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ABSTRACT: Product quality heterogeneities, such as a trisulfide
bond (TSB) formation, can be influenced by multiple interacting
process parameters. Identifying their root cause is a major
challenge in biopharmaceutical production. To address this
issue, this paper describes the novel application of advanced
multivariate data analysis (MVDA) techniques to identify the
process parameters influencing TSB formation in a novel
recombinant antibody–peptide fusion expressed in mammalian
cell culture. The screening dataset was generated with a high-
throughput (HT) micro-bioreactor system (AmbrTM 15) using a
design of experiments (DoE) approach. The complex dataset was
firstly analyzed through the development of a multiple linear
regression model focusing solely on the DoE inputs and
identified the temperature, pH and initial nutrient feed day as
important process parameters influencing this quality attribute.
To further scrutinize the dataset, a partial least squares model
was subsequently built incorporating both on-line and off-line
process parameters and enabled accurate predictions of the TSB
concentration at harvest. Process parameters identified by the
models to promote and suppress TSB formation were
implemented on five 7 L bioreactors and the resultant TSB
concentrations were comparable to the model predictions. This
study demonstrates the ability of MVDA to enable predictions of
the key performance drivers influencing TSB formation that are
valid also upon scale-up.
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Introduction

Biopharmaceutical manufacturing utilizing mammalian cell culture
expression systems has seen unprecedented growth in the last two
decades. This growth has been facilitated by the generation of
robust and high-yielding cell lines, application of scale-down
mimics and high-throughput technologies, increased process
understanding and development of standardized platforms. These
advancements have enabled a reduction on the emphasis of
maximizing titre and shifted focus onto reducing product
development timelines (Bareither and Pollard, 2011; Shukla and
Th€ommes, 2010) while ensuring consistent product quality profiles
(Lubiniecki et al., 2011; Pacis et al., 2011; Zhou and Kantardjieff,
2013). The FDA recommends an adoption of a quality by design
(QbD) risk-based approach for evaluating and mitigating any
product-related variants associated with therapeutic proteins that
affect their safety or efficacy (FDA, 2004, 2009, 2014). Typically in
an industrial environment the critical process parameters (CPPs)
and the critical quality attributes (CQAs) are identified through
application of scale down mimics. The challenge of implementing
this strategy involves analyzing large volumes of data often collected
at different scales and across multiple equipment (Looby et al.,
2011). Univariate or time-series analysis of these complex cell
culture datasets can be time-consuming, inefficient, and lead to
misleading conclusions if interactions between variables exist
(Kourti, 2006). Therefore, this paper investigates the potential of
multivariate data analysis (MVDA) to fully exploit cell culture data
and evaluate the key parameter interactions adversely impacting
cell culture product heterogeneity.

In biotherapeutic drug manufacturing, there are multiple classes
of product-related variants influencing a drug’s functional
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properties including higher order structure modifications (e.g.,
misfolding, aggregation), process-related impurities (e.g., host cell
proteins, media components, viral or DNA particles), and post-
translation modifications (e.g., glycosylation, oxidation, glycation,
cysteine-related variants) (Beck et al., 2012; Zhou and Kantardjieff,
2013). Monitoring and controlling product-related variants are vital
to ensure consistent drug safety and efficacy. Recently there have
been numerous reports describing monoclonal antibody hetero-
geneities related to trisulfide bonds (TSBs), defined under cysteine-
related variants (Gu et al., 2010; Kita et al., 2016; Kshirsagar et al.,
2012; Liu and May, 2012; Nielsen et al., 2011; Pristatsky et al., 2009).
Trisulfides are typically formed through the insertion of a sulfur
atom into a disulfide bond within the inter-chain linkages between
the light and heavy chains of the antibody structure. The TSB
modifies these linkages, which are essential to ensure the stability of
the antibody and can subsequently influence its biological
functionality and activity (Kita et al., 2016).
Regulatory approval for process commercialization requires

evaluation of parameters on process performance and product
quality (Kirdar et al., 2007; Li et al., 2010). Therefore, early stage
investigation of product quality issues is essential to ensure
accelerated process development timelines. These product hetero-
geneities can be influenced by environmental changes including
time-series fluctuations of variables such as dissolved oxygen, pH,
and temperature (Bareither and Pollard, 2011; Gomez et al., 2010;
Kantardjieff and Zhou, 2013). Therefore multifactorial statistical
experimentation involving both on- and off-line process adjust-
ments are essential to investigate the potential complex interactions
affecting product quality attributes.
To facilitate these multifactorial experiments, industry has

