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'e location and type of adipose tissue is an important factor in metabolic syndrome. A database of picture archiving and
communication system (PACS) derived abdominal computerized tomography (CT) images from a large health care provider,
Geisinger, was used for large-scale research of the relationship of volume of subcutaneous adipose tissue (SAT) and visceral
adipose tissue (VAT) with obesity-related diseases and clinical laboratory measures. Using a “greedy snake” algorithm and 2,545
CTimages from the Geisinger PACS, wemeasured levels of VAT, SAT, total adipose tissue (TAT), and adipose ratio volumes. Sex-
combined and sex-stratified association testing was done between adipose measures and 1,233 disease diagnoses and 37 clinical
laboratory measures. A genome-wide association study (GWAS) for adipose measures was also performed. SAT was strongly
associated with obesity and morbid obesity. VAT levels were strongly associated with type 2 diabetes-related diagnoses
(p �1.5×10−58), obstructive sleep apnea (p � 7.7×10−37), high-density lipoprotein (HDL) levels (p �1.42×10−36), triglyceride
levels (p �1.44×10−43), and white blood cell (WBC) counts (p � 7.37×10−9). Sex-stratified tests revealed stronger associations
among women, indicating the increased influence of VAT on obesity-related disease outcomes particularly among women. 'e
GWAS identified some suggestive associations. 'is study supports the utility of pursuing future clinical and genetic discoveries
with existing imaging data-derived adipose tissue measures deployed at a larger scale.

1. Introduction

'e known relationship between the level of abdominal
adipose tissue and metabolic syndrome and cardiovascular
diseases (CVDs) is longstanding, including the risk for type 2
diabetes and sleep apnea. 'e developed world’s adult
population is showing ever-increasing rates of obesity and,
consequently, an increase in a wide range of health risks [1].
Developing a deeper understanding of the impact of obesity
on health risk using more detailed quantitative traits of
obesity, beyond body mass index (BMI), such as different
types of adipose tissue, can provide more insights into health
risks and the biology of the impact of obesity.

Although BMI has been used for a wide range of research
including genetic epidemiology, BMI has a distinct limitation

in that the measurements assume a uniform contribution to
risk by all adipose tissue, not taking into account the variation
of the adiposity type and location from individual to indi-
vidual. Location of adipose tissue has a critical role in the
overall impact of obesity, with centralized adiposity having
a higher impact on metabolic disorder health risks [2]. Fur-
thermore, adipose is not a single homogeneous tissue and has
regional deposits of both subcutaneous adipose tissue (SAT)
and visceral adipose tissue (VAT) [3]. While SAT lies directly
under the skin, VAT is the adipose tissue around the organs.
Past epidemiological studies have suggested that VAT is more
strongly associated with CVD and metabolic syndrome [4].

Other measures of adiposity such as waist-hip ratio
(WHR) have proved to be predictive measures of diabetes
risk in men [5] and coronary heart disease risk in both sexes
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[6, 7]. While WHR is appropriate for determining the re-
gional distribution of adipose tissue [8], it has shown
moderate associations with the amount of VAT accumu-
lation in the abdomen [9–11] and large variability in dis-
tinguishing VAT from SAT [8]. Waist circumference
measures have shown stronger associations with abdominal
VATcompared toWHR in bothmen and women [8, 11–13].

Alternatively, the levels of VAT and SAT can be more
accurately measured through computed tomography (CT),
ultrasound, and magnetic resonance imaging (MRI) [14].
Research on the impact of obesity using CTscans has provided
valuable insights into the risk of CVD [15]. Additionally, CT
measures of adipose tissue have facilitated the exploration of
the relationship between accumulation of abdominal SAT or
VATand genetic variation, showing sex-specific loci associated
with VAT levels [16, 17]. Although there are known genetic
contributions to adipose distribution [18–21], identifying ge-
netic biomarkers using quantitative adipose data from large-
scale CT studies provides an opportunity for a better un-
derstanding of the nexus between genetics, adiposity, and an
exhaustive list of health outcomes and laboratory measures.

An obstacle to large-scale imaging analyses is the financial
investment in the collection of data. Geisinger has electronic
health record (EHR) data and millions of biomedical images
encompassing patient visits across health and disease that
have been collected in EPIC® since 1996, with a stable patientpopulation that uses primary and specialty care services.
Furthermore, Geisinger has the MyCode Community Health
Initiative, a biorepository with a growing collection of
genome-wide array data and whole-exome sequencing data
that will eventually surpass 200,000 individuals [22]. 'us,
there is a unique opportunity to use the existing imaging,
clinical, and genetic data from Geisinger for new discoveries
on the impact of obesity and the identification of risk factors
that can be used as biomarkers in translational medicine.
'rough the application of advanced image processing and
computer visionmethods that scale up the use of thousands of
images, many challenges to the usage of existing EHR and
imaging data for the purposes of research can be surpassed.

