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Background. Gestational diabetes mellitus (GDM) is the most prevalent metabolic disease during pregnancy, but the diagnosis is
controversial and lagging partly due to the lack of useful biomarkers. CpG methylation is involved in the development of GDM.
However, the specific CpG methylation sites serving as diagnostic biomarkers of GDM remain unclear. Here, we aimed to
explore CpG signatures and establish the predicting model for the GDM diagnosis. Methods. DNA methylation data of
GSE88929 and GSE102177 were obtained from the GEO database, followed by the epigenome-wide association study (EWAS).
GO and KEGG pathway analyses were performed by using the clusterProfiler package of R. The PPI network was constructed in
the STRING database and Cytoscape software. The SVM model was established, in which the β-values of selected CpG sites
were the predictor variable and the occurrence of GDM was the outcome variable. Results. We identified 62 significant CpG
methylation sites in the GDM samples compared with the control samples. GO and KEGG analyses based on the 62 CpG sites
demonstrated that several essential cellular processes and signaling pathways were enriched in the system. A total of 12 hub
genes related to the identified CpG sites were found in the PPI network. The SVM model based on the selected CpGs within the
promoter region, including cg00922748, cg05216211, cg05376185, cg06617468, cg17097119, and cg22385669, was established,
and the AUC values of the training set and testing set in the model were 0.8138 and 0.7576. The AUC value of the independent
validation set of GSE102177 was 0.6667. Conclusion. We identified potential diagnostic CpG signatures by EWAS integrated
with the SVM model. The SVM model based on the identified 6 CpG sites reliably predicted the GDM occurrence, contributing
to the diagnosis of GDM. Our finding provides new insights into the cross-application of EWAS and machine learning in GDM
investigation.

1. Introduction

Diabetes mellitus is a heterogeneous disorder of metabolic
diseases described by hyperglycemia occurring from defects
in insulin resistance or insulin secretion [1]. Gestational dia-
betes mellitus (GDM) is one of the most prevalent pregnancy
complications, with incidence estimates varying from 2% to
25% depending on the diagnostic criteria used and the popu-
lation measured [2, 3]. In addition to the adverse pregnancy
and delivery outcomes correlated with GDM, which can
include shoulder dystocia, macrosomia, and preeclampsia

[4], women diagnosed with GDM are four times more likely
to have children who acquire metabolic disease later in life
and twice as likely to own children who become obese or
overweight [5]. Hence, there is a definite clinical need to bet-
ter detect and predict GDM early in pregnancy, preventing
further harm to the mother and child [6]. Although the pro-
gression of GDM has been investigated for decades, the prac-
tical and well-designed diagnostic models for the clinical
prediction of GDM are extremely limited [6]. Therefore, it
is essential to find effective biomarkers for improving the
diagnosis and alleviating the adverse pregnancy outcomes
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of GDM [7, 8]. However, the advancement of this research
field is still poor.

Epigenetic modification displays fundamental function
in multiple processes, frommolecular mechanisms to clinical
application and even in biomedical transformation, and
epigenetic marks are required for the pathogenesis, preven-
tion, and diagnosis of many diseases [9, 10]. Epigenetic bio-
markers provide potential signatures for the diagnosis,
prognosis, and treatment of GDM as well [11, 12]. DNA
methylation, mostly the CpG methylation, is the most widely
studied epigenetic modification in cellular processes, provid-
ing informative alterations for the regulation of gene expres-
sion in the physiology and pathology status and serving as
the potential biomarkers [13–15]. Previous studies also pro-
vide some evidence that the CpG methylation participates
in the development of GDM. It has been reported that
GDM is associated with genome-wide CpG methylation var-
iation in the placenta and cord blood of exposed offspring
[16, 17]. The CpG methylation profiles are also performed
in adipose tissues of pregnancies with GDM [18, 19]. Besides,
a genome-wide DNA methylation profile in infants born
from GDM pregnancy indicates that GDM has epigenetic
effects on cardiovascular disease, hypertension, diabetes,
and obesity of later fetal life [20]. Thus, the exploration of
CpG methylation sites may benefit the early diagnosis of
GDM. However, the particular CpG sites as the reliable diag-
nosis biomarkers of GDM remain unclear. Epigenome-wide
association study (EWAS) is a practical tool to identify the
epigenetic marks associated with disease [21], and some
studies have presented the role of DNA methylation in
GDM development by using EWAS [22, 23]. Nevertheless,
the application of EWAS in investigating the diagnostic sig-
natures of GDM is still limited.

Machine learning is a category of information science
that trains the computer to execute tasks by recognizing
patterns in massive datasets and using them to determine
rules or algorithms that optimize task achievement [24]. It
has been reported that machine learning is beneficial to
the discovery of predictive biomarkers and diagnosis of
GDM [7, 25–27]. Support vector machine (SVM) is a prac-
tical machine learning model and has been confirmed to be
useful classifiers in all kinds of fields, including face recog-
nition, handwritten digit recognition, text classification, and
bioinformatics [28]. Previous studies showed that SVM is
widely used in the prognosis and diagnosis of multiple
diseases such as cancer and diabetes mellitus [29–31].
Moreover, it has been revealed that SVM is applied in
the investigation of diagnostic markers in GDM patients
based on transcriptome-wide gene expression [32]. How-
ever, the practices of SVM models in the identification of
CpGmethylation biomarkers in the diagnosis of GDM remain
unreported.

In this study, we were interested in integrating EWAS
and machine learning to identify the CpG sites related to
GDM. We discovered several specific CpG methylation sites
that may serve as effective biomarkers of GDM and estab-
lished the reliable SVM model based on the identified CpG
sites for predicting the occurrence of GDM, benefiting the
diagnosis of GDM.

2. Materials and Methods

2.1. Data Collection. