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Abstract

Agglomerative hierarchical clustering becomes infeasible when applied to large datasets
due to its O(N?) storage requirements. We present a multi-stage agglomerative hierarchical
clustering (MAHC) approach aimed at large datasets of speech segments. The algorithm is
based on an iterative divide-and-conquer strategy. The data is first split into independent
subsets, each of which is clustered separately. Thus reduces the storage required for
sequential implementations, and allows concurrent computation on parallel computing hard-
ware. The resultant clusters are merged and subsequently re-divided into subsets, which are
passed to the following iteration. We show that MAHC can match and even surpass the per-
formance of the exact implementation when applied to datasets of speech segments.

Introduction

Clustering can be described as the process of finding the natural grouping(s) of a set of patterns
or objects based on their similarity [1]. This can be achieved through the use of clustering algo-
rithms which are broadly classified into two groups: hierarchical and partitional [2-4]. Parti-
tional clustering methods seek to divide the data without considering how the final clusters
may themselves be combined into larger groups, or be subdivided into smaller groups. They
are based on the optimisation of an appropriate objective function that quantifies how well the
clusters represent their members [1]. The most common example of a partitional method is the
k-means algorithm. For partitional approaches, the number of clusters must be known before-
hand, and this can present major challenges [5]. When we have no prior knowledge of the
number of clusters, hierarchical methods are a favourable choice [6, 7]. In contrast to parti-
tional approaches, these methods consider how clusters can be subdivided into sub-clusters or
be grouped into super-clusters, thereby providing a hierarchical assignment of objects into
groups. Among hierarchical methods, one can further distinguish between divisive and
agglomerative approaches. The former are based on a succession of data splits that continues
until each data object occupies its own cluster [8, 9]. Agglomerative hierarchical clustering
(AHC) on the other hand, is a bottom-up approach that initially treats each data object as a sin-
gleton cluster and successively merges pairs of clusters until a single group remains [4, 10].
This process begins by computing a pairwise similarity between all N points in the dataset,
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leading to a symmetric N x N similarity matrix. Since the entries on the main diagonal are
zero, only upper or lower triangular matrix entries need to be computed. A major disadvantage
of the AHC algorithm is the O(N?) space complexity [5, 11] associated with the storage of this
triangular distance matrix.

We will focus on the agglomerative hierarchical clustering of acoustic speech segments such
as phonemes. These segments are time series of varying length and are not easily represented
as vectors in a vector space. However, they can be compared and similarities can be computed.
Since AHC requires only these similarities and not a vector representation, it is well suited to
our application. Even for fairly small speech databases, however, the number of phonemes can
run into hundreds of thousands. While there is no strict threshold above which one can declare
the amount of data as large, there is no doubt that the direct application of AHC is intractable
in terms of memory for this application [5, 12].

Clustering of phonemes, triphones or any other form of acoustic segments has found useful
application in the field of automatic speech recognition (ASR) [13-16]. Our over-arching focus is
the development of automatic speech recognition systems for under-resourced languages [17]. In
particular, we aim to automatically discover phoneme-like acoustic units from raw acoustic speech
data. This is useful for languages for which a phoneme inventory may not yet have been defined,
and labelled data may not be available. In the long term, we aim to develop ASR based on auto-
matically-determined acoustic units instead of the traditional reliance on phonetic knowledge.

We propose a multi-stage AHC (MAHC) method that splits the AHC problem into sub-
problems which can be executed independently. This reduces the space complexity when the
sub-problems are executed sequentially and allows faster computation when parallel comput-
ing hardware is available. The algorithm requires only the pairwise distances between object to
be known, and hence makes the clustering of substantial speech databases feasible. The algo-
rithm does not require the number of clusters to be specified in advance, and is shown to be
comparable in performance to parallel spectral clustering (PSC) [18] which has also been
developed specifically for the processing of large datasets.

Related Work

The problem of clustering large data using agglomerative hierarchical techniques has been
addressed by other researchers in various ways. We note the early work by Narasimha and
Krishna [19] which proposes a multilevel technique for clustering datasets. While their approach
is in some respects similar to ours, it has been tested only on a fairly small dataset consisting of
50 manually generated samples in a 2-dimensional Euclidean space. This data is split into P;
sub-groups. AHC is applied to each sub-group; in each case yielding C clusters (a value of C =5
was used in all experiments). After this ‘first level’, a representative cluster from each of the 5 P,
sub-groups is determined and stored as a ‘data point’ for level two. Subsequently, level-two data
is further divided into P, sub-groups, and AHC is applied to each. This procedure continues
until the predetermined number of levels, K, has been reached, and it is shown that the optimal
value of K can be mathematically determined. An alternative way of automatically finding K for
the same method is reported by Suresh [20]. Here the authors show that standard AHC is com-
putationally more expensive than the proposed technique based on the two level process.

Tang et al [21] also propose a distributed hierarchical clustering algorithm for large data.
Their aim is to improve and minimise the storage requirements of traditional hierarchical algo-
rithms for parallel computing architecture. They use a threshold on the similarity determined
by a human expert to classify data items as unrelated, thereby making the similarity matrix
sparse. The sparse similarity matrix is used to sequentially create disjoint sets of closely related
data items. Each disjoint set is clustered in parallel, forming its own sub-clusters. Finally a
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single linkage method is used to measure similarity between these sub-clusters, which are sub-
sequently themselves subjected to AHC to complete the final dendrogram. The technique is
tested on the MPC Orbit (MPCORB) dataset which contains approximately 380,000 asteroids,
each of which is represented by a 6-dimensional feature vector. The major variable here is the
threshold on the similarity and the authors show experimentally how it affects the number of
disjoint sets and also the execution time at each step of the algorithm.

