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Abstract

Fibrodysplasia Ossificans Progressiva (FOP) is a rare, heritable condition typified by progression of extensive ossification
within skeletal muscle, ligament and tendon together with defects in skeletal development. The condition is easily
diagnosed by the presence of shortened great toes and there is severe advancement of disability with age. FOP has been
shown to result from a point mutation (c.617G.A) in the ACVR1 gene in almost all patients reported. Very recently two
other mutations have been described in three FOP patients. We present here evidence for two further unique mutations
(c.605G.T and c.983G.A) in this gene in two FOP patients with some atypical digit abnormalities and other clinical
features. The observation of disparate missense mutations mapped to the GS and kinase domains of the protein supports
the disease model of mild kinase activation and provides a potential rationale for phenotypic variation.
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Introduction

Fibrodysplasia Ossificans Progressiva (FOP) is a rare, autosomal

dominant disease with complete penetrance involving the

progressive ossification of the skeletal muscles, fasciae, tendons

and ligaments. Smooth muscle and cardiac muscles remain

unaffected. Due to low reproductive fitness the condition is mainly

a result of spontaneous new mutations and it has a prevalence of

approximately one in two million individuals worldwide. FOP

shows no geographic, ethnic, racial or gender predisposition [1].

Individuals with FOP appear normal at birth except for great

toe abnormalities; these being short, deviated and later mono-

phalangic. Extensive fusion of the lateral masses of the cervical

vertebrae is often seen with hypoplasia of the vertebral bodies.

Femoral necks are abnormally wide and there may be true bone

exostoses additional to muscle ossification with short malformed

thumbs being less common [2,3]. Following periodic acute

episodes of mysositis, endochondral ossification of striated muscles

generally begins in the occipital, cervical and upper paraspinal

muscles and later affects most muscles around the major joints.

Minor trauma or viral illnesses can initiate acute inflammatory

mysositic episodes leading to progressive heterotopic ossification,

which is amplified by surgical intervention or removal. The

phenotype of FOP is affected by both genetic and environmental

factors with postnatal heterotopic ossification varying with life

history and environmental exposure [4]. Ossification occurs

progressively over the course of a lifetime in an inevitable episodic

and unpredictable manner with most patients being confined to a

wheelchair by the third decade of life and requiring lifelong care.

Recently the genetic cause of FOP was discovered within the

ACVR1 gene, which encodes a type I bone morphogenetic protein

(BMP) transmembrane receptor [5]. A single point mutation

(c.617G.A) was identified in all FOP patients studied. This non-

synonymous mutation causes an Arg206His amino acid substitu-

tion within the GS (glycine-serine rich) domain of the ACVR1

protein, and has been confirmed by our further work and also by

others [6,7]. Type I receptors such as ACVR1 are normally

inactive until binding of extracellular BMP stimulates their

phosphorylation by type II receptors within the GS domain. This

activates the type I protein to recruit and phosphorylate Smad

signalling molecules within the cell that subsequently cause gene

transcription or repression. The GS domain is also negatively

regulated through the binding of FKBP12, which provides a

mechanism to buffer the overall signal in the cell [8]. The switch

between the inactive and active states has been illustrated by

crystal structures of the type I TGF-beta receptor kinase domain as

well as its complex with FKBP12 [9,10].

It has been observed that the Arg206His mutation causes the

ACVR1 protein to be mildly constitutively active [11]. Since the

mutation occurs in the activating GS domain it has been suggested

that this promotes a shift in the absence of BMP towards the active

kinase structure causing over-activation of ACVR1 and subse-

quent R-Smad signalling cascades [5,12]. Recently other ACVR1

mutations have been reported in three FOP patients. A Japanese
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man with FOP has been reported with an ACVR1 mutation,

c.1067G.A resulting in a Gly356Asp amino-acid change in the

protein kinase domain [13]. In two Italian patients, a novel

mutation c.774G.C, leading to the Arg258Ser substitution in the

kinase domain of the ACVR1 receptor was seen. In a three-

dimensional model of the protein structure, Arg258 maps in close

proximity to the GS domain [14]. Here we report two patients

with expression of the major characteristics that define FOP, but

with some atypical features, that both lack the typical, specific

c.617G.A mutation and the other recently reported mutations

but present two different and separate coding mutations in ACVR1.

