
Physiological Reports. 2022;10:e15217.     | 1 of 16
https://doi.org/10.14814/phy2.15217

wileyonlinelibrary.com/journal/phy2

1  |  INTRODUCTION

Exercise induces a broad variety of adaptation reactions 
in multiple tissues and organs, such as the respiratory 
and cardiovascular systems, as well as in skeletal mus-
cle tissue. These adaptation reactions are induced by 

exercise- specific physiological changes, such as mechan-
ical stretching, energy depletion, calcium oscillations ac-
companying muscle contraction, or systemic factors such 
as pro- inflammatory cytokines or hormones. All of these 
factors can induce changes in gene expression patterns 
(for review, see Wackerhage & Woods, 2002). However, 
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Abstract
Small, non- coding RNAs (microRNAs) have been shown to regulate gene expres-
sion in response to exercise in various tissues and organs, thus possibly coor-
dinating their adaptive response. Thus, it is likely that differential microRNA 
expression might be one of the factors that are responsible for different training 
responses of different individuals. Consequently, determining microRNA pat-
terns might be a promising approach toward the development of individualized 
training strategies. However, little is known on (1) microRNA patterns and their 
regulation by different exercise regimens and (2) possible correlations between 
these patterns and individual training adaptation. Here, we present microarray 
data on skeletal muscle microRNA patterns in six young, female subjects before 
and after six weeks of either moderate- intensity continuous or high- intensity in-
terval training on a bicycle ergometer. Our data show that n = 36 different micro-
RNA species were regulated more than twofold in this cohort (n = 28 upregulated 
and n = 8 downregulated). In addition, we correlated baseline microRNA pat-
terns with individual changes in VO2max and identified some specific microR-
NAs that might be promising candidates for further testing and evaluation in the 
future, which might eventually lead to the establishment of microRNA marker 
panels that will allow individual recommendations for specific exercise regimens.
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the mechanisms by which these alterations are regulated 
are incompletely understood. Specifically, little is known 
on individual- specific factors that determine qualitative 
and quantitative aspects of training adaptation, i.e., that 
underlie the trivial observation that different individuals 
may react very differently to the same training regimen.

Recently, a specific group of short, non- coding RNAs, 
so- called microRNAs (miRs) is getting more and more 
attention. It has been known for a while that miRs can 
regulate concentrations of their unique spectrum of tar-
get mRNAs in a well- controlled and very specific manner. 
The respective mechanisms are complex and still not com-
pletely understood, ranging from mRNA de- stabilization, 
which appears to be the most important mechanism in 
mammalian cells (for review, see Guo et al., 2010), to 
modulation of transcription and translation. With regard 
to skeletal muscle biology, miRs have specifically been 
shown to play a major role in the regulation of the IGF- 1/
AKT/mTOR/FoxO1 and myostatin pathways, thereby 
controlling the balance between myogenesis/muscle hy-
pertrophy and muscle protein degradation (for review, 
see Hitachi & Tsuchida, 2014). miRs can be found within 
cells, but also extracellularly (e.g. in the circulation) or in 
exosomes (for review, see Jiménez- Avalos et al., 2021), and 
recent work by Van Pelt et al. (2020) suggests that specif-
ically extracellular miR- 203a- 3p might play a major role 
in the regulation of skeletal muscle growth and atrophy.

Whereas many miRs are present in a broad variety of 
tissues and organs, others are tissue-  or even cell type- 
specific (for review, see Gargalionis & Basdra, 2013). 
For skeletal and/or heart muscle- specific miRs, the term 
myomiRs has been coined. In general, miRs - 1, - 133a, 
- 206, - 208a, and - 499 are considered as myomiRs. Several 
authors also include miR- 486, which is, despite being 
found at high concentrations in muscle cells, not muscle- 
specific (for review, see Horak et al., 2016; Luo et al., 2013; 
McCarthy, 2011).

While plasma- based approaches might eventually be 
more suitable strategies  in training practice, analysis of 
miRs directly from skeletal muscle tissue, i.e., from the tis-
sue that is the major player in the context of physical activ-
ity, might lead to a deeper understanding of the molecular 
mechanisms by which miRs shape exercise adaptation.

To date, only a few studies on miR regulation in skeletal 
muscle in response to exercise interventions are available 
(for review, see Silva et al., 2017, 2020; Widmann et al., 
2019). The results are difficult to compare, since there is a 
lot of heterogeneity, for example with respect to organism 
(human vs. animal), training modality (e.g., endurance vs. 
resistance exercise, moderate- intensity continuous train-
ing [MICT] vs. high- intensity interval training [HIIT]), or 
duration of the respective intervention, ranging from sin-
gle bouts of “acute” exercise to several weeks of regular 

training. Some studies only analyzed the concentration of 
selected miR species, predominantly myomiRs, whereas, 
in others, broad- range, unbiased approaches such as miR 
arrays were employed. Nevertheless, the results suggest 
that certain miRs might be central players in the process 
of exercise adaptation— and that their targets regulate 
a broad variety of crucial aspects of the adaptation pro-
cess, such as skeletal muscle hypertrophy, angiogenesis, 
or mitochondrial biogenesis. Examples are miR- 1, miR- 
23, miR- 26a- 5p, miRs- 29a, and - 29b- 3p, miRs - 133a and 
- 133b, miR- 206, miR- 378, miR- 451, or miR- 696 (Aoi et al., 
2010; Davidsen et al., 2011; Drummond et al., 2008; Fyfe 
et al., 2016; Keller et al., 2010; McCarthy & Esser, 1985; 
Mueller et al., 2011; Nielsen et al., 2010; Ogasawara et al., 
2016; Rivas et al., 2014; Rowlands et al., 2014; Russell 
et al., 2013; Safdar et al., 2009). However, to determine 
the factors that are responsible for the regulation of miR 
patterns by exercise, it will be necessary to analyze, de-
termine and compare these effects in standardized set-
tings, such as metabolically controlled MICT and HIIT 
regimens.