invested heavily in the application of high-throughput (HT)
micro-bioreactor systems that have been extensively demon-
strated to replicate laboratory and large-scale systems (Bareither
and Pollard, 2011; Lewis et al., 2010; Long et al., 2014; Micheletti
and Lye, 2006; Rameez et al., 2014). However, as these systems
are expected to evolve and improve in the coming years (Łącki,
2014), the current challenge involves the ability of the end-user to
effectively consolidate and analyze the high volume of data
generated. Thus the application of MVDA has the potential to
enhance the analysis of these complex datasets by unveiling
hidden process characteristics influencing system performance
(Le et al., 2012). In cell culture modeling there are numerous
MVDA techniques available. Multiple linear regression (MLR)
models and principal component analysis (PCA) studies are
highly suited for media optimization (Beg et al., 2003; Liu et al.,
2006), scale-up comparisons (Tsang et al., 2014), and process
optimization and development studies involving DoE experimen-
tation (Holmes et al., 2009; Siva et al., 2015). Partial least squares
(PLS) modeling is highly suited to process analytic technology
(PAT) applications with numerous studies highlighted in the
following reviews: Rathore et al. (2010), Glassey et al. (2011),
Read et al. (2010) and Simon et al. (2015). More advanced PLS
and PCA modeling studies involving on-line monitoring and
statistical control applications were originally demonstrated in
the chemical and process-related industries (Kourti et al., 1995;
Nomikos and MacGregor, 1994). These techniques have been
successfully applied to bioprocesses in process monitoring

(Chiang et al., 2006; Lee et al., 2004; Lennox et al., 2001), fault
detection (Gunther et al., 2007), and advanced control
applications (Konakovsky et al., 2016).
In this present study, the root cause in terms of process

parameters of TSB formation detected in a novel antibody–peptide
fusion protein was investigated utilizing advanced multivariate data
analysis methodologies. Previous literature has shown that TSB
modifications did not influence the pharmacokinetics or biological
function of a number of therapeutic proteins (Gu et al., 2010;
Kshirsagar et al., 2012; Thomsen et al., 1994). However, in the
present work the modification associated with the TSB altered the
potency and physicochemical properties of the molecule, even at
low levels. Therefore, a thorough investigation that initially looked
at the influence of cell line selection and subsequently the bioreactor
environmental conditions influencing these high levels of TSB in the
molecule of interest was required. The TSB was originally detected
during the cell line selection campaign during early pre-clinical
development. The TSB concentration was found to vary between
different clones. Therefore, the process parameters influencing this
quality attribute required an in-depth investigation. High levels of
TSBs were measured in a subsequent robustness analysis study that
explored bioreactor operating conditions beyond the standard
range adopted to support early clinical studies. Previous reports
have related the presence of hydrogen sulfide in the feeds or cell
culture environment to TSB concentration (Kshirsagar et al., 2012;
Pristatsky et al., 2009) but little research has been performed on the
influence of set-point changes such as temperature and pH on TSB
formation. The focus of this paper is to determine the primary
environmental process parameters of the cell culture that either
promote or suppress TSB formation enabling process set points to
be manipulated to minimize TSB levels at point of harvest. To
evaluate these parameters, a three-level fractional factorial DoE
study was undertaken on the AmbrTM-15 system manipulating the
initial conditions (seeding density), process set-points (tempera-
ture and pH), and feeding strategies (feed day and feed volume).

Materials and Methods

Cell Line and Culture Propagation

For the micro-bioreactor system, a recombinant Chinese hamster
ovary (CHO) cell line expressing high levels of an antibody–peptide
fusion was used. The cell line was cultured in animal component-
free chemically defined CHO media. The cells were maintained at
37�C under 5% carbon dioxide, shaken at a constant rpm, and
passaged 2–3 times per week for propagation and scale-up for
inoculation. The same cell line and inoculum protocol was used for
the 7 L bioreactor experiments.

Bioreactor Systems

The screening experiments were conducted using a DoE approach
with a micro-bioreactor (AmbrTM-15) system (TAP Biosystems,
Greenville, DE) with 48 single vessels split into four separate culture
stations where each vessel was operated with a 11–15mL working
volume. The temperature and pH of each culture station was
controlled as described by the DoE in Design of Experiments
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Conditions section and the agitation rate was kept consistent for
each culture station. Similarly, the feeding strategy wasmanipulated
for each individual vessel as described by the DoE in Design of
Experiments Conditions section. Off-line daily samples were taken
from each vessel. Further detailed descriptions of the AmbrTM-15
system can be found in Rameez et al. (2014). The experiments
performed in the 7 L bioreactor (Applikon Biotechnology, Tewkes-
bury, Gloucestershire, UK) were carried out with a working volume
of approximately 5 L.

Cell Culture Process

In the AmbrTM-15 system, the cell culture temperature and pH were
maintained at set-points indicated by the DoE in Design of
Experiments Conditions section where the mid-point of each
variable represents normal operating condition. The initial seeding
density indicated by 1 in the DoE represents the seeding density of
<10� 105 cells/mL for normal operation. Similarly, the nutrient
feed volume equal to 1 represents the normal operating volume of
the proprietary nutrient feed. The feeding strategy involved five
equally spaced additions of the feed after the initial feed day
indicated by the DoE design. The dissolved oxygen set point was set
to 50% in all culture stations and was maintained by gassing with
air and oxygen and manipulation of the agitator RPM. The agitator
speed for all culture stations was systematically ramped up
throughout the cell culture operation to ensure the dissolved oxygen
set-point was maintained, the RPM adjustments were consistent for
all four culture stations. The culture pH was controlled through the
addition of sodium carbonate and sparging CO2 gas with its control
strategy implementing a pH dead-band equal to 0.1. Antifoam was
added as required. Daily at-line samples were analyzed for viable
cell concentration (VCC) and viability using the Vi-Cell Automated
cell viability analyzer (Beckman Coulter, Brea, CA), and glucose and
lactate were analyzed using the Bioprofile flex (Nova Biomedical
Corporation, Waltham, MA).