As a proof-of-principle study, we used 2,545 distinct CT
images from the EHR of Geisinger and used a “greedy snake”
segmentation algorithm to automatically measure individual
levels of VAT, SAT, and total adipose tissue (TAT), as well as
adipose ratio levels. Using ICD-9 codes to define cases and
controls for diagnoses and 37 clinical laboratory measures,
we characterized associations between these CT-derived
adipose measures and a wide range of obesity-related di-
agnoses as well as quantitative traits. Subsequently, we also
performed sex-stratified analyses to identify sex-specific
associations with clinical diagnoses and obesity-related
traits. Finally, we performed a genome-wide association
study (GWAS) between the adipose measures and ∼600,000
common genetic variants and identified suggestive genetic
associations.

2. Methods

2.1. Study Samples. 'e EHR and genetic data of this study
for 2,545 individuals came from Geisinger and the MyCode

Community Health Initiative of Geisinger. 'e genetic data
were genotyped as a part of the DiscovEHR collaboration
between Geisinger and Regeneron Genetics. Given that most
patients within Geisinger are of European American (EA)
ancestry (97%), only EA subjects were included in this study
(Table 1).

2.2. Image Data Collection. Adipose tissue measurements
were obtained using an image segmentation technique called
the “greedy snake” algorithm that analyzes delineated areas
of TAT, VAT, and SAT from preexisting abdominal CT
scans within Geisinger’s EHR. Data analyses were conducted
for adipose measures extracted from the CT slice showing
the largest area of total adipose. Also, these same measures
from the slice with the largest waist circumference within
abdominal CT scans were evaluated.

Our previous work [23] describes the algorithm in great
detail; here, we just briefly review the main steps. We for-
mulated automatic fat quantification as an unsupervised
contour minimization problem. 'e proposed algorithm
comprised four major parts: (1) data preprocessing, (2) outer
body contour estimation, (3) abdominal contour estimation,
and (4) adipose quantification. Data preprocessing was done
using standard image processing operations. Given an ab-
dominal CT image, the first step was to separate the body
from the whole image. 'is was done with a simple
thresholding, taking into account the Hounsfield range of
regions of interest. Next, a morphological opening operation
was used to remove material artifacts like tables and trays.
After segmenting the body from the image, the Moore-
neighbor tracing algorithm was used to estimate the outer
body contour. In computer vision, active contours are widely
used over edge detection algorithms to locate the contour of
an object, and they impose energy minimization of prop-
erties like smoothness and continuity to make the seg-
mentation robust to noises and edge discontinuities.

'e “greedy snake” algorithm differs from the original
“active contour” algorithm by computing the movement of
each contour point in a discrete manner. 'e outer body
contour is provided as an initial contour to the “greedy
snake” algorithm. At each iteration, the algorithm then
makes a greedy choice and moves contour points to the
position of minimum energy, a linear combination of image
energy, elasticity energy, and the curvature energy of the
image and the contour points, respectively. In this way, we
could identify the body contour and the abdominal cavity
contour.

In the last step, we quantified various fat tissues using the
body contour and the abdominal cavity contour, re-
spectively. Any pixel within the Hounsfield unit range (−190,
−30) was identified as adipose. 'e TAT region was cal-
culated by the area inside the outer body contour. 'e VAT
region was determined by the area inside the abdominal
cavity contour, and finally, the SATregion was calculated by
the area between the body and abdominal cavity contours.
We also calculated visceral-to-subcutaneous fat ratios
(VSRs) and visceral-to-total fat ratios (VTRs) using VATand
SAT. 'is algorithm identified TAT, VAT, and SAT
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segmentations with 0.885%, 3.55%, and 3.26% average error,
respectively, as compared to a manual segmentation [23].

2.3. Evaluation of Measures. Following the extraction of
adipose tissue measurements from CT images, each measure
type was evaluated for normality of data distribution and for
identification of outliers. Adipose tissue measurements
showing nonnormal distributions were Box-Cox trans-
formed. Evaluation of all measures was done in R v3.4.0 [24].
Summary statistics of adipose measurements are given in
Supplementary Table 1.