In addition, so far, only a few of these studies have 
analyzed potential correlations between miR patterns 
and individual exercise- associated physiological param-
eters: Whereas some authors have correlated patterns of 
circulating miRs and relative maximum oxygen uptake 
(VO2max) (Baggish et al., 2011; Bye et al., 2013; Li et al., 
2018), only one study has done so for skeletal muscle miR 
patterns and the individual degree of training- induced 
physiological changes, specifically increases in muscle 
mass (Davidsen et al., 2011). Still, the results of these few 
studies indicate that there might indeed be associations 
between miR patterns in skeletal muscle and training- 
induced physiological changes. Furthermore, to our 
knowledge, there aren't any studies analyzing correlations 
between concentrations of specific miRs in skeletal mus-
cle at baseline, i.e., before the start of the intervention, 
and final physiological outcome, specifically changes in 
VO2max, so far. Nevertheless, such correlations could be 
particularly interesting, since they might allow prediction 
of an individual's response to training in general and/or a 
specific training regimen, thus helping to design and plan 
training schedules in competitive as well as in therapeutic 
and rehabilitative settings.

Against this background, we were aiming at resolving 
the following questions: (1) Which miRs are differentially 
expressed in response to two metabolically controlled, 
standardized endurance exercise settings? and (2) Can 
individual miR patterns be correlated with a specific sub-
ject's degree of training adaptation?

As an initial, exploratory, hypothesis- generating ap-
proach, we employed miR microarray analysis to study 
miR patterns in skeletal muscle tissue of six young, female, 
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healthy, sedentary subjects before and after completion of 
two different endurance- based exercise regimens. miR mi-
croarray analysis represents a comprehensive, unbiased 
approach, however, is also elaborate and expensive, thus, 
the number of samples that can be analyzed using this 
method is limited. Against this background, we selected 
a group of all- female subjects which was quite homoge-
neous specifically with regard to age, BMI, and baseline 
VO2max. Thus, the study's goal was the generation of ini-
tial hypotheses, which should be verified and confirmed 
via inclusion of more data in the future.

2  |  MATERIALS AND METHODS

2.1 | Subjects and training intervention

The sub- project described here is part of a larger study, 
the so- called iReAct (“individual response to physical 
activity”) project, that analyzes individual biopsycho-
social aspects of exercise adaptation (study registration 
in the German Clinical Trials Register on June 12, 2019 
[DRKS00017446]). This study meets the ethical standards 
as stated by Harriss et al. (2019) (Ethics approval by the 
‘Ethics Committee of the Medical Faculty, University 
of Tübingen’ on January 22, 2018 [reference number: 
882/2017BO1]), and written informed consent was ob-
tained from all participants before inclusion. The design 
of the study has previously been described (Mattioni 
Maturana et al., 2021; Maturana et al., 2021; Thiel et al., 
2019). Briefly, sedentary, healthy, young (20– 40  years) 
participants (male and female, n = 42, which is a COVID 
19- associated deviation from the originally planned 
n  =  60) completed two six- week blocks of aerobic ex-
ercise training on a bicycle ergometer. Because of the 
under- representation of males in the limited study cohort, 
for the sub- project described here, only data from female 
participants were analyzed. They were randomly assigned 
to either starting with MICT (moderate- intensity continu-
ous training) or HIIT (high- intensity interval training). 
Subjects completed three sessions of 60  min (MICT) or 
43 min (HIIT) per week, with relative total workload cal-
culated to be equal for both training forms. Participants 
doing the MICT program performed 60 min of continuous 
cycling at the power output corresponding to 90% of the 
first lactate threshold (LT1) (Binder et al., 2008; Hofmann 
et al., 1997; Pokan et al., 1997), whereas the HIIT group 
began with a warm- up for 10  min at the power output 
equivalent to 70% of the maximum heart rate (HRmax), 
followed by four 4- min intervals, each at the power output 
corresponding to 90% of HRmax. In between the intervals, 
subjects did a 4- min, active recovery at 30 W (MacInnis 
& Gibala, 2017). MICT was based on LT1 to ensure that 