In the 7 L cell culture runs, the reactor temperature was
controlled using an external electric heating blanket at the
temperature set-point indicated in Table I. The pH set-points are
indicated also in Table I and were maintained using a CO2 gas
supply and additions of a sodium carbonate solution. The DO2 was
maintained at a set-point of 50% controlled by the addition of O2
gas and the agitation of each vessel was ramped up as required to
maintain the DO2 at its set-point. Off-line analysis of viable cell
density and off-line samples was conducted as described for the
AmbrTM-15 system.

Titre Analysis

Volumetric antibody–peptide fusion titres in cell culture super-
natants were quantified by protein A affinity chromatography
using a protein A ImmunoDetection sensor cartridge (Applied
Biosystems, Warrington, UK) coupled to an Agilent 1200 series
HPLC (Agilent, Berkshire, UK). Peak areas relative to a reference
standard calibration curve were used to calculate titres.
These samples were measured on days 8, 10, 12, and 14 for
the AmbrTM-15 system and on days 4–14 for the 7 L cell culture
operation.

TSB Quantitation: Targeted Mass Spectrometry

The TSB concentrations were quantified at the end of each cell
culture run by measuring the proportion of modified and
unmodified peptide as determined by selected ion monitoring
(SIM) following digestion of the purified protein. TSB
concentrations were reported as the proportion of molecules
containing a TSB. The modification specific to the TSB was
identified by peptide mapping using liquid chromatography
mass spectrometry (LC-MS). Measurements were made on
protein A purified samples digested using an automated liquid
handler (BRAVO, Agilent Technologies, Santa Clara, CA)
followed LC-MS using an Acquity iClass UPLC and Xevo TQS
triple quadrupole mass spectrometer (Waters, Milford, MA).
Briefly, protein samples at 5 mg/mL were denatured by
incubation in 5 M Urea, 100 mM Tris, pH 7.6 for 30 min at
37�C prior to tryptic digestion (1:10 enzyme/substrate ratio) in
2 M Urea, 100 mM Tris, and pH 7.6 for 4 h at 37�C. Liberated
peptides were chromatographically separated over a 6 min
gradient using a 150� 2.1 mm BEH C18 UPLC column (Waters)
and flow rate of 0.2 mL/min; mobile phases A and B were water
and acetonitrile, respectively, supplemented with 0.02%
trifluoroacetic acid. Peptide ions were formed using a source
temperature of 600�C, cone voltage of 45 V, and cone gas
flowrate of 400 L/h. SIM transitions were used for quantitation
and selected reaction monitoring (SRM) transitions used for
confirmation of analyte identity.

Software

All data manipulation and analysis including PLS and MLR model
generation were performed using Matlab 2014a (The MathWorks,
Inc., Natick, MA).

Table I. Summary of manipulated process parameters for the five 7 L cell culture runs implemented to validate the TSB predictions of the MVDA

models at scale.

Run ref T (�C) NFD (day) NFV (mL/mL) pH (pH) SD (cells mL�1/cells mL�1)

Run-1 35.5 Day-2 1 7.00 1
Run-2 37 Day-3 1 6.90 0.8
Run-3 37 Day-3 1 6.90 0.8
Run-4 35.5 Day-3 1.1 6.90 1.2
Run-5 35.5 Day-4 1 7.00 1
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Design of Experiments Conditions

The five variables included in the DoE were the temperature set-
point (T), initial nutrient feed day (NFD), nutrient feed volume
(NFV), pH set-point (pH), and initial seeding density (SD). A
fractional factorial design was chosen using an optimal design of
resolution equal to four consisting of 28 runs plus three center
points to provide a measure of process stability and inherent
variability. Furthermore, to broaden the scope of the design, two
axial points for each variable (except temperature) were added,
resulting in an additional eight axial points. An additional two axial
points at pH 6.85 and 7.05 were investigated at the high and low
temperature resulting in an extra four runs in the design. In total
this resulted in 43 experiments, and the remaining five culture
stations in the AmbrTM-15 system were not included in this DoE.
The finalized experimental design is summarized as follows:

� Temperature (�C): 3 levels—factorial points: 34, 35.5, 37.
� Initial nutrient feed day (Day): 3 levels—factorial points: 1, 2, 3

with two axial points: 1 and 4.
� Nutrient feed volume (mL/mL): 3 levels 0.9,1, 1.1 with two axial

points: 0.8 and 1.2.
� pH (pH): 3 levels 6.9, 7, 7.1 with two axial points: 6.8, and 7.2.
� Initial seeding density (cells mL�1/cells mL�1): 3 levels 0.8, 1,

1.2 with two axial points: 0.57 and 1.57.