Cobo et al [22] employ a subspace clustering paradigm [23] which assumes that high dimen-
sional data objects lie around a union of subspaces such that clustering can be performed inde-
pendently in each subspace. The data used in this work represent the activities performed by
learners in an online discussion forums. A total of 3842 written posts were captured from 672
students over a period 333 days. Each student is represented by a multi-dimensional feature vec-
tor which represents attributes relating to their participation in online discussions. The features
are classified as coming from either a reading or writing domain. The feature vector attributes
relating to the writing domain include: the ratio of reply posts written by a learner relative to the
total number of reply posts, and the ratio of learners who replied at least once relative to the
total number of learners. The feature vector attributes relating to the reading domain include:
the ratio of posts read by a learner as a fraction of total number of posts and the ratio of threads
where a learner reads at least one post relative to the total number of threads. These data are
clustered using AHC in a ‘first stage” where learners with similar activity patterns are grouped
together separately in each domain. The AHC acquires normalised Euclidean distance pairs as
input and calculates inter-cluster similarities using the complete linkage method. The second
stage of the method entails the grouping together of those learners who belong to the same clus-
ters in both reading and writing. The participation profiles of the learners are mapped to the
final clusters by observing and comparing the values of the parameters that characterise the
learners’ activity patterns in each cluster. The participation profiles are known before hand. This
work was subsequently advanced by Cobo [24] by including more domains.

The second tier of literature relevant to our work emanates from research that focuses spe-
cifically on the clustering of acoustic speech segments. Paliwal [14] considers the clustering of
acoustic segments by first representing each segment with its centroid and then applying the k-
means algorithm to these centroids. A codebook containing N entries where each entry defines
one acoustic sub-word unit (acoustic segment) cluster is generated. A similar process is
reported by Lee et al in [25].

Wang et al [16] convert data into segment-level Gaussian posteriograms (SGP’s). These
SGP’s are obtained from the segment likelihoods generated by a Gaussian mixture model
which has been trained on all the training data. Each acoustic segment is represented as a
sequence of posterior probabilities of Gaussian components given the observation sequence.
Data is then consolidated in a distance matrix of size M Gaussians by N segments. The authors
separately cluster both the segments and the Gaussian components of the matrix using the nor-
malized cut [26] approach with a known number of clusters. A confusion matrix of acoustic
segment labels is used for evaluation together with the F-measure and the mormalised mutual
information [27]. Although the method described by these authors does not employ AHC, it
does target the same application we have chosen.

One clustering approach that has been extended specifically to partition large datasets is
spectral clustering (SC) [28, 29]. A typical spectral clustering algorithm acquires pairwise dis-
tances from N d-dimensional data points located in a Euclidean space, R", and constructs a
dense similarity matrix Y € R"*". In some cases Y can be modified to be a sparse matrix. Subse-
quently, the Laplacian matrix, L = Z - Y, is computed where Z is a diagonal matrix whose entries
are row/column sums of Y. SC requires the number of clusters, K, to be specified so that the first
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K eigenvectors of L can be computed and stored as columns of a new matrix, V€ R"**, Finally
the k-means algorithm is used to cluster the N rows of the matrix V into K groups. SC as
described is not suitable for application to large datasets [29] because of the storage requirement
associated with the N x N similarity matrix. Chen et al [18] propose an extension to spectral
clustering that makes the processing of large datasets possible. In the proposed parallel spectral
clustering (PSC) algorithm, data is split into N/p subsets, where p is the number of compute
nodes. The datasets used by the authors to evaluate PSC comprise 193,844 instances of docu-
ment data (RCV1) and 2,121,863 instances of photo data (PicasaWeb). The number of nodes p
is varied from 1 to 64 for RCV1 and from 16 to 256 for PicasaWeb. On each processor, the simi-
larity matrix Y for local data is computed and the t-nearest neighbours are determined from
each row/column of Y. The matrix Y'is then sparsified and made symmetric. Two ways of
approximating Y are proposed: the sparsifying criterion and the Nystrém approximation. The
Nystrom approximation method computes eigenvectors of a b x b (b < N) sub-matrix of Y
with the goal of using these eigenvectors to approximate the eigenvectors of Y. Chen et al found
that the sparsification approach yields better results than the Nystrom approximation. The
resulting eigenvector matrix, V, is stored on distributed nodes. Experiments were performed on
the Google distributed clusters using the MapReduce parallelisation system.

Agglomerative Hierarchical Clustering
Data representation

In the cluster analysis literature, a dataset, X, is generally depicted as a composition of N objects
that must be partitioned into K clusters. Object data are generally represented in the form

X = {x,,X,, Xy, ..., Xy }, X; € R?, where each data point is represented by a d-dimensional fea-
ture vector such that the complete dataset is viewed in the form of an N x d pattern matrix (2,
3, 30]. Similar data points are clustered according to a similarity function D(x;, x;) which has
the following properties:

1. D(X,’, X,’) =0, Vi
2. D(Xi) X]) = D(Xj’ Xi)) Vl:] (1 #])
3. D(Xi, X]) Z 0.

The input to the AHC algorithm is a similarity matrix populated by the values of D. The
properties of D listed above lead to a lower or upper triangular similarity matrix with M = N(N
—1)/2 independent entries below or above the leading diagonal.