exercise intensity was reliably within the moderate- 
intensity domain: Since we did a step incremental test 
rather than a ramp, analyzing through the lactate thresh-
olds was more appropriate than via ventilatory thresholds. 
By contrast, HIIT was prescribed based on % HRmax and 
not LT2 because of the training monitoring throughout 
the weeks: Since sedentary participants tend to improve 
quickly, we needed to make sure that they were always 
exercising within the severe- intensity domain. Therefore, 
since heart rate was monitored in every training session, 
we could make sure that we would increase the intensity 
throughout the weeks, so that they were always exercis-
ing at an intensity that would produce approximately 90% 
HRmax. This was consistent with our aim that partici-
pants would be exercising between 90% and 95% HRmax. 
That way, we made sure that exercise intensity retrieved 
from 90% HRmax would be greater than the intensity at 
LT2. If this had not been the case for specific participants, 
we would have prescribed intensities corresponding to 
95% HRmax. In our sample, however, all participants 
were above LT2 at 90% HRmax, so we did not have to 
make this adjustment (Maturana et al., 2021). Before the 
intervention and after both training blocks (baseline and 
follow- ups FU1 and FU2), diagnostics was performed as 
described (Thiel et al., 2019), including a broad variety of 
tests, aiming at a holistic, biopsychosocial perspective on 
exercise adaptation. Anthropometrical measures, which 
included height, weight, and bioimpedance analysis 
(InBody770, InBody), were taken for estimation of body 
composition (i.e., body fat and muscle mass) at each of 
these time points. To minimize the risk of acute effects 
of the last training session, subjects were subjected to a 
break of at least 48 h between their last training session 
and FU1/FU2 diagnostics, which also included the biopsy 
sample timepoints. After the first six- week block (and 
FU1), subjects were switched to the respective other train-
ing regimens without a wash- out period. Skeletal muscle 
biopsies from the vastus lateralis muscle were taken be-
fore the start of the intervention, after the first six weeks of 
training, and at the end of the intervention. Samples were 
immediately snap- frozen in liquid nitrogen and stored 
at −80°C until further use. Furthermore, physiological 
markers for training adaptation, particularly maximum 
relative oxygen uptake (VO2max) were assessed. For the 
explorative subproject described here, we analyzed biop-
sies from six female participants (age 20– 29 years, VO2max 
31.7 ± 1.6 ml kg−1 min−1; for detailed subject character-
istics, see Table 1) before the intervention and after the 
first training block by miR microarray analysis (cf. 2.3), 
with three subjects doing HIIT and three doing MICT. 
For qPCR analysis (cf. 2.3), a larger cohort of female indi-
viduals (age 27.4 ± 6.4 years, MICT: n = 13, HIIT: n = 12, 
VO2max 29.76 ± 3.27 ml kg−1 min−1) was analyzed.
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2.2 | VO2max analysis

A step- incremental test to volitional exhaustion was per-
formed during baseline and both follow- ups for VO2max 
assessment as described (Mattioni Maturana et al., 2021; 
Maturana et al., 2021). Briefly, participants performed 
the protocol on a bicycle ergometer (Ergoselect 200, 
Ergoline GmbH) and heart rate and electrocardiogram 
were monitored continuously (12- channel PC ECG, 
custo med GmbH). The test started with a 2- min rest-
ing period on the bike, followed by 3- min steps. Female 
participants started cycling at 25 W (male participants— 
not included in the present manuscript— started at 
50 W) and each step was increased by 25 W. Breath- by- 
breath pulmonary gas exchange and ventilation were 
measured using a metabolic cart (MetaLyzer, CORTEX 
Biophysics). Calibration was performed before each test 
following the manufacturer's instructions. Breath- by- 
breath VO2 data were edited as follows: breaths (data 
points) that were two standard deviations (95% of confi-
dence interval) away from the local mean were consid-
ered outliers and then removed (Lamarra et al., 1987). 
Thereafter, the data were interpolated on a second- 
by- second basis and averaged into 30- s bins. VO2max 
was considered the highest 30- s VO2 average. VO2max 
attainment was confirmed if at least one of the follow-
ing criteria were met, as per the American College of 
Sports Medicine guidelines (Riebe et al., 2018): (1) maxi-
mal heart rate within 10 beats per minute (bpm) of the 
maximal predicted value (220– age); (2) a respiratory 

exchange ratio (RER) higher than 1.10; or (3) a maximal 
blood lactate concentration of 8 mmol L−1.

2.3 | RNA isolation and miR analysis

To assess miR concentrations before and after the training 
intervention, total skeletal muscle RNA, including miR, was 
extracted from baseline (before training) and FU1 (after the 
first six weeks of training) specimens using the miRNeasy 
Micro Kit (Qiagen) according to the manufacturer's instruc-
tions. Quantity and purity of RNA were assessed (260/280 
ratio) using a BioPhotometer (Eppendorf AG). Affymetrix 
miR Array 4.0 (Thermo Fisher; #902411; 2578 human ma-
ture and 2025 human pre miRs) analysis was carried out by 
ATLAS Biolabs, Berlin, Germany, according to the manu-
facturer's instructions. Data were analyzed for differential 
miR expression using the transcriptome analysis console 
(TAC), version 4.0.2.15. Based on the data format generated 
by this software, throughout the presentation and discus-
sion of our data, wherever possible, we refer to individual 
miRs using their complete name (including “strand specifi-
cation”, such as “- 5p” or “- 3p”). For qPCR analysis, 400 ng of 
total RNA/miR were used for reverse transcription using the 
miScriptII Kit (Qiagen) in combination with HiSpec buffer 
in a total volume of 20 µl. The cDNA was diluted and em-
ployed in qPCR analyses using the miScript SYBR Green kit 
from Qiagen according to the manufacturer's instructions. 
Primers were purchased from Qiagen (Table 2). Relative 
expression levels were calculated using the comparative 

T A B L E  1  Subject characteristics

Participants
Age 
(years)

VO2max Baseline
(ml kg−1 min−1)

VO2max FU1
(ml kg−1 min−1)

height 
(cm)

weight 
(kg)

BMI 
(kg m−2) Training

HIIT

#IR 0008 20 32.75 37.67 164.5 59.3 21.9 HIIT

#IR 0012 21 29.18 33.26 173.5 68.9 22.9 HIIT

#IR 0042 27 30.80 35.22 160.4 57.6 22.4 HIIT

Mean 22.67 30.91 35.38 166.13 61.93 22.4

SD 3.09 1.46 1.80 5.47 4.97 0.41

MICT

#IR 0005 22 33.24 38.92 167.5 61.2 21.8 MICT

#IR 0010 21 30.64 33.97 163 66.5 25 MICT

#IR 0030 29 33.55 36.54 159 60.9 24.1 MICT

Mean 24 32.48 36.48 163.17 62.87 23.63

SD 3.6 1.30 2.02 3.47 2.57 1.35

All

Mean 23.33 31.69 35.93 164.7 62.4 23.0

SD 3.40 1.59 1.99 4.82 3.99 1.17

p- value 0.43 0.05 0.82 0.06 0.11
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CT (2−ΔΔCT) method, where expression was normalized to 
SNORD95 and SNORD96A.