Computational Methods

Multiple Linear Regression Model Development

Multiple linear regression (MLR) is a mathematical technique
enabling predictions of a single-dependent variable from multiple-
independent variables. In fed-batch cell culture systems, the inputs
for MLR analysis are typically single time point fixed variables that
are representative for the entire culture length and include initial
conditions, media formulations, fixed controller set-points, and
feeding strategies. In this present study, the MLRmodel inputs were
the temperature set-point (T), the pH set-point (pH), the initial
nutrient feed day (NFD), the nutrient feed volume (NFV), and the
seeding density (SD) with the TSB concentration as the response as
indicated in Figure 1. The generated model can quantify the relative
importance of the input variables through analysis of the model’s
regression coefficients and is highly suited to analyze DoE type data.
To enable easier interpretation of the model coefficients and allow
comparison of each input on a common scale, the MLR model
inputs were converted to coded factors.
A quadratic MLR model that assumed interaction between the

variables was initially chosen and a stepwise regression approach
implementing both forward addition and backward elimination was
used to generate the final model. The selection criteria for the
finalized model was based on minimizing the root mean square
error (RMSE) between the model predictions and the experimental

Figure 1. (a) Schematic of AmbrTM-15 system outlining the different types of variables recorded. (b) Embedded table outlining the sampling frequency and control strategy

implemented on the micro-bioreactor system with the variables selected for analysis by the MLR and PLS also highlighted. S.P represents the variable set-point.
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TSB concentrations. The final MLR model generated by this
procedure was as follows:

½TSB� ¼ b0 þ b1T þ b2NFDþ b3pHþ b4TpH
þ b5NFDpH ð1Þ

where [TSB] is the predicted TSB concentration with the
temperature taken as T, nutrient feed day as NFD and the pH
as pH. The intercept of the model is taken as b0 and the coefficients
taken as b1,2,. . .5.

PLS Model Development

In addition to analyzing discrete datasets, more advanced MVDA
techniques are required to analyze both continuous and discrete
datasets. PLS is highly suited for the analysis of high-throughput cell
culture data based on its ability to reduce large data matrices into
low-dimensional vector spaces allowing for easier data interpreta-
tion and better visualization of hidden correlations. One of the main
challenges in applying PLS as a statistical tool for cell culture
analysis involves the complicated pretreatment of the various
different data structures recorded using multiple devices at varying
time frequencies (Nomikos and MacGregor, 1994). Figure 2
highlights the various data blocks recorded by the micro-bioreactor
system employed here, where the X1 block consists of i1¼ 1,2,3... I
cell culture runs with j1¼ 1,2,3... J1 on-line process or manipulated
variables that were recorded at k1¼ 1,2,3... K1 time intervals
forming a three dimensional I� J1�K1 block. Similarly, the
infrequently recorded off-line variables are summarized by a
I� J2�K2 block represented here as the X2 block with J2
representing the number of off-line variables and K2 represents the
sampling time for each variable. The initial conditions are
represented by the X3 block, equal in size to I� J3, where J3 is the
number of initial conditions. The response variable is represented
by the Y block and in this case is equal to the final TSB
concentration of each cell culture run and equal to an I� 1 vector.
Unfolding these three-dimensional blocks and consolidating the
additional process measurements together is necessary to enable
PLS modeling as this technique is only suitable for two dimensional
analysis. Wold et al. (1987) extended this technique to multi-way
partial least squares (MPLS), which is equivalent to performing
ordinary PLS on a large two dimensional matrix formed by
unfolding the three dimensional blocks. In the analysis of cell
culture processes, the most meaningful way to unfold the data is by
batch-wise unfolding, where a batch represents a single cell culture
run. There are various other ways to unfold the three dimensional
batch data that are better suited to model variation between
variables and across time intervals (Chiang et al., 2006; Lee et al.,
2004). Yet the focus here is on batch-wise unfolding as it enables
investigation of the run-to-run variability highlighted in the given
problem statement. The cell culture data summarized in the three
different blocks was firstly unfolded and consolidated into a new X
block of size equal to I� L where L is equal to I� (J1K1þ J2K2
þ J3) as defined in Figure 2. As standard with PLS data pre-
treatment all variables were mean-centered and scaled to unit
variance by dividing by their standard deviation. Additionally, to

ensure the initial conditions containing a single time point were not
dominated by the vast number of on- or off-line variables, variable
block scaling was incorporated. This ensures each variable was
considered equal in importance and weighting in the PLS model
and is defined as follows:

X ¼ X1ffiffiffiffiffi
K1

p X2ffiffiffiffiffi
K2

p X3

� �
ð2Þ

To calculate the PLS model parameters, the non-linear iterative
partial least squares (NIPALS) algorithm was implemented (Wold
et al., 1987). The PLS algorithm consists of an outer-relationship that
considers the X and Y blocks individually and an inner-relationship
that links the two blocks together. The outer relationships are
generated by decomposing the newly unfolded X (I� L) and Y
(I� 1) blocks into R latent score variables [t, u], loading vectors
[p, q], weightsW (L� R), and the model residual matrices E (I� L),
F (I� 1). t, u, p, and q can be combined into T (I�R), U (I�R), P
(L�R), Q (1�R), and W (L� R) as defined below:

X ¼
XR
r¼1

trp
T
r þ E X ¼ TPT þ E ð3Þ

Y ¼
XR
r¼1

urq
T
r þ F Y ¼ UQT þ F ð4Þ

Avector of inner-relationships B (R�R) is generated that relates
the scores of the X block to the Y block as follows:

B ¼ UTTðTTTÞ�1 ð5Þ

The PLS model implements an iterative procedure for each latent
variable to reach convergence and once the procedure is complete, a
matrix of regression coefficientsb (L� R) can be generated as follows:

b ¼ WðPTWÞ�1diagðBÞ ð6Þ

where W equals (UTX)T. The cumulative sum of the regression
coefficients predicts the response variable (bY ) from the X block
taking R latent variables:

Ŷ ¼ X
XR
r¼1

b ð7Þ

The weights matrix W within the PLS model carries valuable
information relating the X and Y blocks. Eriksson et al. (2001)
summarized this information in the variable importance on
projection (VIPj) plot for each variable j considered in the PLS
model, calculated as follows:

VIPj ¼
XR
r¼1

w2
rjkðSSRr SSYRÞ ð8Þ
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where w2
rjk is the squared sum of the weights of each variable j

recorded across k time-points for each latent variable r. SSYr is the
sum of explained variance of the Y block for the rth latent variable
and SSYR is the total variance explained by the PLS model taking R
latent variables.
The variables included in the PLS model are outlined in

Figure 1. Each of the variables was unfolded and scaled as
previously discussed to form the X-block or Y-block. The X-
block data were divided into calibration and validation data sets
composed of 33 and 10 batches, respectively. Five latent
variables were selected based on minimizing the root mean
squared error (RMSE) of the 33 calibration batches and the root
mean squared of prediction (RMSEP) of the 10 validation
batches. The five latent variables captured 56% of the total
variance of the X-block and 95% of the Y-block. Taking
additional latent variables unnecessarily increases the complex-
ity of the PLS model with only a marginal decrease in the RMSE
and RMSEP.

Results and Discussion

A screening study using a DoE approach was carried out to
determine the root cause of high TSB concentrations detected in an
antibody–peptide fusion protein. The variable operating range
selected in this study resulted in TSB concentrations varying from
0% up to 17.2% as is shown in Figure 3. These previously unseen
high TSB concentrations demonstrated the significant impact of the
chosen variable operating range on product quality. Similarly, Gu
et al. (2010) reported TSB concentrations for seven different
monoclonal antibodies as high as 39.2% and on average equal to
11.5% with a standard deviation of 7.5% demonstrating the
significantly high occurrence of TSBs in recombinant proteins.
A multiple linear regression was implemented to assess the

influence of the manipulated DoE inputs on the TSB levels. These
data were further scrutinized by a PLS model that quantified the
impact of both the on-line and off-line variables on the detected TSB
levels.

Figure 2. Outline of data consolidation required for the generation of the PLS model involving the unfolding and scaling of the on-line measurements (X1 block), off-line

measurements (X2 block) and initial conditions.
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MLR Model Predictions

To quantify the impact of the environmental cell culture changes on
the TSB concentrations, the complex dataset was initially analyzed
through the development of an MLR model focusing solely on the
DoE set-point changes as discussed in Multiple Linear Regression
Model Development section. The MLR model was shown to capture
68% of the total variance of the TSB concentrations and the model
predictions were comparable with the experimental recorded values
as shown in Figure 3a. Through analysis of the MLR model
coefficients, the temperature set-point, initial nutrient feed day,
and pH set-point were found to be highly influential on the final TSB
concentration. Additionally, interactions between temperature
and pH and nutrient feed day and pH were also found to be
significant. Interestingly, both the nutrient feed volume and initial
seeding density did not contribute significantly to the TSB levels
and were eliminated from the model. All of the terms used in the
model were statistically significant based on a P-value of less than
0.05. Sullivan and Feinn (2012) discussed that although the
statistical significance of a variable is important, the effective
magnitude of each variable on the predicted response is the most

important factor to consider. Figure 4a shows the effective
magnitude of the MLR model coefficients generated using coded
factors allowing for their effective contributions to be interpreted
directly. Temperature has the largest influence on the model and the
analysis indicates a positive correlation with TSBs, i.e., high
temperatures (37�C) promote high TSB concentrations. The main
effects of pH and NFD were similar in magnitude but opposite in
sign, highlighting a negative correlation. Two interactions were also
found to influence the TSB concentration. Figure 4b–d shows the
model predictions considering both the main and interactive terms
of the MLR model for the variable operating range investigated in
this work. The highest predicted TSB concentration, was observed
with high temperature (37�C), low pH (6.8), and nutrient feed day
set to day 2. Previous reports have also highlighted the significant
influence of cell culture operating temperature on TSB formation
during antibody production (Evans et al., 2011).