2.4. ICD-9-Based Diagnoses. International Classification of
Disease (ICD-9) diagnosis codes of the Geisinger EHR were
used to define the case-control status for diagnoses. Cases
were defined as individuals with three or more visits for
a specific ICD-9 code at the 5-digit level (e.g., 250.60),
whereas controls were defined as individuals having zero
visits for the same code. Individuals were excluded from
analysis for a given ICD-9 code if they had one to two visits
for that specific ICD-9 code. We required at least 50 or more
case subjects for the diagnosis to be included in our asso-
ciation testing. Based on our criteria for inclusion/exclusion,
we used 1,233 ICD-9 codes for association testing, and those
listed in Supplementary Table 2 are the 263 phenotypes
where the regression models converged.

2.5. Clinical Lab Measures. We had 37 different blood- and
serum plasma-derived median/mean clinical laboratory
measures from the Geisinger EHR. All clinical laboratory
measures were evaluated for normality and outliers, where
values greater than 2.5 standard deviation were removed.
Log transformations were selectively applied after evaluating
clinical laboratory data for normality. Supplementary Ta-
ble 3 shows the summary statistics of all laboratory measures
and additional summary statistics of our dataset.

2.6. Genotyping and Quality Control. Genotyping of Gei-
singer MyCode® participants was done using the Illumina
HumanOmniExpress-12 v1.0 array through the DiscovEHR
collaboration. Genotype quality control (QC) was performed

prior to any association testing, using R 3.4.0 and PLINK [25]
for the entire genetic dataset of MyCode (∼38,000 individuals
at the time of this study). We filtered single-nucleotide
polymorphisms (SNPs) for sample call rates (99%), geno-
typing (99%), and a minor allele frequency threshold of 1%.
Additionally, highly related samples were then removed on
the basis of their identity by descent kinship coefficient es-
timates (pi-hat> 0.125). Principal components were calcu-
lated using EIGENSOFT to confirm the EA ancestry status of
individuals who also had imaging data. Following QC and
filtering for samples that had both genotyping and adipose
imaging data, we had 629,675 SNPs and 2,545 EA samples.

2.7. Associations between CT-Derived Adipose Measures and
Diagnoses and Clinical Laboratory Measures. Associations
between the CT-derived adipose measures and ICD-9-
derived diagnoses or clinical laboratory measures were
calculated using logistic regression and linear regression,
respectively, using the software PLATO [26]. In both types
of analyses, the responses were adjusted for age and sex.
We also performed the analyses adjusted for age, sex, and
type 2 diabetes status to determine if there were any
appreciable differences in associations with those cova-
riates. In addition to determining strength of associations
between adipose measures and ICD-9 codes, odds ratios
and 95% confidence intervals were also calculated in
PLATO. Analyses were then repeated, stratified by sex,
where age was used as a covariate.

2.8. Associations between CT-Derived Adipose Measures and
Diagnoses andClinicalLaboratoryMeasures forWCandTAT.
We evaluated ICD-9 diagnosis associations from the optical
slice with the greatest TAT, as well as ICD-9 diagnosis
associations from the slice with the greatest WC. We did see
a difference in the significance of associations when using
the TAT measures compared to WC measures, for visceral
adipose, but not subcutaneous adipose. All VAT and SAT
association results presented within this manuscript are for
associations from the imaging slices with greatest TAT.

2.9. Bonferroni Correction and False Discovery Rate for As-
sociation Tests between Adipose Measures and EHR Data.
A Bonferroni correction of 2.01× 10−5 (i.e., (1× 10−2)/
(1,233× 4)) (the denominator corresponds to 1,233 ICD-9
codes and 4 phenotypes) was used as a significance threshold
for association tests using ICD-9 code diagnoses and
7.14×10−5 (i.e., (1× 10−2)/(35× 4)) (the denominator cor-
responds to 35 clinical lab measures and 4 phenotypes) was
used in the association tests using clinical laboratory mea-
sures. In addition to the Bonferroni threshold, a false dis-
covery rate (FDR) of 1% was determined. 'is translated to
a level of significance of 2.09×10−4 for analyses using logistic
regression and 2.57×10−3 for analyses using linear re-
gression. A 1% FDR for the sex-stratified dataset translated
into a level of significance of 1.58×10−4 and 2.56×10−3 for

Table 1: Demographics and descriptive information of the cohort.

