaining a cell in the epithelial state, transformation to 
the mesenchymal state or conversion back to the epithelial 
cell type [28-30]. But what causes the molecular changes 
that then lead to cell symmetry breaking? 

This question has recently been examined by 
the study of transcription factor and miRNA levels that 
together operate as a molecular switch to determine 
phenotypic cell fate. In this model, the transcription 
factors (e.g. ZEB, SLUG, and TWIST) and miRNA’s 
(e.g., miR-200 and miR-34) interact as auto-catalytic 
and inhibitory network components in a symmetry 
breaking decision network [31-33]. Small perturbations 
in one or more components can then cause a cell fate 
phase transition. High miR-200 and miR-34, low ZEB 
and SNAIL define the epithelial phenotype (E) and low 
miR-200 and miR-34, high ZEB and SNAIL result in the 
mesenchymal phenotype (M). Recent results suggest that 
intermediate levels of these cell constituents can result 

Figure 1: Symmetry breaking in mutually inhibitory feedback loops (from Jolly et al). Different levels of mutual inhibition 
and self-activation between two molecules, A and B, results in symmetry breaking from the configuration of equal numbers of A and B 
to bistability and tristability. In the tristable configuration, the intermediate state could represent a hybrid cell state. Red and black curves 
describe nullclines for A and B, and their intersections are the steady states. Green filled circles represent stable steady states, and green 
hollow circles show unstable steady states. For more information, see Jolly et al, 2015.
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in a metastable E-M or partial EMT phenotype that, 
under specific environmental conditions or spontaneous 
stochastic cell fluctuations, can break symmetry into an 
E or M cell (Figure 1) [31, 34]. Of clinical significance is 
the observation that the symmetric hybrid E-M cell type 
in various cancers correlate with increased aggressiveness 
and metastatic characteristics [31, 34]. The hybrid E-M 
cells also are more prone to exist in the circulatory system 
as bound clusters of cells, which is thought to promote 
survival in the blood stream and eventual seeding of 
distant tissues [34]. Thus, symmetry retention or symmetry 
breaking of the E-M hybrid cell is likely a key factor in 
metastasis. Understanding of the underlying molecular 
events in stabilizing and transforming the E, M and E-M 
cell subtypes could lead to a better understanding of the 
metastatic process and permit control of these processes 
in cancer patients. 

Tissue cells that lead to the creation of tumors and 
continually repopulate them with new cancer cells are 
known as Cancer Stem Cells (CSCs). Importantly, CSCs 
possess the traits to evade cancer therapeutics and to lie 
dormant for long time periods until they begin a process 
of high growth rate and a high evolution potential that 
gives rise to lethal phenotypic variation. Recent studies 
indicate that the E-M hybrid cell state is more likely to 
gain stemness properties [34, 35] and therefore to readily 
switch between invasive and proliferative modes to 
enhance survivability and correspondingly, lethality to 
the host. The search is now on to identify cell markers 
of stemness and E-M hybridicity. Network and molecular 
switch symmetry and symmetry breaking considerations 
could contribute to this effort by determining the 
conditions to break the E-M hybrid cell symmetry toward 
the E state, which has the least metastatic potential. 

Geometric symmetry breaking

Geometric symmetry breaking requires 
consideration of two modes: conventional geometric 
structures and fractal structures. Conventional symmetry 
breaking is routinely observed by pathologists in the 
daily diagnosis and characterization of cancer cells using 
light microscopy . Indeed, abnormal cell and nuclear 
shape is one of the most reliable diagnostic criteria for 
cancer and is closely related to prognosis [36-38]. The 
malignant potential of almost all cancers is based on the 
grading of abnormal nuclear structure by pathologists. 
Fractal structure in cancer is less well characterized, but 
is increasingly investigated as a diagnostic and prognostic 
indicator [39-42]. The loss of geometric self-similarity 
in cancer can occur at different spatial scales, from the 
structure of the plasma membrane to that of chromatin. 