Considering both the main effects and interaction terms, the
MLR model suggests that TSB formation is promoted by a high
temperature and low pH set-point operated with a late feeding
strategy. Both the seeding density and nutrient feed volume were
found to have little influence on this quality attribute. Previously,

Figure 3. Comparison of predictions of TSB concentrations against experimental values using (a) the MLR model (R2 equal to 0.68) and (b) the PLS model (R2 of calibration

dataset equal to 0.89 and the R2 of validation dataset equal to 0.7).
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Kshirsagar et al. (2012) correlated the concentration of cysteine in
the feeds to TSB concentrations suggesting an increase in feed on a
per cell basis leads to higher TSB levels. In the present study,
analyzing the TSB concentration as a function of the feed on a per
cell basis resulted in no correlation (data not shown).

Time Series Fluctuations

One limitation in developing MLR models on cell culture systems is
the assumption that discrete model input variables selected by the
model can accurately represent the observed process conditions
across the entire cell culture length. However, as discussed by
Formenti et al. (2014), controlling cell culture systems to their
respective set-points or trajectories is difficult due to the complex
non-linear nature of cell culture systems. For this particular
process, the pH dead-band was set to 0.1 allowing the pH to drift
around its set-point without triggering the addition of base or CO2
gas. Therefore, the pH was found to deviate around its set-point as
is highlighted in Figure 5 where the pH profiles of six micro-
bioreactors with different pH set-points are shown. Previous
literature has emphasized the importance of controlling the pH of
mammalian cell culture systems to ensure consistent product
quality (Borys et al., 1993; Mohan et al., 1993). These profiles
suggest the pH set-points included in the MLR model are not
representative of the actual pH recorded experimentally by each
micro-bioreactor. Similarly gas flow rates, impeller speeds, and

off-line variables are continually changing throughout the duration
of the cell culture run. Therefore, these dynamic adjustments are
not accurately represented by discrete variables. To account for
these time-series fluctuations and further scrutinize the available
dataset, PLS modeling was implemented.

Figure 4. (a) Contributions of the MLR model terms used for the prediction of the TSB concentration generated using coded factors. The � indicates the model terms are

significant based on a P-value of less than 0.05. Response surfaces highlighting the effects of TSB levels of (b) temperature and pH with NFD equal to 2, (c) NFD and temperature

with pH equal to 7, and (d) pH and NFD with temperature equal to 35.5�C.

Figure 5. pH profiles of the six different DoE set-point changes recorded on the

micro-bioreactor system.
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PLS Model Predictions

In addition to capturing time-series fluctuations, the PLS technique
enables a wider range of process variables recorded by the micro-
bioreactor system to be included in the analysis as is summarized in
Figure 1. This is particularly relevant considering the continued
development of process analytics and the need to exploit the
important information from these complex data sets. The PLS
model parameters defined in Equations (3) and (4) were used to
evaluate the process performance of each run and to identify any
discriminating run characteristics to enable root-cause determina-
tion of the TSB concentration levels. The scores of the first two latent
variables, t1 and t2, accounting for 43% and 18% of the total
variance observed in the final TSB concentration, respectively, are
shown in Figure 6. A natural clustering of “Low TSB” and “High
TSB” cell culture runs is highlighted in Figure 6 where “Low TSB”
runs had a TSB concentration of 3.5% or less and runs above this
limit were classed as “High TSB” runs. The clustering of the
majority of “High TSB” runs indicated similar cell culture
characteristics were identified by the variables in the PLS model
that are highly correlated with the TSB concentration. To investigate
which variables had the largest influence on the TSB concentration,
the variable contributions calculated from the regression weights
(b) of each latent variable were analyzed.

The summed contributions
XK
k¼1

b2jk

 !
for each variable j

recorded across k time points calculated for the first latent variable
are shown in Figure 7a, highlighting the significant contribution of
both the temperature and pH. However, high variable contributions
do not necessarily indicate a direct influence on the prediction of
the response variable Y. As indicated in Equation (7), the prediction
of the final TSB concentration is the product of the regression
weights by the scaled time-series profile of each variable, hence
their profiles must be considered simultaneously to ascertain their

influence on the predicted response variable. The regressionweights
for the temperature (bT) and pH (bpH) are shown in Figure 7b. The
relatively constant profile observed for bT indicates the variable
does not fluctuate whereas the significant fluctuations observed for
bpH indicates the pH deviates throughout the cell culture run.