Covariate Value Count or (min, median, max)

Sex Female 1307
Male 1238

Diabetes 0 1796
1 749

Age

<18 3
19–40 402
41–60 919
61–80 1046
80+ 175

Weight (kg) — (36.27, 88.45, 188.69)
Height (m) — (1.09, 1.69, 2.52)
BMI (kg/m2) — (12.56, 30.72, 68.48)
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females and 1.38×10−4 and 3.09×10−3 for males for logistic
regression and linear regression, respectively.

2.10. Genetic Associations. Genetic associations between
629,675 SNPs obtained after QC and adipose tissuemeasures
(VAT, SAT, VSR, and VTR) were calculated in PLATO
using age and sex as covariates. Following the GWAS, SNPs
were annotated using the NHGRI-EBI GWAS catalog [27]

and GRASP [28] to determine if any associations within this
study were replicated in previous studies, using a reported p

value significance of at least 1× 10−4 from the GWAS catalog
and GRASP.

3. Results

Summary statistics of all phenotypes can be found in Table 1.
Our study had a total of 2,545 subjects, including 1,238 men
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Figure 1: (a) 'e plot shows −log(p values) for the top phenotypic associations between ICD-9-based diagnoses on the y-axis for VATand
SATafter controlling for age and sex. Point size indicates the number of cases (approximately 400, 800, 1200, and 1600).'e direction of the
point, upwards or downwards, represents the direction of the corresponding beta estimate (positive or negative) (b) Odds ratios and 95%
confidence intervals (CIs) of top phenotypic associations of ICD-9 codes with VATand SATafter controlling for age and sex. In both panels,
SAT is represented in orange and VAT in blue. 'e red line corresponds to the Bonferroni threshold, whereas the green line corresponds to
the 1% FDR threshold. Refer to the full descriptions of the ICD-9 code abbreviations in Supplementary Table 2.
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Figure 2: (a)'e plot shows −log(p values) for phenotypic associations of obesity-related ICD-9-based diagnoses with VATand SATon the
y-axis after controlling for sex and age. Point size refers to the number of cases (250, 500, 750, and 1000).'e direction of the point, upwards
or downwards, represents the direction of the corresponding beta estimate (positive or negative) (b) Odds ratios and 95% CIs of phenotypic
associations of obesity-related ICD-9 codes with VATand SATafter controlling for sex and age. In both panels, SAT is represented in orange
and VAT in blue. 'e red line corresponds to the Bonferroni threshold, whereas the green line corresponds to the 1% FDR threshold.
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and 1,307 women, with a mean age of 54± 17 (mean±
standard deviation) years.

3.1. Associations between Adipose Tissue Measures and Clinical
Diagnosis Codes. 'e results of all associations between
adipose tissue and clinical diagnosis codes are presented in
Supplementary Figure 1, and Supplementary Table 4 shows
association results, with p values <1× 10−5, of SATand VAT
with ICD-9 codes for sex-combined analyses. 'e most
significant associations across all the diagnoses were between
our CT-derived adipose tissue measures (VATand SAT) and
obesity-related ICD-9 diagnostic codes. Figure 1 shows both
the p values plotted with −log 10(p value) as well as the odds
ratios (ORs) and confidence intervals (CIs) for the results
passing our 1% FDR cutoff (refer to the full descriptions of
the ICD-9 code abbreviations in Supplementary Table 2).
'e associations with morbid obesity were more significant
by 10–20 orders of magnitude; therefore, the results were
moved to a separate plot to maintain reasonable axes for the
rest of the results. 'e results show the majority of the
associations were positive and thus were associated with
increased risk. Figure 1(a) shows SAT had a stronger as-
sociation with both morbid obesity (p � 3.29×10−83; 95%
CI� [5.45, 7.87]) and “obesity unspecified” (obesity NOS)
(p �1.41× 10−68; 95% CI� [2.98, 3.93]). However, out of the
top results, VAT had a stronger association than SAT with
other obesity-related ICD-9 codes such as “diabetes mellitus
without mention of complication, type II, or unspecified type,
not stated as controlled” (DMII wo cmp nt st uncrntr) (VAT:
p � 1.49×10−58; 95% CI� [2.29, 2.87], over SAT:
p � 3.23×10−29; 95%CI� [1.63, 2.00]) (Figures (1a) and 1(b)).
While the −log(p values) and OR show trends of stronger
associations with clinical diagnoses and VAT, the CIs for
many of these same associations overlap between SAT and
VAT.