The above data representation does however not accommodate time series data objects. A

time series data object consists of a set of multidimensional Euclidean points, each correspond-
ing to a successive instant in time. We therefore present a more generic dataset in Eq 1.

X = {X17X27X37"'7XN} (1)

Here X; = {Xi1, Xi2, Xi3, - - -, X;} 1S @ time series object and 7 is the number of consecutive
Euclidean points in the object X;. When objects are simply Euclidean points, we would have
the special case X; = {x;;}. This representation reflects a more general dataset for objects in RY.
Under this formulation the similarity between two objects is therefore given by D(X;;, X;).

Clustering algorithm

We formulate our problem as that of N data objects to be grouped into K partitions using an
AHC algorithm [2]. Let the set of clusters be C, such that C = {C,, C,,...,C,} where C;isa
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Fig 1. An example of a dendrogram.

doi:10.1371/journal.pone.0141756.g001

subset whose membership ideally comprises similar objects. In addition, C,NC, = {} for p,
q=1,2,...,Kwherep # g, while C, UC, U... U C, = X as set out in Eq 1. The symbols N,
U and () indicate set intersection, set union and the empty set respectively.

In AHC, the agglomeration of data objects is initialised by the assumption that each object
is the sole occupant of its own cluster. Starting from this initial single-occupancy scenario, a
binary tree structure referred to as a dendrogram is created by successively merging the closest
cluster pairs until a single cluster remains [6]. Illustrated in Fig 1, the dendrogram is a structure
consisting of many U-shaped lines that connect data points into a hierarchical tree.

The height of each U represents the similarity or distance between the two clusters being
merged. To cluster the data, the dendrogram is cut, by placing a threshold on this similarity. In
Fig 1, three possible thresholds T;, T, and 13 are shown. This threshold is often referred to as
the cutoff of the dendrogram.

Inter-cluster distances are normally calculated using linkage methods or the sum of squares
[3]. Among linkage methods, single, average and complete linkages are common choices. We
have chosen the Ward method [31, 32] to calculate inter-cluster similarity, both because it has
been found by other researchers to outperform other linkage methods [2] and because we have
found it to lead to consistently better results during initial experimentation. The Ward method
is a minimum variance criterion that minimises the total within-cluster variance. It utilises the
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squared distance between cluster centres or the Euclidean distance between the individual
objects.

A generic formulation that incorporates several merging criteria used in AHC is given by
the Lance-Williams dissimilarity update formula [6, 7]:

D((C,UC),Cy) = 4,D(C;; G)) +9,D(C;, C,) + D(C;, C)
(2)

+V|D(Ci7 Ck) - D(ij C,)l
N; + N, ” N;+ N, . f
N,+N+N’7 N+N+N'~  N+N+N,
agglomerative criterion using the Ward method. Nj, Nj and Ny denote the number of objects in

cluster C;, C; and C; respectively. It has been found that the Ward method exhibits computa-
tional and space complexity of O(N?) [32, 33].

where o, = and y = 0.5 define the

Multi-stage Agglomerative Clustering

The AHC algorithm described in the previous section requires the computation and storage of
M = N(N — 1)/2 similarities. For large N, this becomes impractical. In the following we present
an approximation to the AHC algorithm that we refer to as multi-stage agglomerative hierar-
chical clustering (MAHC) as a way of addressing this practical limitation. Our three main
objectives are:

1. to design and test a parallelisable hierarchical agglomerative clustering (AHC) strategy,
called MAHC, on a manageable-sized dataset.

2. to compare the results of the MAHC with the classical AHC method.

3. to evaluate both the AHC and MAHC scenarios using both internal and external methods
[34] namely the L method [35] and the F-measure [36] respectively.

Our proposed method is a two stage iterative process. The first stage divides the complete
dataset into P subsets and applies AHC to each subset. These P clustering operations can occur
sequentially or concurrently in parallel. Fig 2 illustrates the first stage.

The value of P is heuristically determined by assessing the available memory of the compu-
tational resources based on the size of the dataset. In the first stage, each subset of data is pro-
cessed as follows:

1. AHC is applied to subset p and generates a set, C,, of K, clusters where p=1, 2, ..., Pand
Cp = {C])la Cp27 s Cpr}‘

2. An average point, X p» is determined for each cluster, where Xp =1 Xpl, X,,z, X K, }.

The average, X > can be a mean, median, mode, medoid or any other measure of locality
which represents all objects in a cluster. From the first stage architecture we can approximate
the computational complexity as P x O(N*/P). This is an improvement by a factor P over the
standard AHC algorithm whose complexity is O(N?).

The second stage clusters the averages. At the beginning of the second stage, the total num-
ber of average objects that must be clustered is S = K; + K, + . .. + Kp. We denote the set of all
data in the second stage as X = {X, X, ..., X }. We then apply AHC to X’ and determine K
clusters of the averages. The purpose of this step is to merge similar clusters resulting from the
first stage. Since the data were divided randomly into subsets at the top of Fig 2, the P separate
clustering processes performed in parallel may result in some clusters that are similar.
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Fig 2. The first stage of MAHC algorithm.
doi:10.1371/journal.pone.0141756.9002

All data elements from the first stage are mapped to their corresponding averages, to obtain

the final object clusters, C;, C,, . . ., Cx. The second stage process is illustrated in Fig 3.