To correctly interpret these weights, the scaled pH and
temperature profiles must be taken into account. The profiles of
these variables are shown for two runs, Run-21 and Run-3 that had
a final TSB concentration of 17.2% and 0%, respectively, and can be
considered as an example of a “High TSB” and “Low TSB” run.
Examination of the temperature weights (bT) shown in
Figure 7b and the temperature profile of the “High TSB” run in
Figure 7c highlights that the product of these two matrices would
result in a high TSB value as both are positive in magnitude across
the entire length of the cell culture run. The opposite is observed for
Run 3 indicating the lower temperature suppresses the formation of
TSBs. Thus, the PLS model indicates that high temperatures
promote TSB formation whereas low temperatures suppress it. The
regression weights generated for the pH (bpH) are more difficult to
interpret based on the large fluctuation observed in Figure 7b.
Initially the pH has a negative contribution and after day 6 a sharp
transition to a positive contribution is observed. In order to
suppress the TSB formation a positive scaled pH up to day 6
followed by a negative pH would negatively contribute to the TSB
concentration. Interestingly, this ideal pH profile is very similar to
the experimental recorded pH for Run-3 with a 0% TSB
concentration.

In contrast, the pH profile shown for Run 21 in Figure 7c, with a
TSB concentration of 17%, is similar in shape to the regression
weights and therefore its product would result in a high TSB
concentration. The experimental pH values of the scaled pH profiles
shown in Figure 7c and d fluctuate between pH 6.9 and 7.1.
Interestingly, the pKa values of H2S to HþþHS� have been
reported to be equal to approximately 7 (Li and Lancaster, 2013).
Therefore, the high observed pH (above 7) of Run 21 toward the end
of the run would potentially increase the acidic dissociation of
H2S that could promote a nucleophilic attack of the disulfide bond
by the HS� resulting in increased TSB formation as hypothesized by
Nielsen et al. (2011). The PLS model suggests a low pH toward the
end of the cell culture run could reduce the formation of TSBs based
on these pH regression weights. Additionally, the sharp contrast
observed between the two pH profiles of Run 21 and Run 3
highlights the potential of this variable to be used an indicator in a
batch-process monitoring strategy to enable fault detections for
early predictions of runs with high TSB concentrations.

Further to analyzing the individual latent variables, it is
important to consider the cumulative contribution of the original
variables that contribute toward selected latent variables in the PLS
model. This can be summarized by the variable influence on
projection (VIPj) defined by Equation (8). The VIPj plot for the five
latent variable PLS model is shown in Figure 8. The threshold for
important variables is defined by Tran et al. (2014) and Cinar et al.
(2003) to be equal to 1, where “VIPj> 1” indicates the variable j is
highly influential on the TSB concentration. The importance of
the pH and temperature were discussed previously and their
significant contributions are also observed from the VIPj plot. The
VIPj plot also highlights the CO2 flow rate (FCO2) as a highly

Figure 6. Scores plot of the first two latent variables for the 33 calibration runs

where ‘‘Low TSB’’ runs had a final TSB concentration of 3.5% or lower and cell culture

runs with higher concentrations were classed as ‘‘High TSB’’ runs. t1and t2 represent

the scores from the first and second latent variables, respectively.
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significant variable based on its contribution to the TSB
concentration. Analyzing the regression weights of FCO2 suggests
increased CO2 gas-flow rates reduce the formation of TSBs. This
observation is similar to the mitigation strategy outlined by Becker
and Christensen (2006); they demonstrated that sparging gas
during the harvest step of a human growth hormone fermentation
resulted in reduced trisulfide concentrations by stripping out the
hydrogen sulfide from the vessel.

Trisulfide Bond Mechanism

Previous reports have demonstrated trisulfides are a post-
translation modification formed by the insertion of a sulfur
atom into a disulfide bond due to the presence of hydrogen sulfide
(H2S) in the bioreactor resulting in the following reaction: Cys-S-S-
CysþH2Sþ O –> Cys-S-S-S-CysþH2O (Gu et al., 2010). The
presence of H2S in the bioreactor has been demonstrated by two
different approaches, the first is the enzymatic reduction of cysteine
by mammalian cells resulting in the production of H2S (Kamoun,
2004; Kimura, 2011) and the second source of H2Swas from the feed
media (Kshirsagar et al., 2012). In the present work, an
investigation was carried out to determine if the H2S in the
bioreactor could be stripped off and lead to a reduction in TSB levels
as was demonstrated by Becker and Christensen (2005). The gas
flow rates of CO2 were manipulated for 3 cell culture runs performed
at the 15mL scale. The following set points were implemented for
the three culture runs: temperature set to 35.5�C, pH set to 7,
nutrient feed day equal to 1, nutrient feed volume equal to 1mL/mL,
and seeding density equal to 1 cells mL�1/cells mL�1. The CO2 gas
flow rates were ramped up from normal operation to 1.75 and 2.25
times normal operation as is shown in Supporting Information
Figure S1(a). The TSB formation of these three cell culture runs are
shown in Supporting Information Figure S1(b) and demonstrate a
reduction in TSB formation with the increased gas sparging.
Kshirsagar et al. (2016) demonstrated the primary source of

Figure 7. (a) Summed regression weights of each variable
XK
k¼1

b2
jk

 !
with j representing the variables included in the PLSmodel recorded across its k time points. (b) The time-

series regression weights (bjk) of temperature and pH for the first latent variable of the PLS. (c and d) show the corresponding temperature and pH profiles of Run-21 and Run-3 that

had a TSB concentration of 17% and 0%, respectively. bjk indicates the time-series regression weights for the variable (j) recorded across its k time-points.