Geometric symmetry breaking can be utilized to 
characterize the molecular and biochemical processes 
that determine cell shape and how they are disrupted in 
cancer. A fundamental feature of cytoplasmic and nuclear 

composition is their viscoelastic composition. The viscous 
and elastic properties of the cell create a structure similar 
to a soft glass with power-law mechanical properties [43, 
44]. The elastic components include the proteins actin 
and myosin and microtubules represent rigid structures. 
The presence of elastic components that can create 
tension together with the rigid microtubules provides for 
a tensegrity structure of the cell that maintains normal 
cell shape and is profoundly disrupted in cancer [43, 45, 
46]. These structural elements have been collectively 
termed the tissue matrix (TM) system that is comprised 
of the extracellular matrix, the membrane matrix, the 
cytoskeleton, and the nuclear matrix. Conventional 
tensegrity structures from macro structures in buildings 
to cell-cell interactions to proteins to DNA consist 
of struts and cables under tension that can transmit 
mechanochemical information [43, 44, 47].

A basic property of tensegrity structures is stability 
[48-51]. Tensegrity stability is reflected in the structural 
behavior as the result of geometric deformation due to an 
external load. If the structure returns to its self-equilibrium 
configuration when the external load is released, then 
it is stable. Tensegrity structures possess symmetry 
properties in virtue of their geometric structure. This 
symmetry results in high stability to deforming forces 
and efficient information transfer that helps maintain 
homeostasis. In cancer, this stability is greatly diminished, 
as cancer evolves to increasingly malignant forms [52-
55]. The extracellular cell matrix also possesses tensegrity 
properties, which, when disrupted, may also contribute to 
degraded information transfer from the environment and 
increase metastatic potential [43]. 

Geometric complexity and symmetry can also 
be applied to the self-similarity of fractal structures, 
including down to the spatial level of DNA [41, 56, 57]. 
Fractals have a repeating geometrical description at any 
scale or spatial resolution. That is, there is no privileged 
spatial level of description, i.e., scale invariance exists. 
Conventional geometric structures obey integer scaling 
laws, for example the area of a square scaling as the 
power of 2 of the edge length. Fractal structures, however, 
display fractional scaling, such as the Koch curve whose 
length scales as the 4/3 power for each iteration [58] 
(Figure 2)

In fractal systems power laws describe the frequency 
of an occurrence x, as: f(x) = x-n. In this description, 
large events have a significantly greater likelihood of 
occurrence compared to, for example, when frequencies 
are distributed according to a normal distribution (i.e., 
“‘fat tails” exist). Thus, large-deviation phenomena in 
cancer may be related to fractal properties and power law 
behavior.

Fractal structures have been examined from the level 
of chromatin to the cell membrane to the lung and other 
organs [39-42, 59]. At the DNA level, the fractal structure 
of sequences can be examined in a ‘chaos game’ or in 
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‘DNA walks’, in which DNA sequences are examined 
to identify long-range correlations (as exist in physical 
phase transitions) in nucleotide sequences and disruptions 
represented by duplications, repeats and translocations 
[40]. In the chaos game a random walk over the DNA 
sequence space generates a fractal pattern. Using the 4 
DNA base dimensionality, an information space pattern 
arises similar to the hyperspace and hypercycles of Eigen 
[60]. These analyses, then, are able to detect global gene 
structure and long-range pattern disruption in cancer that 
would otherwise remain opaque without considerations 
of self-similarity and power law dependencies. Thus, 
long-range correlations and symmetry breaking in gene 
structure could, in turn, affect integrated cell function 
and homeostasis as reflected in the loss of top-down and 
bottom-up global function. Fractal patterns also exist in 
functional networks, as addressed below [61].

Symmetry and symmetry breaking in the cancer cell 
have not yet been fully investigated, but this represents 
a fertile area for additional work in order to understand 
features of cancer cell shape and chemomechanical 
information transfer disruptions at a molecular level. 
In particular, it would be highly desirable to better 
understand the boundary limits of symmetry disruption in 
the progression of normal cell function to cancer to cell 
death. This could permit interventions to either further 
push the cancer state toward death or back toward normal 
homeostasis.