In Figure 2, we filtered the total associations for phe-
notypes that are related to obesity (e.g., comorbidities but
not specifically obesity diagnoses). Again, the majority of
associations showed an increased risk for obesity-related
comorbidities. 'e only notable divergence from this was
a decreased risk of osteoporosis, and there are conflicting
reports regarding the relationship between obesity and bone
mass [29]. As with the results of Figure 1, VAT generally
showed stronger associations with obesity-related comorbid-
ities (Figure 2(a)) as well as clinical diagnoses (Figure 2(b));
however, their respective CIs showed an overlap between SAT
and VAT (Figure 2(b)).

3.2. Associations between Adipose Tissue Measures and
Clinical Laboratory Measures. Clinical lab measures ob-
tained from outpatient clinics provided an opportunity to
determine the relationship between adiposity and measures
such as high-density lipoprotein (HDL) levels, low-density
lipoprotein (LDL) levels, cholesterol (CHOL) levels, tri-
glyceride (TRIG) levels, and white blood cell (WBC) counts.
Supplementary Table 5 presents results of sex-combined
associations between SAT/VAT and clinical lab measures
with p values <1× 10−1, and Supplementary Table 6 provides

summary statistics for the clinical lab measures. All obesity
and adipose measures had similar directions of effect for
associations with the clinical lab measures. However, VAT
showed themost significant association for lipid levels, having
the strongest association with both HDL (p �1.42×10−36;
standard error (SE)� 5.80×10−3) and TRIG (p �1.44×10−43;
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SE� 1.08×10−2) (Figure 3). Additionally, the adipose mea-
sures showed a negative direction of association with HDL
(VAT β�−0.075) but a positive direction of association with
TRIG (VAT β� 0.153). Interestingly, VAT also showed a sig-
nificantly higher positive association with WBC
(p � 7.37×10−9; SE� 6.15×10−3) compared to SAT
(p �1.21× 10−4; SE� 6.04×10−3), although there was little
difference from BMI (p � 2.21× 10−9; SE� 7.22×10−4)
(Figure 3).

3.3. Sex-Stratified Analyses. To identify different trends of
adipose deposition associated with health outcomes for men
and women, we performed the same associations as above,

sex stratified by both clinical diagnosis codes and lab
measures. Summary statistics of sex-stratified clinical labs
can be found in Supplementary Table 7. 'e results de-
scribed here are limited to ICD-9 codes that were found to be
associated in both sexes (some diagnoses are specific to
women only and vice versa and thus would only be evaluated
in one group or the other). Although the number of women
and the number of men were very closely balanced, the
strength of association for several different health outcomes
was greater for women.
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(obesity NOS) (p �1.32×10−39; 95% CI� [2.63, 3.69]), and
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“obstructive sleep apnea” (p � 5.42×10−15; 95% CI� [1.85,
2.79]) (Figure 4(a)), although the ORs again had overlapping
CIs (Figure 4(b)). On the contrary, SAT in males, compared
to females, showed a higher association with “edema”
(p � 7.87×10−13; 95% CI� [1.67, 2.46]) and “cellulitis of the
leg” (p � 3.05×10−7; 95% CI� [1.51, 2.52]) (Figures 4(c) and
4(d)). Beyond the top associations, neither sex showed
additional associations for SAT that met at least the 1% FDR
threshold (Supplementary Figures 2(a) and 2(c)).

'e top associations between ICD-9 codes and VATalso
showed sex specificity but differed from associations found
in sex-combined analyses. Females showed strong evidence
of VAT associations with “diabetes mellitus without the
mention of complication, type II, or unspecified type, not

stated as controlled” (p �1.34×10−39; 95% CI� [2.55, 3.55]),
“diabetes with renal manifestations, type II, or unspecified
type, not stated as uncontrolled” (DMII renl nt st uncntrld).
(p �1.18×10−9; 95% CI� [1.77, 3.04]), and “coronary ath-
erosclerosis” (Crnry athrscl natve vssl) (p �1.11× 10−6; 95%
CI� [1.35, 2.04]), with all relationships having significantly
different ORs than males (Figures 5(a) and 5(b)). Outside of
these top results, VAT associations for five ICD-9 codes
(“shortness of breath,” “gout” (Gout NOS), “osteoporosis”
(Osteoporosis NOS), “neuropathy in diabetes,” and “oste-
oarthritis of lower leg” (Loc prim osteoart-l/leg)) reached 1%
FDR-level significance in females (1.58×10−4) compared to
none in males (Supplementary Figures 3(a) and 3(c)). Even
beyond the FDR significant results, females showed