The final step in our MAHC algorithm is the regeneration of the P subsets at the top of Fig
2, thereby rendering the MAHC algorithm iterative. This is done by setting P = K and mapping

the data to each of the new P subsets according to the clusters C;, C,, . . ., Cx obtained after the
first iteration of stages 1 and 2. The motivation for this iteration is that, by grouping similar
clusters in stage 2 and using those to redefine the subsets from which stage 1 proceeds, each

G 205 Ot

Fig 3. The second stage of MAHC algorithm.
doi:10.1371/journal.pone.0141756.9003

= =
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Fig 4. The complete MAHC algorithm.
doi:10.1371/journal.pone.0141756.9004

independent clustering operation constituting stage 1 will process data that are more self-simi-

lar and that are different from the data processed by the other P clustering operations. If this
succeeds, the division into independent clustering operations in stage 1 becomes an increas-
ingly appropriate strategy. During the last iteration of MAHC, stage 2 produces the final K
clusters. The complete process is shown in Fig 4.

The parameters of the proposed MAHC algorithm are:

1. The number of subsets, P

2. The number of clusters each subset is divided into during stage 1, K;

3. The final number of clusters, K

4. The number of iterations of the MAHC algorithm.

The effect of these parameters will be investigated experimentally in the following sections.

In particular, it will be shown that the number of clusters K can be estimated automatically.

Acoustic Segment Clustering

Acoustic segments as data items

Acoustic segments are temporally bounded intervals of speech data that correspond to poten-

tially meaningful sound classes, such as phonemes or sequences thereof [37]. They are vector

time series of variable length representing a short period of the speech audio signal. We aim to
partition N such acoustic segments (objects) into K clusters. We will assume that each segment
is represented by a sequence of feature vectors, as commonly used to represent speech for auto-

matic speech recognition. Let X; denote the i-th acoustic segment such that X; = {x;, X5, X3, . . .,

X,}and x, € R? where t = 1,2, .. ., n;. The pattern matrix of the i-th acoustic segment is there-
fore of size d x n;. The collection of all segments constitutes the acoustic database X’ as depicted

in Eq 1.

PLOS ONE | DOI:10.1371/journal.pone.0141756 October 30, 2015
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In this case the similarity function, D(X;, X;) computes the distance between two pattern
matrices X; and X with equal number of rows (d) but generally different number of columns
(n; and n;). When comparing this formulation of the distance with that of Euclidean data
objects, it becomes apparent why AHC is a natural choice of clustering algorithm for the case
of speech segments. Since the segments, X, are matrices of variable dimension, they are not
easily represented in a fixed-dimensional space. Hence it is difficult to visualise these data, and
algorithms requiring the computation of centroids, like k-means, are hard to apply. However,
AHC requires only that the distances between data points are known. To measure these dis-
tances, we use the dynamic time warping (DTW) algorithm, which is a popular similarity mea-
sure used in speech processing [38, 39]. DTW recursively determines the best alignment
between the two segments by minimizing a cummulative cost that is commonly based on the
Euclidean distances between time aligned time-series vectors. Other distances such as Manhat-
tan and Mahalanobis can also be employed. Based on preliminary experimentation, we selected
Manbhattan distance as a similarity measure between feature vectors. Eq 3 shows how the DTW
distance between two segments X; and X; is computed.

oy, w) = X;(), Xj(@) || + min{o(f, © = 1),6() — 1,0 —1),6(y —1,w)}  (3)

In Eq 3, 6(y, w) is the minimum accumulated distance along any path from (1, 1) to (v, w), y =
L..,nyw=1,..,n and i, j are segment indices. The score of the best alignment &(y, w)
serves as a similarity measure between X; and X;.

Clustering acoustic segments with MAHC

Acoustic segments are divided into P subsets and a similarity matrix for each subset is calcu-
lated using the DTW algorithm. The first stage of MAHC is applied to the subsets as described
previously. The average depicted in Fig 2 in this case is a medoid. A medoid is the cluster mem-
ber, X »» which is, on average, closest to all other members, and is computed as follows:

K
X, = arg min Z:D(XP7 X,) (4)
PPFL =1

We use medoids as a representation of each cluster because we have no information on the
shape of the cluster and we cannot determine cluster centroids. We consider the DTW distance
between the medoids of two clusters to be a measure of inter-cluster similarity that can be used
as input similarity matrix for AHC in the second stage. Finally all acoustic segments are
mapped to their corresponding medoids to obtain the final set of clusters.

Evaluation Mechanisms

We will evaluate the performance of the MAHC approach by applying it to the TIMIT speech
corpus, for which a phonetically labelled segmentation is provided. Since this ground truth is
available, external evaluation metrics [40] can be used to evaluate the quality of the clusters.
External metrics use the prior knowledge about the data; usually in the form of labels, to asses
the quality of the experimentally determined clusterings [27]. However, since our aim is to
extend the work to speech datasets for which such labels are not available, we will also charac-
terise performance using internal metrics [34]. These are based only on the information intrin-
sic to clustered data and do not require ground truth labels.

We first consider the cardinality K; of each sub-process at the first stage of the MAHC algo-
rithm shown in Fig 2. We chose the F-measure [36] for external and the L Method [35] for
internal validation respectively. The F-measure is widely used for the evaluation of clustering
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and classification systems [41]. The L method was selected for internal validation because it
yielded reasonable results in our experimental evaluation, it is computationally cheap, and it
has received considerable attention by the research community [42].

The F-measure scores provide a benchmark against which the L method can be measured
because we have not yet been in a position to test the clusters found by the MAHC algorithm
in a speech recognition system.