Functional symmetry breaking

In functional complexity and symmetry breaking, 
the interactions among individual cellular constituents is 
examined [27]. These interactions form networks, such 
as protein-protein or gene-gene interaction networks. 
Individual networks don’t function in isolation, but 
interact with each other and build up a global system 
network that permits life. In cancer, the network is 
degraded and homeostasis is lost. Bioinformatics seeks 
to elucidate regularities and control points in biological 
networks that are lost in cancer, but as the previous 
combinatorial complexity examples demonstrate, the 
problem becomes even more computationally daunting 
when functional interactions are considered. Symmetry 
analysis can again contribute to clarifying this component 
of the cancer problem. 

 The functional cell structure can be described by 
a network of interconnected individual molecular agents, 
which in turn can be analyzed by graph theory [62-64]. 
For example, in social networks, graphs show all of 
the connections between individuals. Graphs possess 
embedded symmetries that are important for stability 
and homeostasis [64-68]. In graph theory, the agents 
are the vertices and the connections are the edges of 
the graph (Figure 3). Graph theory entails a complex 
and exceedingly powerful mathematical framework that 
can identify symmetry and other features not readily 

Figure 2 : The Koch curve. The Koch curve is created by dividing each line segment into thirds and replacing the middle segment with 
an equilateral triangle. Each iteration of the Koch curve produces a curve that is self-similar to the previous ones. It can be readily shown 
that the total length scales the power law relationship (4/3)n for n iterations and thus the length approaches infinity in the limit. The fractal 
dimension of a Koch curve is defined as log4/log3 = 1.2619. The Koch curve is continuous, but not differentiable, i.e., it has no tangent at 
any point.
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discernable when the graph size reaches hundreds or 
thousands of independent agents. Two key graph theory 
concepts are graph symmetry and graph complexity, 
which are closely related, but provide different graph 
informational descriptions [62, 69-75]. Graph symmetry 
and symmetry breaking can characterize and explain 
changes in network functionality, complexity and 
information transfer. It is a foundational feature of a graph. 

Graph symmetry is illustrated in Figure 3. The 
hexagonal graph with all vertices connected (a complete 
graph) is highly symmetric and include 6 rotations, 6 
reflections along lines connecting opposite vertices and 
6 reflections along lines connecting the midpoints of 
each edge. Any one or a combination of these symmetry 
operations maintains the network. In the second graph, 
there is no rotation, reflection or other change that 
maintains graph invariance; this graph is the simplest 
asymmetric planar graph. The third graph increases in 
complexity, but one can by careful inspection determine 
that the graph is asymmetric. This is the Frucht graph, 
which is the smallest asymmetric graph with each vertex 
having exactly 3 edges. In the fourth graph, the complexity 
is greatly increased compared to the three other graphs. 
A protein-protein interaction network might have this 
appearance. It is difficult to determine by inspection 
whether this graph has any symmetries. 

In graph theory, a graph symmetry is termed a 
graph automorphism. The collection of all the graph 
automorphisms is the automorphism group or Aut(G). 
Measurement of Aut(G) and other graph properties lies on 
the cutting edge of computation theory and is a currently 
active area of research in the solution of very difficult 
problems [76-78]. Fortunately, new algorithms have made 
the calculation of Aut(G) much more practicable for large 
networks [79, 80]. 

The graph Aut(G) characterizes the information 
content of a functional network by counting all the 
symmetries. Yet, asymmetric components of a network can 
also store information and therefore parallel information 
approaches have been used for network analysis, including 
Shannon information, Kolmogorov complexity and Gibbs 
free energy [69, 71, 72, 74, 75, 81]. The Kolmogorov 
complexity (K(G)) measure is the size of the smallest 
computer program needed compute or construct the graph 
[69, 71, 82, 83]. A fully symmetric graph has a large 
Aut(G), low K(G) and low information. A completely 
asymmetric network has Aut(G) = 1 (a graph is symmetric 
with itself) and a K(G) that is a function of the actual 
size and arrangement of the individual agents, as is the 
information processing capacity of the network. Network 
symmetry and complexity measures are approximately 
reciprocal, but complexity measures also capture the 
information contained in asymmetric graph. 