Retention urine NOS

Hy kid NOS w cr kid I−IV

Heart failure NOS

Senile nuclear cataract

Atrial fibrillation

Dermatophytosis of nail

Pain in limb

Refraction disorder NOS

Chr kidney dis stage III

Vitamin D deficiency NOS

Acute bronchitis

Presbyopia

Cellulitis of leg

Edema

0.0 2.5 5.0 7.5
−log(p-value)

IC
D

9 
sh

or
t d

es
cr

ip
tio

n

# Cases
100
200
300

Beta value
(−)
(+)

Sex
Female
Male

Top male phenotypic associations of
ICD9 codes with visceral fat

(covar = age)

Obesity NOS
10 20

−log(p-value)

(c)

Retention urine NOS

Hy kid NOS w cr kid I−IV

Heart failure NOS

Senile nuclear cataract

Atrial fibrillation

Dermatophytosis of nail

Pain in limb

Refraction disorder NOS

Chr kidney dis stage III

Vitamin D deficiency NOS

Acute bronchitis

Presbyopia

Cellulitis of leg

Edema

1.0 1.5 2.0
Odds ratio

IC
D

9 
sh

or
t d

es
cr

ip
tio

n

Odds ratio with 95% CI of top male phenotypic
associations of ICD9 codes with visceral fat

(covar = age)

Fat measure
Female
Male

Obesity NOS
1.0 1.5 2.0 2.5 3.0

Odds ratio

(d)

Figure 5: 'e plot shows −log(p values) for top sex-stratified phenotypic associations of ICD-9-based diagnoses with VAT on the y-axis
after controlling for age. (a) Top female phenotypic associations of ICD-9 codes with VAT. Point size refers to the number of cases (250, 500,
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a stronger and greater number of relationships between VAT
and ICD-9 codes compared to males, although ORs did not
significantly differ between sexes (Supplementary Figures 3
(B) and 3(D)). Finally, like with SAT, males had a stronger
VAT association with “edema” (p � 2.27×10−9; 95% CI�

[1.43, 2.04]) and “cellulitis of the leg” (p � 5.94×10−7; 95%
CI� [1.44, 2.31]); however, there were overlapping CIs for the
ORs (Figures 5(c) and 5(d)). A full summary of sex-stratified
association testing for ICD-9 codes, with p values< 1× 10−2,
can be found in Supplementary Table 8.

Similar to the sex-combined analyses, key clinical labo-
ratory measures were tested for their associations with adipose
tissue measures. In females, VAT showed the strongest asso-
ciation with WBC count (p � 7.49×10−13; SE� 7.58×10−3),
HDL (p � 5.94×10−26; SE� 7.95×10−3), and TRIG
(p �1.84×10−31; SE� 1.39×10−2), whereas in males, VAT
showed the strongest associations with HDL (p � 5.50×10−13;
SE� 7.04×10−3) and TRIG (p � 9.03×10−15; SE� 1.39×10−2)
(Figures 6(a) and 6(b)). 'e direction of effect was similar to
that of the sex-combined analyses. While both sexes showed
a strong association betweenVATandHDL aswell as VATand
TRIG, females showed evidence of a stronger association with
key obesity-related laboratory measures than males. 'is ob-
servation lends further support to the notion that visceral fat
levels may impact obesity disease outcomes to a greater extent
in females compared to males. A summary of the full results of
sex-stratified clinical lab association testing can be found in
Supplementary Table 9.

3.4. Genome-Wide Association Studies of Adipose Tissue.
Manhattan plots for sex-combined analyses are presented in
Supplementary Figures 4–7, and a summary of the top re-
sults can be found in Supplementary Table 10. Among all
genome-wide associations tests, only one SNP (rs10743966)
reached genome-wide significance (p � 2.97×10−8 for SAT;
Supplementary Figure 5) and has previously been shown to
be associated with WHR [30] and CVD [31]. Although no
other SNPs reached statistical significance, GRASP anno-
tations of the top results of SAT and VAT reveal previously
established associations with obesity-related phenotypes.
Additionally, SNPs associated with calculated adipose ratios
(VSR and VTR) were also previously associated with
obesity-related phenotypes. More specifically, the top SNP
associated with VAT (rs933186; p � 1.29×10−7) was pre-
viously shown to be related to HDL cholesterol [32, 33],
while the top SNP associated with VSR (rs12950848;
p � 6.45×10−7) was previously shown to be related to lipid
levels [32, 33] and total cholesterol [32]. Lastly, although
VTR’s top association, rs7699631 (p �1.99×10−6), has no
known associations with obesity-related traits, it was found
to have a strong association with rs12950848
(p � 2.61× 10−6) which was earlier shown to be associated
with LDL cholesterol [32].