2.4 | Correlation analysis

To identify possible correlations between baseline miR 
patterns and individual training- induced adaptations, 
namely VO2max, we employed Spearman correlation 
analysis, which is less sensitive to outliers specifically 
in small sample sizes than Pearson correlation (Schober 
et al., 2018).

2.5 | KEGG pathway analysis

KEGG (Kyoto Encyclopedia of Genes and Genomes) path-
way analysis (Vlachos et al., 2015) was carried out using 
the DIANA- miRPath v.3 platform.

2.6 | Statistical analysis

qPCR data for the larger cohort (MICT: n  =  13, HIIT: 
n = 12) were analyzed using SPSS software (Version 27; 
IBM). Data were considered significant with p- values of 
less than 0.05 (*) or less than 0.01 (**). Data are presented 
as means ± SD. “n” represents the number of subjects in 
each group.

3  |  RESULTS

The criteria for VO2max attainment were met by all six 
participants: (1) maximum heart rate ranged from 191 
to 200 bpm at baseline, and from 189 to 203 bpm at FU1 

(age- predicted maximum heart values ranged from 191 to 
200 bpm); (2) the RER ranged from 1.16 to 1.33 at base-
line, and from 1.23 to 1.28 at FU1; (3) maximal blood lac-
tate concentration ranged from 6.8 to 11.7  mmol  L−1 at 
baseline and from 8 to 11.7  mmol  L−1 at FU1. VO2max 
improved from (values are mean  ±  standard deviation 
unless otherwise stated) 31.7  ±  1.6  ml  kg−1  min−1 at 
baseline to 35.9 ± 2.0 ml kg−1 min−1 at FU1. VO2max val-
ues at baseline ranged from 29.2 to 33.5  ml  kg−1  min−1 
(mean  =  31.7  ml  kg−1  min−1); and from 33.3 to 
38.9 ml kg−1 min−1 (mean = 35.9 ml kg−1 min−1) at FU1 
(Table 1). Individual maximum values are reported in 
Table 3. There were no statistically significant differences 
between subjects of the MICT and HIIT groups with re-
gard to baseline parameters, however, differences for 
VO2max improvement almost reached significance, with 
HIIT training resulting in greater improvements (Table 1; 
p- value  =  0.05489). This could be confirmed when data 
from all participants were analyzed (Mattioni Maturana 
et al., 2021; Maturana et al., 2021).

With regard to training intensities, the HIIT group 
showed an average of 90 ± 3% HRmax, whereas the MICT 
group presented at 69  ±  6% HRmax. In relation to the 
work performed, the HIIT group had a relative total work 
of 3.1 ± 0.4 kJ/kg, and the MICT group of 3.3 ± 0.7 kJ kg−1 
(p = 0.27).

Subjects’ body composition did not change signifi-
cantly during the intervention, with body weight ranging 
from 57.6 to 68.9 kg before and from 55.4 to 68.0 kg after 
the intervention, and total body fat ranging from 23.5% to 
32.2% before and from 24.2% to 34.3% after the interven-
tion (Table 1 and data not shown).

Based on the fact that their expression has been ana-
lyzed in several training studies and in different tissues 
and organs, as well as in the circulation, before (for re-
view, see Gargalionis & Basdra, 2013; Lamarra et al., 
1987; Luo et al., 2013; McCarthy, 2011), at first, miR- 
1(- 3p) (muscle- specific), miR- 21(- 5p), miR133a(- 3p) 
(muscle- specific), and miR- 133b were selected for 
further analysis in our explorative study. As shown in 
Figure 1, array, as well as subsequent qPCR analysis, 
suggested no regulation of miR- 1 expression by training. 
By contrast, array analysis indicated moderate to strong 
induction of miR- 21 by training in all subjects. Using 
qPCR analysis, we could confirm and quantify this result 
in a larger cohort of all- female subjects (MICT: n = 13, 
HIIT: n = 12). Here, overall, induction of miR- 21- 5p was 
1.46- fold (p = 0.028), and was stronger in subjects per-
forming MICT (1.73- fold; p  =  0.038*) when compared 
to HIIT (1.19- fold; p = 0.471) (Figure 1). By contrast, for 
miRs - 133a and - 133b, array data suggested no regula-
tion, whereas there were obvious trends toward down-
regulation in the qPCR analysis (Figure 1).