Figure 8. Variable influence of projection (VIPj) for PLS model consisting of five

latent variable.
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H2S was the result of cysteine in the media feed and demonstrated
that an eightfold increase in cysteine in the media resulted in TSB
concentrations increasing from approximately 2% to 15%. However,
in the present study no correlation was found between the
cumulative feed added compared to the TSB levels. Larger
adjustments to the feed volumemay be required to see any observed
differences as the feed volume was only adjusted by �20% in this
case study. Further work investigating the levels of amino acids in
particular the cysteine concentration would be needed to verify this
correlation. The pH was also found to be significant in the
mechanism of trisulfide bond (Becker and Christensen, 2005;
Nielsen et al., 2011). Nielsen et al. (2011) proposed the formation of
trisulfides in proteins is the result of a nucleophilic attack of the
sulfide ion (SH�) on the disulfide bond of the protein resulting in
the formation of a trisulfide bond. This proposed formation of TSB
is dependent on a number of factors including the presence of the
SH� and a pH at or above neutral. Analysis of the time-series
regressionweights (Fig. 7b) demonstrates a high pH during the later
stages of cell culture run would promote TSB formation.
Furthermore, all the cell culture runs with high levels of TSB
(>6%) had a high end-point pH (pH>7) (data not shown).

Validation of MVDA Models Upon Scale-Up

Both the MLR and PLS models provided unique and
complementary insights into the primary variables influencing
the TSB concentrations, with the culture temperature and pH
highlighted as the two main variables influencing the TSB
formation. To ensure the predictions from these models were
valid upon scale-up, five 7 L bioreactor runs using the same cell
line were set up. The selected process conditions are shown in
Table I and the MVDA model predicted that these process
predictions would result in runs that contained TSB concen-
trations from 0% to approximately 10%. These predictions were
determined using Equation (1) taking the inputs of the model as
the temperature, pH, and initial feed day shown in Table I.

Figure 9 compares the experimentally recorded TSB concen-
trations against the concentration predicted by the model. A high
coefficient of determination (R2¼ 0.90) was obtained that
indicated good agreement between the experimental and
predicted values of TSB. These accurate predictions at scale-up
demonstrate the importance of this relatively simple model to
extract valuable information from a complex data set. The more
complex PLS model outlines the importance of considering the
time-series pH deviations in addition to the gas flow rates that
could be manipulated to minimise TSB formation in recombinant
protein manufacturing. To determine if these trends and the
resulting predictive model can be generalized in terms of process
parameters influencing TSB formation on therapeutic proteins, it
would be necessary to collect data over a wider range of cell lines
and products.

Conclusion

This work demonstrates the successful application of MVDA
techniques to analyze a large complex dataset generated by a HT
micro-bioreactor system and outlined the key process parameters
that influence TSB formation on an industrially relevant antibody–
peptide fusion cell culture process. Two MVDA techniques were
implemented to leverage significant insights from the DoE datasets
generated with the AmbrTM-15 system. The first MVDA technique
applied was an MLR model that identified the key process
conditions resulting in high TSB concentrations. The MLR model
indicated that a high temperature set-point (37�C) and a low pH
set-point (<6.8) combined with a late nutrient feed day (day 3 or 4)
would result in high TSB concentrations equal to approximately
15%. To further scrutinize the available dataset, a PLS model was
generated that complemented the MLR model findings and
highlighted the temperature and pH as key process variables
influencing the TSB concentration. The ability of the PLS model to
not only consider set-point changes but also the whole time-series
datasets of all the process variables proved highly relevant and
highlighted a pH shift on day 6 to be significant in influencing the
TSB concentration. The process conditions identified by both the
MLR and PLS models were manipulated on five 7 L bioreactors to
validate the predictions of the MVDA models at laboratory scale
and demonstrated excellent agreement with the TSB concentrations
recorded for each of the five bioreactors. The insights generated
from this work enable the control limits of the key process
parameters to be redefined to ensure the TSB concentration is
minimized. Furthermore, the proposed MVDA approach outlined
here is a universal methodology enabling root-cause analysis of
other post-translation modifications to be easily and systematically
identified.
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Figure 9. TSB concentrations predicted by the linear regression model compared

to five 7 L bioreactor runs operated at various different operating conditions using the

same cell line implemented by the micro-bioreactor system. The MLR model

predictions were based on the initial concentrations, feeding strategy implemented,

and process set-points defined in Table I.
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