4. Discussion

'e level of adipose tissue individuals carry has been previously
shown to be an important risk factor for several obesity-related

diseases. While BMI is typically used as a measurement of
adipose levels, the location of adiposity is not reflected in this
measure. Waist circumference is another measure that pro-
vides a reflection of the location of adiposity, in addition to the
amount, as there is a known relationship between improved
health outcomes for “pear-shaped” adiposity compared to
“apple-shaped,” or more central, adiposity. Although BMI and
waist-to-hip ratio have been shown to be predictors of CVD
and mortality, they are not effective in distinguishing sub-
cutaneous adipose from visceral adipose. Visceral adipose, the
fat closest to the internal organs and more centrally deposited,
is believed to have the most important impact on metabolic
disorders, and increased visceral adipose has been linked to
hypertension, atherosclerosis, and diabetes [34–36]. In-
dividuals with high BMI can have a high level of physical fitness
and a lower risk of mortality as compared to individuals with
lower BMI but a different distribution of adiposity [34].
Women generally have a higher amount of body fat than men;
however, women tend to carry excess adipose in their hips and
thighs (gluteal-femoral region) [37, 38], whereas men carry it
around their abdomen.

In this paper, we present a proof-of-principle study
where we used imaging data from CT scans collected within
a health system and then used a high-throughput automated
approach to obtain measures of subcutaneous and visceral
adipose tissue across individuals. An added advantage to this
approach is that the imaging data can be coupled with the
health data recorded on patients, including patients’ di-
agnoses as well as their respective clinical laboratory mea-
sures. With this new approach, it is important to show we
recapitulate known trends and relationships between adi-
pose types, diagnoses, and clinical lab measures as a proof of
principle in addition to potentially new discoveries.

Our results show that obesity-related ICD-9 diagnostic
codes have strong associations with VAT and SAT. In
particular, morbid obesity was more strongly associated with
SAT as compared to VAT. 'ese results do reinforce that
subcutaneous adipose levels provide an accurate reflection of
the degree of obesity for an individual. Importantly, how-
ever, in line with the significant impact of visceral adipose on
obesity-related conditions and comorbidities, our study
shows the strength of the majority of associations is higher
for VAT compared to SAT. 'e direction of effect of the
majority of associations with obesity-related outcomes was
for increased risk of these outcomes with increases in VAT.

Intriguingly, even with balanced numbers of men and
women and nomajor difference in power due to sample size,
we saw the associations between SAT/VAT and obesity or
obesity-related comorbidities to be consistently more sig-
nificant for women than men. 'is will be an important area
to research in a larger study with more CT-derived adipose
measures to further determine the impact of these adipose
levels when stratifying by sex. If these results replicate in
a larger sample size, this could point to the increased im-
portance on health outcomes of centralized adiposity for
women versus men.

In the context of clinical lab measures, the negative
direction of association for HDL, but a positive direction of
association for triglycerides, particularly implies that the
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increase in VAT is associated with increased levels of tri-
glycerides but decreased levels of HDL. HDL is considered
a beneficial circulating lipid, while triglycerides are not, so
this association points to the critical importance of VAT's
effect on obesity-related risks compared to BMI alone. Also,
the significantly higher positive association of WBC with
VAT compared to SAT may be related to increasing in-
flammation with obesity [39, 40]. Our clinical lab associations
also suggest that the presence of a greater volume of visceral
tissue in females may impact the outcomes of more obesity-
related diseases than in males, as we again saw a more sig-
nificant magnitude of association with these clinical lab
measures in women compared tomen. For this study, we used

themedian clinical labmeasure each individual had across the
lipid measures they had recorded in the EHR. In the future
work, we will explore both the relationships of longitudinal
lipid and blood cell count measures with visceral and sub-
cutaneous adipose measures, characterizing the impact of
medications such as lipid-lowering drugs on results when
taken into account.