Methods

Patients
Patient 1 is female and was diagnosed clinically with FOP in

2003 aged 14 years. The first presentation was with a painful bony

lump over her right scapula after a fall and clinical examination

showed that there was only one short great toe with the other

normal. Subsequently she developed multiple tender bony

swellings, and the detection of toe abnormality confirmed the

diagnosis. Her right shoulder was fixed in internal rotation. Fixed

flexion deformities of both elbows were present. Her lumbar spinal

movements were restricted. The patient continued to have

frequent flares of the condition with increased inflammatory

lesions over her shoulder joints, neck, and jaw and fusion of the

neck within 6 months of clinical presentation. This progressive

formation of lesions which later ossify is characteristic to FOP.

However, the relatively late age of onset is unusual and the

malformation of only one great toe has yet to be documented in

another patient.

Patient 2 is a 52 year old female with FOP whose clinical

features were first reported in 1976 [15] and subsequently

reviewed later [15,16]. Severe reduction deformities in all digits

were noted at birth. Her first presentation of the disease was with

lumps, usually painful, on the occiput. By 6 years the patient had a

stiff spine and shoulders. By 14 years both elbows and the right hip

showed ectopic ossification. At 18 years the left hip showed ectopic

ossification and at 20 years there was ossification around the jaw

after dental extraction. At 26 years the patient had complete spinal

fixation, the shoulders were fixed in adduction, the elbows fixed in

flexion, hip movement restricted and fixed in slight flexion and the

jaw gape was 0.3cm. She showed mild cognitive impairment. In

addition, there was diffuse scalp hair thinning beginning at

14 years of age.

Genetic Analyses
Patient samples. Blood samples were collected from patients and

family members and from normal controls with informed consent.

Lymphoblastoid cell lines were a generous gift from Professor J M

Connor, Glasgow,UK.

DNA Isolation. Genomic DNA was isolated from EBV-

transformed cell lines or from peripheral blood samples using

the FlexigeneTM Kit (Qiagen Ltd, UK) according to the

manufacturer’s instructions. The resulting DNA was resuspended

in the elution buffer supplied in the kit.

Identification of mutations. PCR primers (MWG Biotech AG,

Edersberg, Germany) were designed to amplify exon 6 of ACVR1

which contains the c.617G.A mutation. The sample DNA was

amplified using PCR with optimized MgCl2 concentrations and

annealing temperatures using reagents from Sigma, UK. Ampli-

fied DNA was purified on filter plates (Millipore (UK) Ltd,

Watford, UK) and sequenced in both forward and reverse

directions with Big Dye version 3 using an automated sequencer

(ABI3100, Applied Biosystems, Warrington, UK). Subsequently

primers were designed for all 11 exons of ACVR1 which were

sequenced in both patients. To ensure that the mutations found in

the patients were those specifically present in patients with FOP

100 healthy controls were screened also. The mutation in patient 2

created a restriction site for the restriction enzyme StyI and

controls were screened for this site using a restriction fragment

length polymorphism. In patient 1, the mutation did not create a

restriction site and all individuals were screened by sequencing

exon 6 of ACVR1 as described above.

Restriction fragment length polymorphism. The restriction

enzyme StyI (New England Biolabs, Hitchin, UK) was used to

digest amplified ACVR1 exon 8 in patient 2 and healthy controls.

The reaction was left overnight at 37uC and analyzed by agarose

gel electrophoresis with ethidium bromide staining and a 100bp

ladder (New England Biolabs, Hitchin, UK).

Homology modelling
The crystal structure of the kinase domain of the type I TGF-

beta receptor (PDB code 1B6C) in complex with FKBP12 [9] was

used as a template to model ACVR1. The alignment was

performed with the program ICM [17] and used for homology

modelling of the native ACVR1 sequence using the same software.

The resulting model was then energy minimised and side-chain

movements were allowed to resolve clashes. Using this native

model, in silico mutations were introduced corresponding to those

described in this study. The mutation Gly328Glu required limited

loop sampling to resolve main-chain clashes resulting from the

insertion of a larger side chain. Models were visually inspected

before selection. Side-chain rotamer optimisation was performed

for all mutations as well as for neighbouring residues. Electrostatic

potential isosurfaces as implemented in ICM were calculated for

all the resulting models.

Figure 1. DNA sequencing electropherograms of a typical FOP
patient, and of atypical patients 1 and 2, at the positions of the
causative ACVR1 mutations.
doi:10.1371/journal.pone.0005005.g001

Novel ACVR1 Mutations in FOP
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Results and Discussion

The previously described c.617G.A mutation has been

confirmed in most UK FOP patients with characteristic features

of FOP, but was not present in either of the two patients described

here (Figure 1). Patient 1 is heterozygous for the novel mutation

c.605G.T in ACVR1. Like the c.617G.A mutation, this

mutation is found within the GS domain of the ACVR1 protein,

but results in a new substitution Arg202Ile. Patient 2 is

heterozygous for the novel mutation c.983G.A found within

ACVR1, which results in a Gly328Glu substitution. This mutation

occurs outside the GS region in the kinase catalytic domain

(Figure 2).