In recent years, the K(G) and Aut(G) analyses have 
been applied to a number of biological networks [64, 69-
71, 81-88]. One advantage of Kolmogorov complexity 
over a purely symmetry description using Aut(G) is that it 
better captures all the graph structure by measuring all of 
the non-randomness. For a given graph Aut(G) variations 
in K(G) can be observed. Typically, there is an optimal 
number of edges for a given vertex number (V(G)) number 
to maximize K(G), and hence the information processing 
capacity of a network. For 50 nodes , K(G) is maximum at 
about 600 edges [83]. Related to this, is the phenomenon 
of phase transitions in complexity space when an abrupt 
increase in K(G) occurs at a threshold level of node 
connnetedness (i.e., the average node degree). This 
concept is similar to physical phase transitions where long-
range interactions and symmetry breaking occur. When 
few connections exist at each node, K(G)~logV(G), but 

Figure 3: Graphs of differing symmetry. Graph 1 is a complete graph with all nodes connected; it has 6 rotation and 12 reflection 
symmetries. Graph 2 is the smallest asymmetric graph. Graph 3 is the smallest asymmetric graph with each node possessing 3 edges (degree 
3); it is known as the Frucht graph. Graph 4 is a complex graph, such as might exist for interacting proteins, for which any imbedded 
symmetries are difficult to discern by inspection. Software programs, such as nauty and SAUCY2, can compute the graph automorphisms.
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when the number of edges, E, grows, an abrupt increase 
in K(G) emerges at edge probability ~logV(G)/V(G) [69]. 
Is this the point where the phase transition from normal 
to cancer occurs or where a cancer suddenly develops 
resistance? Notably, the Aut(G) of protein interactions in 
different human cancers has been shown to be related to 
the 5-year survival rate [70]. Average symmetry may be 
sufficient for some of these analyses and would simplify 
the computational difficulty [89]. Further investigation 
could encompass the measurement of Aut(G) and 
subgroup symmetries in cancer and in the corresponding 
normal tissue in order to identify the precise location in 
protein, gene, or other networks where abnormal broken 
symmetries exist. To our knowledge, such experimental 
analysis has not yet been carried out. The identified sites 
could then be used as leverage points to attack and destroy 
the cancer network with molecular therapies or more 
challengingly, to restore the lost symmetries.

Biological networks must be stabilizable and 
controllable in order to store and transmit information 
necessary for survival of the organism. Survival entails a 
response to environmental changes, which in turn requires 
modification or fine-tuning of the cell or organism’s 
functional network over time. Homeostasis in dynamic, 
open systems far from equilibrium must exist at the 
interface between high order, maximum stability and a 
state of disordered chaos. As the size or number of nodes 
of a network (the graph order) increases the fraction of 

controllable systems decreases, thus permitting only 
a small percentage of complex systems to manifest 
homeostasis in response to external perturbations [90-
93]. A second important concept from the theory of 
large networks is that a single leader-follower model is 
insufficient for controllability in complex systems [90, 
92]. Thus, a multi-level consideration of top-down and 
bottom-up functionality is necessary for understanding 
an integrated system, such as would be required for 
recovering the controllability of cancer cells that 
existed prior to the neoplastic transformation. Cellular 
homeostasis has been recently examined with regard to 
singularities and stability against coordinate changes that 
preserve network structure [94]. This article advances 
our understanding of cellular homeostasis, but does not 
address symmetry, automorphism groups, or subgroup 
broken symmetries that could be related to attack tolerance 
when homeostasis is degraded; this could be a direction 
for future research. 