Notably, for themajority of the associations of this study,
except for the most statistically significant ones, there were
overlapping confidence intervals for the association results
of VAT and SAT. 'us, while we saw trends of the mag-
nitude of association being higher for VATcompared to SAT
for many diagnoses, the overlapping confidence intervals do
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not support a truly statistically significant difference. Power
is always a consideration in association testing, and while
ICD-9 codes have shown successful association testing in
other studies [41], they can increase noise and decrease
power. 'us, to strengthen these initial findings further, our
future direction will be to deploy this strategy across
thousands of CT images, thereby increasing our power to
detect associations. We also had few statistically significant
genetic associations and again that could be attributed to
power for this small proof-of-principle study, and our future
plan is to repeat these associations with larger sample sizes.

Overall, the results of this study show the utility of
repurposing existing imaging data for the study of the
impact of visceral adipose levels on health outcomes. 'ese
images, while collected in large numbers, are an incredible
untapped resource for a wide range of research projects.'is
project also shows the importance of using automated
phenotype extraction from imaging datasets. Manual seg-
mentation of images would have been considerably more
time-consuming and will not scale up to the future work
with measures obtained from additional CT scans. With the
ever-increasing number of medical images available within
electronic health record systems, using these images in
a high-throughput manner is a powerful resource for re-
search. 'rough this approach, we can obtain large sample
sizes of understudied quantitative measures and sub-
phenotypes beyond clinical lab measures, health screening
measures such as BMI, and diagnoses. 'ese measures
obtained from images may better reflect the complexity of
diseases and comorbidities, opening the door to new dis-
coveries of the impact of these measures on health and the
relationship to the genetic architecture.
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Supplementary Materials

Supplementary Figure 1: the plot shows −log(p-values) for all
phenotypic associations between ICD-9-based diagnoses on the
y-axis for both VAT and SAT after controlling for age and sex.
Point size is indicative of the number of cases (500, 1000, and
1500), and the direction of the point, upwards or downwards,
represents the direction of the beta estimate (positive or neg-
ative). Supplementary Figure 2: the plot shows −log(p-values)
for sex-stratified phenotypic associations, outside of the top
results, of ICD-9-based diagnoses (y-axis) associated with SAT
after controlling for age. (A) Results of female phenotypic as-
sociations of ICD-9 codes with SAT, after controlling for age,
which show a stronger relationship for females compared to
males. (B) Results of odds ratios and 95% CIs of female phe-
notypic associations of ICD-9 codes with SAT after controlling
for age. (C) Results of male phenotypic associations of ICD-9
codes with SAT, after controlling for age, which show a stronger
relationship for males compared to females. (D) Results of odds
ratios and 95% CIs of male phenotypic associations of ICD-9
codes with SAT after controlling for age. Supplementary Fig-
ure 3: the plot shows−log(p-values) for sex-stratified phenotypic
associations, outside of the top results, of ICD-9-based diagnoses
(y-axis) associated with VAT after controlling for age. (A)
Results of female phenotypic associations of ICD-9 codes with
VAT, after controlling for age, which show a stronger re-
lationship for females compared to males. (B) Results of odds
ratios and 95% CIs of female phenotypic associations of ICD-9
codes with VAT after controlling for age. (C) Results of male
phenotypic associations of ICD-9 codes with VAT, after con-
trolling for age, which show a stronger relationship for males
compared to females. (D) Results of odds ratios and 95% CIs of
male phenotypic associations of ICD-9 codes with VAT after
controlling for age. Supplementary Figure 4: Manhattan plots
showing results for sex-combined analyses of genotypic asso-
ciations of common variant SNPswith all adiposemeasures after
controlling for age and sex. (A) Manhattan plot for genome-
wide association tests for VAT. (B)Manhattan plot for genome-
wide association tests for SAT. (C) Manhattan plot for genome-
wide association tests for VSR. (D)Manhattan plot for genome-
wide association tests for VTR. Blue line denotes a p-value of
1× 10−5. Red line indicates a GWAS significance of 5.0×10−8.
Supplementary Table 1: summary statistics of adipose measures.
Supplementary Table 2: ICD-9 summary and descriptions.
Supplementary Table 3: summary statistics of all EHR data.
Supplementary Table 4: cross-phenotype associations of ICD-9
diagnostic codes. Supplementary Table 5: cross-phenotype as-
sociations of clinical lab measures. Supplementary Table 6:
summary statistics of clinical laboratory measures. Supple-
mentary Table 7: summary statistics of clinical laboratory
measures stratified by sex. Supplementary Table 8: sex-stratified
association tests for ICD-9 codes. Supplementary Table 9: sex-
stratified association testing for clinical labs. Supplementary
Table 10: top GWAS findings. (Supplementary Materials)
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