To date there are no available crystal structures for the kinase

domain of ACVR1. To understand the structural implications of

the new mutations, we built homology models of the native and

mutated ACVR1 kinase domains using the closest available

structure of the TGF-beta receptor (PDB code 1B6C). Important-

ly, this TGF-beta receptor domain shares the same mechanism of

regulation and is highly similar in sequence to ACVR1 (66%

sequence identity) with no insertion or deletions in the aligned

sequence. Structural models must be interpreted carefully as

disease mutations can alter the wild-type structure.

The mutated residues in patient 1 and classical FOP patients

map to the same region in the ACVR1 model positioned in the

aGS2 helix immediately following the glycine-serine (GS) rich

loop. (Fig. 3A–D). The native residues, both arginines, are solvent

accessible, and their mutation will directly impact upon the

electrostatic property of the GS domain surface. In particular, the

Arg202Ile mutation occurs within the recognition site of ACVR1

for its inhibitor FKBP12. The aGS2 helix also packs above the

kinase L45 loop which determines Smad interaction. The striking

similarity to the classical FOP mutation is consistent with the

current disease model suggesting that FOP results from increased

kinase activity [11]. It is noteworthy that patient 1 has less severe

clinical features than a typical FOP patient. Interestingly, the

electrostatic potential is changed less by the substitution Arg202Ile

(patient 1) than by Arg206His (classical), when both are compared

to wild-type ACVR1 (Fig. 3B–D). Furthermore, Arg206 shows

greater interaction with the L45 loop including an invariant salt

bridge with Asp269. These subtle effects may be correlated with

the phenotypic differences.

Figure 2. A schematic of ACVR1 domain organization showing the position of mutations in patients 1 (Arg202Ile) and 2 (Gly328Glu)
with respect to the classical mutation (Arg206His).
doi:10.1371/journal.pone.0005005.g002

Figure 3. Homology models of ACVR1. (A) Wild-type ACVR1 kinase domain. The residues where mutations are described in this study are
represented as sticks (green, labelled). A ribbons representation of the GS-rich motif is highlighted in magenta. A purple frame marks the zoomed
area in panel E. (B) wild-type ACVR1 model rotated 90u around the X-axis to show the surface occluded upon binding of FKBP12 (shown both as
ribbons and surface coloured according to electrostatic potential). The green box denotes the positive patch seen in the model of wild-type ACVR1.
(C) and (D) mutations Arg202Ile and Arg206His are shown as ribbons, with the mutations indicated (same view as panel B). The predicted
electrostatic potential for each mutant protein is shown in the insert (framing is equivalent to the green box of panel B). (E) Mutation Gly328Glu
induces a significant conformational change in the loop where it is sited. One of the putative conformations is depicted in orange (wild-type loop
conformation shown in grey). In this example a potential direct interaction could be formed between the modelled loop and the GS-rich motif.
doi:10.1371/journal.pone.0005005.g003
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The mutation c.983G.A (amino acid change Gly328Glu)

presented by patient 2 maps to the loop following helix aE in the

kinase domain, but is positioned in the three-dimensional structure

adjacent to the GS-rich loop (Fig. 3A, E). In this substitution the

introduction of an acidic residue (glutamic acid) will again change

the local electrostatic potential. The native loop sequence is

absolutely conserved between ACVR1 and the TGF-beta receptor

ensuring a reliable initial model. Here the structure adopts a well

formed hairpin-like loop and the introduction of a bulkier side

chain will force a local change in conformation (Fig. 3E). The

precise conformation (or dynamics) of the new loop is not trivial to

predict preventing reliable interpretation of a change in functional

state. Potentially, any perturbation could weaken GS-domain

interactions that maintain the inactive kinase conformation.

In conclusion, two unique mutations in the ACVR1 gene have

been detected in two FOP patients from the UK with some

atypical digit abnormalities and other clinical features. The

resultant mutations are likely to result in local structural changes

in the ACVR1 protein as revealed by interrogating homology

models of the native and mutated ACVR1 kinase domains. In

particular, the electrostatic surface potential of the ACVR1 GS

domain is predicted to be appreciably affected by these disparate

point mutations, promoting a shift in the equilibrium between the

inactive and active ACVR1 structures causing mild kinase

activation. The ACVR1 receptors would thus show reduced

ligand-dependence and result in variable receptor activity effects

causing the different phenotypic features observed. The identified

mutants present new targets for ACVR1 kinase inhibitors that

have shown potential to manage heterotopic ossification [18,19].
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