The F-Measure

The F-measure assumes that each acoustic segment, X;, has a known label (commonly termed
the class) representing the ground truth [3, 36, 41]. We will use this measure to quantify the
quality of a division of the acoustic segments in the dataset into one of K clusters. The F-Mea-
sure is based on the measures recall and precision for each cluster with respect to each class in
the dataset.

Assume that for class  and cluster k we know 1y, the number of objects of class / that are in
cluster k; and ny is the total number of objects in cluster k and #; is the number of objects in
class I. The precision and recall are given by Eqs 5 and 6 respectively.

Precision(k,l) = Z—i’ (5)
Recall(k, 1) =
ecall(k, 1) = " (6)

Precision indicates the degree to which a cluster is dominated by a particular class, while
recall indicates the degree to which a particular class is concentrated in a specific cluster. The
F-measure, F, is calculated as follows:

2 X Recall(k, 1) x Precision(k, 1)

F =
(k) Recall(k,1) + Precision(k, I)

(7)

wherek=1,2,...,Kand/=1,2,..., L. An F-measure of unity indicates that each class occurs
exclusively in exactly one cluster; a perfect clustering result.

In preliminary experiments, we used the F-measure to determine an appropriate cutoff for
each dendrogram during the first stage. We however do not use the F-measure for experiments
involving large data because its calculation is computationally demanding. This is due to the
need to compute the F-measure for a large number of possible clusters for each dendrogram.
For example, if there are N = 100 acoustic segments, the F-measure must be computed for up
to 99 possible cutoff values which corresponds to the number of possible clusterings. For each
clustering the F-measure involves K x L iterations within which it searches inside each cluster
for objects of class, I. This exhibits O(N*) complexity and makes the F-measure slow as the
number of data points increases.

The L Method

Cluster similarity measures in a dendrogram such as the Ward method produce a knee-shaped
graph when plotted against the number of clusters as illustrated in Fig 5.

It has been hypothesised that the optimum number of clusters occurs at the knee of this plot
[34]. Hence the location of the knee can be used to estimate the optimal number of clusters
even when no ground truth is available. Fig 5 demonstrates one method by means of which the
location of the knee may be determined.
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doi:10.1371/journal.pone.0141756.9005

In our investigation we use the L method implementation proposed by Salvador and Chan
[35] which estimates the number of clusters at the knee region. This implementation separates
regions of the curve into two parts, namely Lc and Rc. These are left (Lc) and right (Rc)
sequences of data points partitioned at a point where x = ¢ and x represents a number along the
x-axis. Lc ranges from x = 2 to x = ¢. A point at x = 1 is normally ignored because one cluster is
not a useful result. Rc includes points withx=c+ 1, ..., b, wherec=3, ..., b — 2. To estimate
the optimal knee point, the root mean square error at ¢ (RMSE.) is used such that the partition
of Lc and Rc is at x = c. RMSE_ is calculated as shown in Eq 8:

c—1 b—c

X RMSE(Lc) + —— x RMSE(Rc) (8)

RMSE =31 b—1

where RMSE(Lc) is the root mean square error of the best-fit line on the left of the knee and
RMSE(Rc) the same to the right of the knee. The lines Lc and Rc shown in Fig 5 intersect where
the value of ¢ minimises the RMSE,.. The value of ¢ at that point is considered to be at the opti-
mal number of clusters. Since R can have a very long tail, some authors suggest that the data is
truncated [35].

Determining a threshold for the dendrogram

One way to determine the best cutoff for a dendrogram is to calculate the F-measure at all pos-
sible threshold values and then determine the number of clusters at the peak. Alternatively, the
number of clusters can be estimated by locating the knee of the similarity measure graph (L
Method). Both are shown in Fig 6, which is a result of a small experiment in which 754 acoustic
segments were clustered using the classical AHC method. The true number of classes in this
case is 29 and the F-measure peak occurs at 24 clusters.
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Fig 6. AHC results of a small experiment with 29 true clusters. The peak in the F-measure occurs at 24 clusters, while the knee of the L Method is found
at 22 clusters.

doi:10.1371/journal.pone.0141756.g006

This experiment demonstrates that the F-measure increases with the number of clusters,
reaches a peak, and then begins to decline as the number of clusters increases. This eventual
decline is due to the rise in single occupancy clusters. When applying the L method to the same
data, the knee was located at 22 clusters. We observe that both the F-measure and the L method
produce a comparable number of clusters.

Experiments, Results and Discussion
Data

All experiments used acoustic segments taken from the popular and well-established TIMIT
speech corpus [37, 43]. TIMIT contains a total of 6300 sentences recorded from 630 speakers.
Each speaker reads 10 sentences, the first 2 of which are identical across all speakers in the
database. To avoid bias, these two sentences have been excluded in all our experiments. The
TIMIT corpus is chosen because it includes time-aligned phonetic transcriptions meaning that
both phonetic labels and their start/end times are provided. We will consider triphones [37],
which are phones in specific left and right contexts, as our desired clusters. We used a maxi-
mum of 42 base phones in our experiments.

From the TIMIT data we have compiled 4 datasets, varying in size. Table 1 shows the num-
ber of segments (objects) in each dataset, as well as the true number of classes, the range of
class cardinality and the total number of feature vectors.

Small Set A and Small Set B differ in their class distribution as depicted in Fig 7. Small Set A
is more skewed compared to Small Set B. This means that in Small Set A, some classes have
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Table 1. Composition of experimental data. N indicates the total number of segments, L the total number of classes (unique number of triphones), R the fre-

quency of occurrence of each triphone, V the total number of feature vectors in R* and M = N(N — 1)/2 is the number of similarities which must be computed
for straightforward application of AHC.