T A B L E  2  Primers employed in qPCR analysis

miRNA
Primer catalog 
Number QIAGEN

miR- 1 MS00008358

miR- 21- 5p MS00009079

miR- 133a- 3p MS00031423

miR- 133b MS00031430

miR487b- 3p MS00004298

miR503- 5p MS00033838

miR- 497- 5p MS00004361

miR- 379- 5p MS00009653

SNORD95a MS00033726

SNORD96Aa MS00033733
aServed as housekeeping genes.
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Furthermore, our array data indicated up-  or down-
regulation of several other miRs, with some of them 
previously not having been implicated in exercise adap-
tation of skeletal muscle tissue. Table 4 demonstrates that 
n = 36 mature miRs, among them miR- 21- 5p, were up-  or 
downregulated more than twofold on average in all sub-
jects, whereby n = 28 miRs were up-  and n = 8 miRs were 
downregulated. When comparing the effects of MICT and 
HIIT, we found that some of the miRs were regulated by 
MICT or HIIT only, whereas others were regulated by 
both training regimens (Table 4). qPCR analysis of four 
individual miR species, which were selected from the list 
based on literature and own, unpublished data on poten-
tial relevance in exercise and the aim of covering a broad 

spectrum of fold changes, ranging from 2.07 for miR- 
379(- 5p) to 5.58 for miR- 21(- 5p), with qPCR data for the 
latter being displayed in Figure 1, indicated partially con-
sistent results, specifically for miRs - 487b- 3p and 503- 5p, 
which in case of the latter could also be reproduced in a 
larger cohort of subjects (MICT: n = 13, HIIT: n = 12, see 
above) (Figure 2). Here, overall, induction of miR- 503- 5p 
was 2.15- fold (p  =  0.002*), and again was stronger in 
subjects performing MICT (2.82- fold; p = 0.004**) when 
compared to HIIT (1.58- fold; p = 0.188). By contrast, up-
regulation of miRs 379- 5p and - 497- 5p could not be con-
firmed by qPCR analysis (Figure 2).

To study the involvement of differentially expressed 
miRs in cellular functions, we carried out KEGG pathway 

F I G U R E  1  Regulation of miRs 
- 1(- 3p), - 21(- 5p), - 133a(- 3p), and - 133b in 
skeletal muscle samples of all six subjects 
in response to exercise. Normalized 
array data (log2- transformed) are shown 
for all participants (left panels), right 
panels show corresponding qPCR data. 
Circles mark subjects that performed 
MICT, triangles subjects that performed 
HIIT training. Bottom panels show 
qPCR data for miR- 21- 5p in a larger 
cohort of subjects (MICT: n = 13, HIIT: 
n = 12). Left and right panels represent 
subjects performing HIIT and MICT, 
respectively. Grey lines represent subjects 
only included in the qPCR, but not in 
the microarray analysis. miR- 21- 5p was 
regulated 1.46- fold (p = 0.028*), and was 
stronger in subjects performing MICT 
(1.73- fold; p = 0.038*; n = 13) when 
compared to HIIT (1.19- fold; p = 0.471; 
n = 12)

qPCR data:
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analysis (Vlachos et al., 2015). The results suggest that 
one major level at which adaptation to our protocol of 
endurance exercise occurs might be fatty acid turnover, 
but also other pathways, such as ECM- receptor interac-
tion (Table 5).

Next, as a second arm of the study, we aimed at mak-
ing a first attempt at identifying potential correlations 
between baseline levels (log2- transformed) of specific 
miRs and gains in VO2max, since such miRs might serve 
as biomarkers for the prospective design of individualized 

T A B L E  4  miRs with mean up-  or downregulation of more than twofold by either MICT or HIIT or by both types of exercise as analyzed 
by microarray analysis in skeletal muscle samples of all six subjects