Network symmetry considerations can contribute 
to understanding large network controllability and 
homeostasis. In recent years, the theory and application 
of network control principles has shown that network 
symmetry is closely related to controllability and 
stabilizability in response to external perturbations, 
decisions, and signals [91-93, 95]. Thus, the network 
Aut(G) could be a major determinant of controllability. In 
cancer, knowledge of broken symmetries that have a large 

Figure 4: Visual illustration of the difference between an exponential and a scale-free network (from Albert et al). 
a, The exponential network is homogeneous: most nodes have approximately the same number of links. b, The scale-free network is 
inhomogeneous: the majority of the nodes have one or two links but a few nodes have a large number of links, guaranteeing that the system 
is fully connected. Red, the five nodes with the highest number of links; green, their first neighbours. Although in the exponential network 
only 27% of the nodes are reached by the five most connected nodes, in the scale-free network more than 60% are reached, demonstrating 
the importance of the connected nodes in the scale-free network Both networks contain 130 nodes and 215 links ((k)=3.3). For additional 
information see Albert et al, Nature 2000.
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effect on loss of homeostasis and creation of instabilities 
could provide new insights into tumor heterogeneity and 
metastatic spread. Early recognition of asymmetries could 
direct specific therapeutic interventions that could repair 
or reverse neoplastic processes and restore homeostasis or 
achieve a new homeostasis.

Another concept related to network symmetry is 
network attack tolerance [67, 96-102]. Attack tolerance is 
the network’s resilience to random or intentional deletion 
of nodes or interference with the connection of nodes 
(deletion of graph edges). Well-known examples are the 
WWW, power grids, and transportation networks. Among 
the network properties that determine robustness to attack, 
symmetry is a key factor [67, 96, 102]. As before, this is 
the case for the network symmetries defined by Aut(G), as 
well as the subgroup symmetries [62, 66, 67]. Scale-free 
symmetries that many real-world graphs possess also play 
a role in network resilience [61, 96, 97, 103] (Figure 4). 

The relationship of network symmetry to cancer 
could take several different forms. For cancer origin, 
attack by environmental factors, such as carcinogens, 
with successful network disruption and conversion 
of homeostasis to instability could be investigated 
and better understood by application of symmetry 
principles, including my measuring the Aut(G) change 
after experimental application of carcinogens. In 
cancer treatment, understanding resistance to drugs or 
radiation could be enhanced though knowledge of attack 
vulnerability at specific points in the network, perhaps in 
the subgraphs that are asymmetric and have diminished 
attack tolerance. These new concepts will require 
improved elucidation of biologic network graph structure 
and improved analytics to detect imbedded symmetry 
groups. 

SUMMARY AND FUTURE RESEARCH 
DIRECTIONS

Symmetry and symmetry breaking concepts can 
define the parameters of cancer as a complex adaptive 
system. Defining symmetry in the physical sciences 
has been critical to the investigation of the structure of 
particles to the forces that define the universe. Biology 
is replete with symmetry and symmetry breaking events 
that are essential for life and evolution. In cancer, a further 
symmetry breaking occurs that disrupts the normal cell 
homeostasis to unleash a virulent and uncontrolled new 
life form that is often incompatible with host survival. 

The three modes of symmetry breaking most 
commonly function in an integrated manner. For example, 
functional processes may interact with geometric changes 
in cancer and indeed, it may be that functional changes 
lead to the cytoskeletal tensegrity structural changes, each 
with its own symmetry group. Further examination of the 
three described modes of symmetry breaking as they apply 
to core features of cancer, origin, proliferation, metastasis 

and resistance, will be required. As these are defined for 
cancer cells to explain genomic and phenotypic diversity 
and plasticity, the observations and rules can be extended 
to include the tumor microenvironment and cancer at 
the tissue level. For example, can measures of system 
and molecular broken symmetry provide the needed 
information to determine sites with decreased attack 
tolerance for treatment? Could identification of broken cell 
symmetries permit repair in cancer in order to reestablish 
the lost homeostasis? Communication between the cancer 
and remote organs might also be better understood 
through functional symmetry considerations, as related 
to network stability, interference and attack tolerance, 
for example, by examining signaling networks from the 
cancer microenvironment to the metastatic niche of remote 
organs. Cancer destroys the host network at a system level 
and therefore, the cancer itself must be understood at its 
system level. Essential in these considerations is to not 
merely describe something as possessing a symmetry 
or broken symmetry, but to search for the molecular or 
system origin of the property and demonstrate how it can, 
in principle, be leveraged for the benefit of cancer patients.
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