Dataset Segments (N)

Classes (L) Range (R) Points (V) Entries (M)
Small Set A 17 611 280 50-373 274 677 0.16 x 10°
Small Set B 17 640 636 26-49 301 026 0.16 x 10°
Medium Set 54 787 1387 20-373 910 189 1.5 x 10°
Large Set 123 182 19 223 1-373 2193793 7.6 x 10°
doi:10.1371/journal.pone.0141756.t001

many more members than others. The class membership range is shown in Table 1. The
Medium Set and the Large Set are skewed in the same fashion as the Small Set A, since this is
the type of distribution one may expect in unconstrained speech.

During data preparation, each acoustic segment is represented as a series of 39 dimensional
feature vectors consisting of 12 Mel frequency cepstral coefficients (MFCCs), log frame energy,
and their first and second differentials. The MFCC’s were chosen on the basis of their well-
established popularity in high performance speech processing systems [12]. Feature vectors are

extracted from data frames that are 10ms in length, and consecutive frames overlap by 5ms
(50%). The MFCC’s were computed using a HTK [44].

AHC Baseline

Baseline results were obtained by applying classical AHC to the small and medium datasets
described in Table 1. In each case the dendrogram was cut so as to optimise the F-measure as
shown in Table 2. Subsequently the L method was applied to determine the dendrogram thresh-
olds, and these results are reflected in Table 3. Even when the number of clusters is obtained
using the L method, we can still apply the F-measure to asses the final result for comparison. In
the case of the large dataset, the excessive size of the similarity matrix did not allow the applica-
tion of classical AHC. For this case, results will only be shown for the MAHC method.

260 - | |
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Fig 7. Distribution of the number of segments per class for the two independent Set A and Set B.
doi:10.1371/journal.pone.0141756.9007

PLOS ONE | DOI:10.1371/journal.pone.0141756 October 30, 2015 13/24



el e
@ ) PLOS ‘ ONE Clustering Acoustic Segments Using MAHC

Table 2. Baseline results when the cutoff is determined via the F-measure.

Dataset Optimal no. of clusters AHC: F-measure PSC: F-measure
Small Set A 144 0.1104 0.1198
Small Set B 577 0.0662 0.0655
Medium Set 717 0.0476 0.0265

doi:10.1371/journal.pone.0141756.t002

Table 3. Baseline results when the cutoff is determined via the L method and the output is evaluated
with the F-measure.

Dataset Optimal no. of clusters AHC: F-measure PSC: F-measure
Small Set A 162 0.1074 0.1290
Small Set B 163 0.0529 0.0546
Medium Set 503 0.0456 0.0317

doi:10.1371/journal.pone.0141756.t003

Parallel spectral clustering benchmark

In order to benchmark our results, we have also applied parallel spectral clustering (PSC) as
proposed by Chen et al [18] to our datasets. This algorithm can also be applied in situations in
which only the similarities between objects are known. Furthermore, in contrast to other vari-
ants of spectral clustering, PSC can be applied to large datasets. PSC does however require the
number of clusters K to be specified. In benchmark comparisons we will therefore always
employ the number of clusters used in the corresponding MAHC experiment. We employ

t = 20 nearest neighbours for small and medium sets, and ¢ = 100 for the Large Set, as suggested
by the experiments in [18]. Additionally we also show how parallel spectral clustering (PSC)
performs at the baseline conditions in Tables 2 and 3. We observe that PSC delivers better per-
formance than classical AHC for Small Set A, while the two approaches exhibit similar perfor-
mances for Small Set B. AHC offers improved performance on the Medium Set.

Small datasets

Since the clustering experiments are computationally demanding, we begin experimentation
with the small sets (A and B). Subsequently we extend our investigation to the larger datasets.
The first experiments applied classical AHC, to the 17,611 segments of Small Set A and to the
17,640 segments of Small Set B. Subsequently, we split these datasets into 2, 4 and 6 subsets
and in each case performed 10 iterations of the MAHC algorithm. In each case the number of
clusters was chosen by maximising the F-measure both after stage 1 and stage 2. This number
of clusters was also used as input to parallel spectral clustering (PSC) to provide a benchmark.

The results are shown in Fig 8 for each successive iteration both in terms of F-measure and
the optimal number of clusters.

Fig 8(a) shows that, for Small Set A, the F-measure generally increases with each iteration,
and that it exceeds the performance achieved by the AHC baseline at the third iteration. Fig 8
(b) shows the number of clusters produced after each iteration of the MAHC algorithm. As
mentioned earlier, these clusters are obtained by optimising the F-measure both at stage 1 and
at stage 2. As a baseline, the number of clusters obtained when optimising the F-measure for
the classical AHC method is also shown (see Table 2). Fig 8(b) shows that the number of clus-
ters obtained by the MAHC algorithm is larger than that obtained by the AHC method, and
that it varies somewhat from iteration to iteration. The performance of PSC at K = 188 in terms
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Fig 8. Performance of MAHC and PSC for the small sets in terms of F-measure, using F-measure to determine thresholds in stage 1. (a) F-measure
for Small Set A (b) MAHC optimal number of clusters for Small Set A (c) F-measure for Small Set B (d) MAHC optimal number of clusters for Small Set B.

doi:10.1371/journal.pone.0141756.9008

of F-measure is also shown in Fig 8(a) and generally outperforms MAHC. Details on how the
value of K was chosen are discussed in later sections.