Transcript- ID miRNA Baseline Avg (log2) FU1 Avg (log2) Fold change Training

hsa- miR- 8063 2.75 1.09 −3.17 HIIT/MICT

hsa- miR- 3188 2.96 1.47 −2.82 MICT

hsa- miR- 619- 5p 4.23 2.86 −2.59 HIIT/MICT

hsa- miR- 1180- 3p 3.83 2.54 −2.44 HIIT/MICT

hsa- miR- 6790- 5p 4.46 3.22 −2.37 MICT

hsa- miR- 6806- 3p 4.65 3.44 −2.32 MICT

hsa- miR- 339- 3p 2.63 1.55 −2.12 MICT

hsa- miR- 5000- 5p 1.92 0.91 −2.02 a

hsa- miR- 379- 5p 3.28 4.33 2.07 HIIT/MICT

hsa- miR- 199a- 3p 7.58 8.63 2.07 MICT

hsa- miR- 199b- 3p 7.58 8.63 2.07 MICT

hsa- miR- 432- 5p 2.36 3.43 2.1 MICT

hsa- miR- 7110- 5p 3.13 4.21 2.11 HIIT

hsa- miR- 10a- 5p 3.71 4.8 2.12 HIIT/MICT

hsa- miR- 497- 5p 3.04 4.15 2.15 HIIT/MICT

hsa- miR- 3613- 5p 3.3 4.41 2.16 HIIT/MICT

hsa- miR- 487b- 3p 2.18 3.29 2.16 MICT

hsa- miR- 4284 5.67 6.81 2.21 MICT

hsa- miR- 499a- 5p 3.74 4.89 2.21 MICT

hsa- miR- 664b- 3p 1.16 2.31 2.22 HIIT

hsa- miR- 505- 5p 1.22 2.39 2.24 HIIT

hsa- miR- 139- 3p 1.97 3.14 2.25 HIIT/MICT

hsa- miR- 3180- 3p 2.8 3.99 2.28 HIIT/MICT

hsa- miR- 433- 3p 1.14 2.45 2.48 MICT

hsa- miR- 134- 5p 1.43 2.75 2.5 HIIT

hsa- miR- 34a- 5p 0.84 2.17 2.51 MICT

hsa- miR- 146b- 5p 1.11 2.56 2.73 HIIT

hsa- miR- 424- 3p 1.81 3.26 2.73 MICT

hsa- miR- 615- 3p 1.56 3.08 2.87 MICT

hsa- miR- 708- 5p 0.87 2.45 3 HIIT/MICT

hsa- miR- 503- 5p 2.39 4.07 3.21 HIIT/MICT

hsa- miR- 4720- 5p 0.81 2.51 3.25 MICT

hsa- miR- 382- 5p 1.74 3.49 3.36 MICT

hsa- miR- 26b- 5p 1.67 3.5 3.56 HIIT/MICT

hsa- miR- 21- 5p 2.19 4.67 5.58 HIIT/MICT

hsa- miR- 3613- 3p 1.34 4.29 7.76 HIIT/MICT

Note: aThis miR was selected by the TAC Expression Console algorithms despite the fact that plain numerical values for both the three MICT and the three 
HIIT subjects narrowly did not meet the selection criterion of a minimum fold change of −2/2.
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training regimens. Here, we identified 13 miRs, - 550a- 5p, 
- 484, - 550a- 3- 5p, - 4306, - 1200, - 3175, - 4762- 5p, - 4771, 
- 6868- 3p, - 4419a, - 6795- 5p, - 802, and - 3168, which showed 
a major correlation (r  <  −0.7 or >0.7) with ΔVO2max 
(Figure 3). These can now be tested and evaluated in 
larger cohorts in the future.

4  |  DISCUSSION

miRs might be important biomarkers for the design of 
individualized exercise regimens. However, the estab-
lishment of suitable marker patterns is difficult, specifi-
cally since a plethora of different miR species have been 

identified over the last few years, with probably more to be 
discovered in the future. The development of miR arrays 
has allowed fast, comprehensive, and unbiased screening 
of a specific sample for more or less all miRs known at 
that time. Expression data can then be correlated with in-
dividual physiological outcomes, such as, as in our study, 
changes in VO2max as an indicator of training adaptation. 
The goal of the explorative study described here was the 
identification of miR patterns that might be good can-
didates for individualized training biomarkers, and for 
which further testing in larger, confirmatory studies in the 
future might be worthwhile.

However, as a first step, specifically, to view our results 
in the context of literature data, we did a biased approach, 

F I G U R E  2  Expression patterns 
of miRs - 379- 5p, - 487b- 3p, - 497- 5p and 
- 503- 5p as assessed by miR microarray 
and qPCR analysis. Circles mark subjects 
that performed MICT, triangles subjects 
that performed HIIT training. Bottom 
panels show qPCR data for miR- 503- 5p in 
a larger cohort of subjects (MICT: n = 13, 
HIIT: n = 12). Left and right panels 
represent subjects performing HIIT and 
MICT, respectively. Grey lines represent 
subjects only included in the qPCR, but 
not in the microarray analysis. Overall 
induction was 2.15- fold (p = 0.002**), and 
was stronger in subjects performing MICT 
(2.82- fold; p = 0.004**; n = 13) when 
compared to HIIT (1.58- fold; p = 0.188*; 
n = 12)

qPCR data: 
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which means that we analyzed the expression of specific 
miRs which had previously been described in the litera-
ture as being differentially expressed in response to exer-
cise. Specifically, we studied expression of miRs - 1, - 21, 
- 133a, and 133b. Consistent with previous results obtained 
in other tissues, namely heart and blood cells, and in the 
circulation (for review, see Sapp et al., 2017; Silva et al., 
2017, 2020; Widmann et al., 2019), miR- 21 was strongly 
upregulated in response to training in skeletal muscle 
tissue derived from subjects of both training groups. By 
contrast, there was no regulation of miR- 1, - 133a, and 
- 133b expression. These differences might be due to dif-
ferences in the experimental and analytical design of our 
trial and other studies. One example is the study by Cui 
et al. (2016), where subjects underwent two single, acute 
bouts of running exercise (HIIT and MICT), with miRs 
being assessed in plasma: Here, induction of both miRs- 1 
and - 133a/b could be detected. Similarly, for the study de-
scribed by Ramos et al. (2018), participants did four single 
sessions of persistent graded- intensity running protocols, 
with sessions being spaced by one week and myomiRs 
being assessed in the circulation: The authors describe 
the induction of miRs- 1 and - 133a, but not of miR- 21. 
The focus of the study by Fyfe et al. (2016), by contrast, 
was concurrent training: Whereas in line with our study, 
the authors analyzed skeletal muscle tissue, their exercise 
protocol was largely different, consisting of three single, 
consecutive bouts of resistance exercise, two of them com-
bined with HIIT or MICT cycling, respectively, resulting 
in reduced levels of miR- 133a. Finally, most studies ana-
lyzed all- male cohorts, in contrast to our all- female group, 
and both subjects’ ages and fitness levels differ signifi-
cantly between individual studies. Re- analysis of the array 
data using qPCR showed similar results for miR- 1 and 
miR- 21, in case of the latter also in a larger cohort of sub-
jects. By contrast, for miRs - 133a and - 133b, we observed 
consistent downregulation, a finding that has previously 
been described by others (Gargalionis & Basdra, 2013; Luo 
et al., 2013; McCarthy, 2011). Overall, these data suggest 

that miR array analysis of a small subset of samples might 
be an efficient pre- screening tool to characterize exercise- 
induced miR patterns in skeletal muscle tissue. The results 
can then be verified by qPCR analysis in larger cohorts.

Next, we analyzed our data using an unbiased screening 
strategy, selecting miRs that were, on average, up-  or down-
regulated at least twofold by training. Using this approach, 
we could identify several miRs previously implicated in 
skeletal muscle plasticity, metabolism and exercise adap-
tation, namely the already- mentioned miR- 21- 5p, but also 
miRs - 26b- 5p (Margolis et al., 2017), - 382- 5p (Dahlmans 
et al., 2019), - 503- 5p (Shen et al., 2013; Wang et al., 2019), 
- 708- 5p (Baghdadi et al., 2018), - 615- 3p (Siengdee et al., 
2015), - 146b- 5p (Khanna et al., 2014), - 424- 3p (Gonzalo- 
Calvo et al., 2015), - 34a- 5p (Gonzalo- Calvo et al., 2015), 
- 505- 5p (Mach et al., 2016), - 499a- 5p (Wang et al., 2017; 
Xu et al., 2018), - 487b- 3p (Katase et al., 2015; Wang et al., 
2018; Zhang et al., 2018), - 497- 5p (Sato et al., 2014; Wei 
et al., 2016), - 432- 5p (Dmitriev et al., 2013), - 379- 5p (Gao 
et al., 2015), - 199a- 3p (Zhang et al., 2020), and - 199b- 3p 
(Zhu et al., 2019). In addition, we found that several of 
the differentially expressed miRs were related to vascular 
biology, specifically miRs - 503- 5p (Caporali et al., 2011), 
- 487b- 3p (Nossent et al., 2013; Welten et al., 2014), - 26b- 5p 
(Martello et al., 2018), and - 199b- 3p (Chen et al., 2015). 
Furthermore, beyond these, we also identified a variety of 
other differentially expressed miR species which might be 
candidates for future testing as potential markers of skel-
etal muscle exercise adaptation and plasticity in general. 
In this context, specifically, miR- 3613- 3p, which we found 
to be strongly induced in response to exercise, might be 
interesting: This variant is produced from an intron that 
belongs to a long non- codingRNA (DLEU (deleted in 
lymphocytic leukemia) 2) (https://www.genec ards.org/
cgi- bin/cardd isp.pl?gene=DLEU2). The DLEU2  lncRNA 
has been recently related to sarcopenia, acting as a sponge 
of another miRNA (hsa- miR- 181a) (Wang et al., 2020). 
Comparable to the abovementioned results, for some of 
these data, specifically results obtained for miRs- 487- 3p 

KEGG pathway p value Genes miRNAs

1. Fatty acid biosynthesis (hsa 00061) <1e−325 4 5

2. ECM- receptor interaction(hsa04512) <1e−325 21 6

3. Prion diseases (hsa05020) 2.220446e−16 1 1

4. Fatty acid metabolism (hsa(01212)) 2.220446e−16 27 7

5. Proteoglycans in cancer (hsa05205) 2.220877e−09 107 5

6. Lysine degradation (hsa00310) 4.632769e−07 22 9

7. Hippo signaling pathway (hsa04390) 3.145942e−05 67 6

8. Adherens junction (hsa04520) 0.0003716131 45 6

9. p53 signaling pathway (hsa04115) 0.03928435 53 6

Note: Functional analysis of differentially expressed miRs was carried out using KEGG pathway analysis.

T A B L E  5  Pathway analysis

https://www.genecards.org/cgi-bin/carddisp.pl?gene=DLEU2
https://www.genecards.org/cgi-bin/carddisp.pl?gene=DLEU2
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F I G U R E  3  Correlation of baseline miR concentrations in skeletal muscle samples of all six subjects and ΔVO2max. miRs were screened 
for a potential correlation of baseline expression levels and gains in VO2max (ml kg−1 min−1) with training. Data for miRs with correlation 
coefficients of <−0.7 or >0.7 are shown. Circles mark subjects that performed MICT, triangles subjects that performed HIIT training
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and - 503- 5p, subsequent qPCR analysis showed a simi-
lar overall trend, whereas other analyses yielded incon-
sistent data, namely those for miRs - 379- 5p and - 497- 5p, 
suggesting again that microarray analysis might be a good 
screening tool with regard to miR changes in human skel-
etal muscle in response to exercise, generating hypoth-
eses, which should then be tested, verified and refined 
using alternative methods. Induction of miR- 503- 5p with 
exercise could already be confirmed in this study. This 
species is a member of the miR- 15/- 107 miR family and 
has been suggested to play a role in skeletal, cardiac, and 
smooth muscle cell differentiation and atrophy, as well as 
in endothelial cells and angiogenesis (Shen et al., 2013; for 
review, see Wang et al., 2019). Thus, due to its potential in-
volvement in several aspects of exercise adaptation, miR- 
503- 5p, in particular, might be an interesting candidate for 
future functional and mechanistic studies.

Furthermore, despite the exploratory character of our 
analysis and the small number of subjects, our array data 
and also qPCR data generated for miRs - 21- 5p and - 503- 5p 
indicate that some miRs might be rather responsive to 
MICT or HIIT, respectively, whereas others appeared to 
react to both types of training. These findings give the first 
hint that different training regimens might indeed induce 
differential miR profiles, a finding that should be fur-
ther analyzed in larger and possibly confirmatory studies 
in the future, especially since some studies suggest that 
training intensity (and maybe not the intermittent nature 
of interval protocols) might be the most important factor 
for most physiological adaptation reactions, also outclass-
ing training volume or total workload (MacInnis & Gibala, 
2017; Tjønna et al., 2013). In addition, to study the obvious 
and not- yet- addressed question of whether adaptation to 
MICT and HIIT might be different at the molecular level, 
despite evoking similar increases in VO2max, it would be 
very interesting to carry out further KEGG pathway anal-
yses with a larger set of data. Our initial analysis, which, 
due to the small number of subjects, did not discriminate 
between MICT and HIIT, had suggested that adaptations 
might specifically have taken place at the level of fatty acid 
turnover, a metabolic pathway that is not unlikely to be 
differentially regulated by HIIT versus MICT: It is very 
likely that different patterns of metabolic demand might 
induce differential miR patterns, which might then lead 
to unique and regimen- typical changes in gene expression 
patterns, for example with regard to genes encoding meta-
bolic regulators, despite the fact that both regimens bring 
about an increase in aerobic fitness.