The same trends are observed for Small Set B in Fig 8(c) and 8(d). However, Fig 8(d) shows
that the number of clusters determined by the MAHC method fluctuates more widely. This
may be owing to the number of classes relative to the distribution of Small Set B data. Despite
this fluctuation, the quality of the clusters, in terms of F-measure, are consistently above the
baseline from the third iteration onwards. Furthermore, the performance of PSC with K = 990
in Fig 8(c) for Small Set B is surpassed by MAHC from the second iteration onwards.

The experiments shown in Fig 8 were repeated, this time using the L Method to determine
the threshold for the dendrogram in stage 1. Thresholds in stage 2 continued to be chosen by
optimising the F-measure. The results are presented in Fig 9.
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doi:10.1371/journal.pone.0141756.9009

From Fig 9(a) we observe that the MAHC surpasses the baseline AHC for Small Set A at the
fourth iteration except in the case of 6 subsets. The F-measure achieved by PSC for Small Set A
at K =208 in Fig 9(a) remains the best overall. Fig 9(c) mirrors the performance trends
observed in Fig 8(c) for Small Set B in which the MAHC performance is equal to or better than
the AHC baseline from the second or third iteration. Furthermore, MAHC improves the per-
formance of PSC after the first iteration. Fig 9(b) and 9(d) also indicate a much more stable
number of clusters than we have observed in Fig 8. These results continue to show that the
number of clusters generally increases with the number of subsets. This may again be due to
the the distribution of the data. In general we observe from both Figs 8 and 9 that, with small
datasets, the MAHC matches or even surpasses the performance of AHC after 3 or 4 iterations.
As shown in Fig 8, MAHC is able to improve on PSC in one experiment (Small Set B), but not
in the other (Small Set A).
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Medium dataset

The Medium Set, which is approximately three times larger than the small sets, is still small
enough for classical AHC to be applied. We used this set to verify and support our findings
with the small datasets. The L method was used to determine the dendrogram cutoff in stage 1
for computational reasons. However we continued to use the F-measure in stage 2 of the
MAHC as way of objectively evaluating cluster quality. We also show the performance of paral-
lel spectral clustering (PSC) for the Medium Set at the same value of K. A set of experiments,
similar to those reported in Fig 9, were performed for the medium set and the results are dis-
played in Fig 10.

These results show that the performance of the MAHC method closely approximates that of
the AHC baseline from the third iteration onwards. This is consistent with our findings for the
two smaller sets. At the third iteration, MAHC produces 660 clusters, and we therefore use this
value for the PSC benchmark. For the Medium Set, we observe in Fig 10(a) that MAHC
improves on the performance of PSC in terms of the F-measure.

Fig 10(b) shows that, as observed with Small Set A and Small Set B, the number of clusters
(NC) produced by the MAHC exceeds that produced by classical AHC. The latter finds
K =503 while the former suggests between 660 and 786 clusters after 2 iterations. However, in
contrast to the smaller sets, the number of clusters determined by MAHC is fairly stable. This
may be due to the higher cluster occupancy which is in turn due to the larger volume of data.

Another important observation made after the experiments with the small and medium sets
is that the number of clusters produced by stage 1 coincides closely with the number of clusters
in stage 2 after a second iteration. Using the notation introduced in Fig 2, we can express this
observation as:

ZK,. ~ K 9)

where K is the number of clusters (NC) produced by MAHC. Part of this observation is sub-
stantiated in Tables 4, 5 and 6.

Here we have verified that the relation in Eq 9 holds for all the results shown in Figs 8, 9 and
10. Although this observation should be thoroughly investigated in further experiments, it
allows the number of clusters at each level of the MAHC algorithm to be chosen in an unsuper-
vised manner; using the L Method in stage 1 and Eq 9 in stage 2. Our benchmark PSC results
are consequently obtained using this observation to determine the required value of K.

Large dataset

From Table 1, we see that the application of classical AHC to the large dataset would require
the computation and storage of 7.6 x 10° similarities. This is infeasible both from a storage and
computational point of view on most current computing hardware. We apply the MAHC algo-
rithm to this dataset, splitting it into 10 subsets. As before, the L method is used to determine
the number of clusters in stage 1, while the number of clusters in stage 2 is chosen using Eq 9.
We use the F-measure evaluation to visualise this final result. PSC is again provided as a bench-
mark with K = 1427.

Since a comparison of the results in Table 7 with the AHC baseline is not feasible, we make
use of a confusion matrix to visualise the similarity of the clustered acoustic segments. Fig 11
shows how often the derived clusters coincide with the known phone labels.

To plot this figure, we considered just the centre phone of the triphone, that is, the triphone
without its context. Clusters were associated with a phone when that phone was the dominant
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doi:10.1371/journal.pone.

0141756.9010
member of the cluster. Four phones ‘em’, ‘eng’, ‘h’and ‘uh’ were not dominant in any of the 1423
clusters. For this reason the matrix has only 38 dimensions. We further show in the following sec-
tion that PSC performance on Large Set at K = 1427 or at the third iteration is 0.01039.

Fig 11 clearly shows a dominant diagonal, indicating good correspondence between the
clusters and the known phonetic labels. This is an indication that the clustering successfully
produced groups of audio segments that show a high correspondence with the ground truth
phonetic labels. Where phones are confused, they are usually between similar sounds such as
‘n’and ng’ or between ‘m’and n’.
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Table 4. Relation between experimental number of clusters (K) and the sum of NC’s from each subset of Small Set A using the L method.