Unfortunately, despite the fact that there was a break 
of at least 48h between the last training session and FU1 
analysis, we cannot completely rule out the possibility of 
acute effects of this session on FU1 miR patterns. However, 
since other studies on acute training effects indicate that 

most differentially expressed miRs return to baseline lev-
els within this time frame (Gargalionis & Basdra, 2013; 
Luo et al., 2013; McCarthy, 2011), a major contribution of 
acute effects is unlikely.

Overall, our data demonstrate that despite the exis-
tence of general regulatory motifs, miR patterns in skel-
etal muscle and response to exercise show a high degree 
of inter- individual variability, thus suggesting that they 
might be suitable markers to predict individual training 
responses in a specific setting, i.e., to serve as a prog-
nostic marker in the planning of individualized training 
regimens in the future. To this end, specifically correla-
tions of baseline miR expression parameters and training 
outcomes, such as gains in VO2max, will be interesting. 
As a first attempt to establish such patterns, baseline ex-
pression data of all miRs were correlated with gains in 
VO2max of each individual subject. Using this strategy, 
we found correlations for miRs - 550a- 5p, - 484, - 550a- 3- 5p, 
- 4306, - 1200, - 3175, - 4762- 5p (r < −0.7), - 4771, - 6868- 3p, 
- 4419a, - 6795- 5p, - 802, and - 3168 (r > 0.7). Most of them 
have not been implicated in skeletal muscle plasticity and/
or exercise adaptation so far. However, there are some data 
on miR- 4419a upregulation in saliva in response to long- 
distance running (Hicks et al., 2018). Furthermore, in fi-
broblasts, miR- 550a- 5p has been shown to be induced by 
metabolic stress (Kálmán et al., 2014), a feature that might 
also be important in skeletal muscle exercise adaptation. 
Finally, miR- 550a- 3- 5p appears to be a potent regulator of 
Yes- associated protein (YAP; Choe et al., 2018), a central 
component of the Hippo pathway which is a major player 
in skeletal muscle hypertrophy and exercise adaptation 
(for review, see Gabriel et al., 2016). The results of our 
initial, exemplary screen will now have to be extended, 
evaluated, refined, and tested in prospective studies with 
larger cohorts of subjects. In addition, depending on the 
specific goal of the exercise program in question, it might 
be worthwhile to correlate miR patterns with physiolog-
ical changes other than VO2max: Parr et al. (2016) were 
able to identify differential patterns of (circulating) miRs 
in high and low responders to a diet-  and exercise- based 
lifestyle intervention program. Moreover, a recent pub-
lication derived differential miR patterns in response to 
sprint interval training from leukocytes and correlated 
them with leukocyte telomere length, which is again cor-
related with individual aerobic fitness (Kumar Dev et al., 
2021).

5  |  LIMITATIONS OF OUR STUDY

Our project was designed as an explorative screening 
study and, due to the low number of subjects, does not 
allow extensive statistical evaluation beyond simple 
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correlation analysis. Its major aim was to develop strate-
gies to generate hypotheses for further, confirmatory anal-
yses. The first hypotheses we generated, were based on 
the miRNA array analysis. Since the related costs did not 
allow broad array screening of all participants, we gath-
ered some preliminary ideas via array analysis and then 
validated them by qPCR. Now, these have to be phrased 
and tested with larger subject numbers and also different 
cohorts divergent for age, sex, basal activity level, health 
status, hormonal situation, especially in pre- menopausal 
females as analyzed in this study, and, particularly, train-
ing regimen, and statistically analyzed, including correc-
tions for multiple testing. In addition, miR patterns will 
have to be confirmed using alternative methods, such as 
semi- quantitative RT- PCR (qPCR), at a broader range. As 
a complementary approach, it might also be promising to 
analyze the acute response to a single bout of exercise and 
correlate these data with the physiological effect achieved 
by training. Furthermore, in routine clinical practice and 
also in high- performance, competitive sport, it will usu-
ally not be feasible to obtain skeletal muscle data. To 
this end, similar studies analyzing patterns of circulating 
miRs, have to be carried out (for review, see Polakovičová 
et al., 2016; Sapp et al., 2017). However, since circulating 
miRs originate from a broad variety of tissues and organs, 
their concentrations in the circulation are potentially less 
stable and more prone to external disturbances when 
compared to a single tissue such as skeletal muscle, sug-
gesting that it will be more challenging to establish reli-
able sets of markers. Finally, our current data set does not 
allow mechanistic approaches to the roles of miRs in skel-
etal muscle training adaptation. For this purpose, func-
tional tests, such as murine knockout studies, will have 
to be performed. In addition, more extensive regulatory 
network analysis, using appropriate bioinformatics tools, 
might provide insight into functional interrelationships 
between individual miRs and/or their target genes in skel-
etal muscle training adaptation.
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