Number of clusters (NC) per subset in each iteration

Subset(i) Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
1 46 81 67 85 113
2 47 82 62 57 48
3 54 40 59 54 30
4 44 14 32 25 40
5 53 49 71 34 26
6 50 56 25 36 44
2(Ki) 294 322 316 291 301
K 87 144 316 291 301

doi:10.1371/journal.pone.0141756.1004

Table 5. Relation between experimental number of clusters (K) and the sum of NC’s from each subset of Small Set B using the L method.

Number of clusters (NC) per subset in each iteration

Subset(i) Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
1 44 45 91 55 61
2 51 37 36 35 52
3 51 67 27 67 36
4 39 75 49 57 69
5 48 50 48 58 44
6 41 33 54 30 29
>(K;) 274 305 305 302 291
K 271 305 305 302 291

doi:10.1371/journal.pone.0141756.t005

Table 6. Relation between experimental number of clusters (K) and the sum of NC’s from each subset of Medium Set using the L method.

Number of clusters (NC) per subset per iteration

Subset(i) Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
1 110 189 87 171 134
2 104 144 165 142 137
3 96 121 131 137 84
4 104 48 98 88 131
5 100 99 105 79 83
6 108 71 74 79 97
>(K;) 622 672 660 696 666
K 200 672 660 696 666

doi:10.1371/journal.pone.0141756.t006

Table 7. Performance of the proposed method on the Large Set.

No. of iterations F-measure No. of clusters
1 0.007113 1264
2 0.01508 1450
3 0.01663 1427
4 0.01713 1395
5 0.01822 1423

doi:10.1371/journal.pone.0141756.t007
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Fig 11. Confusion matrix of base phones of the large TIMIT dataset.

doi:10.1371/journal.pone.0141756.9011

Comparison with parallel spectral clustering

To evaluate the success of MAHC, we provide corresponding benchmark performance by the
parallel spectral clustering method reported by Chen et al [18]. Since spectral clustering
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Table 8. F-Measure performances of the L method based MAHC and the PSC algorithm.

Dataset

Small Set A

Small Set B

Medium Set
Large Set

doi:10.1371/journal.pone.0141756.t008

No. of Clusters MAHC: F-Measure

208 0.1109

305 0.06344
660 0.04761
1427 0.01663

PSC: F-Measure

0.1210

0.05504
0.02966
0.01039

commonly requires the number of clusters K to be known in advance, we use the values of K

determined by the MAHC algorithm.

Since we have found that MAHC approximates classical AHC performance after the third
iteration, we benchmark the PSC approach in Table 8 using values of K from the third

iteration.

The use of the L method together with the empirically observed relationship expressed by
Eq 9 allows a completely unsupervised application of MAHC for large datasets. In Table 8 we
therefore use values of K which correspond to the number of clusters after the third iteration
when using the L method in stage 1 and Eq 9 in stage 2. From these benchmark results we
observe that, for Small Set A, PSC delivers better performance than MAHC. For Small Set B,
the Medium Set and the Large Set, the MAHC reflects better performance. It should be borne
in mind that, for a particular dataset, spectral clustering requires the correct user-determined

value of K and the optimal empirically obtained value of ¢.
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Fig 12. Influence of the number of subsets used by MAHC on the execution time. Classical AHC is included as a baseline.

doi:10.1371/journal.pone.0141756.9012
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Computational efficiency

This paper focuses on the reduction of the storage complexity of AHC in order to make its
application to large datasets feasible, and on the performance implications of the proposed
approximations. However, we have performed a small test using Small Set B to give an indica-
tion of the impact of the proposed method on execution time. We measured the execution time
of the classical AHC process, which entails the generation of a full triangular similarity matrix,
the Ward linkage computation, the creation of a dendrogram data structure and the L method
computation for determining the cutoff (or the number of clusters). We also measured the exe-
cution time of one iteration of the MAHC algorithm, both when executed on a single processor
and when executed concurrently on P processors, where P is the number of subsets used in
stage 1 of the algorithm. In the former case, each of the P clustering steps constituting stage 1
of the algorithm are executed sequentially. The results are shown in Fig 12.

From Fig 12 we observe that, the execution time of each iteration of the MAHC algorithm is
less than that of the classical AHC even when run on a single processor. By taking advantage of
parallel computation, the execution time is further reduced to just 2 hours when data is split
into 6 subsets. We observe the indication that the MAHC computational complexity at P x O
(N?/P?) practically leads to a reduction in the execution time when compared with the classical
AHC algorithm.

Conclusions

We have proposed a multi-level agglomerative hierarchical clustering (MAHC) algorithm that
is better suited to large datasets than classical agglomerative hierarchical clustering (AHC).
The algorithm is based on a split of the dataset into a number of subsets that are clustered sepa-
rately using AHC. Subsequently, the results of these separate clustering operations are merged
and then used to obtain a new split of the dataset into independent subsets. Experiments show
that the iteration of these steps leads to a convergence in the clusters and clustering perfor-
mance. When using speech segments from the TIMIT corpus, experiments show that the per-
formance of MAHC matches and often surpasses that of AHC. Furthermore MAHC was also
demonstrated to offer some improvement on parallel spectral clustering under matching
experimental conditions, and that this improvement was greatest for the largest dataset. We
therefore conclude that MAHC is a promising candidate when clustering large datasets.
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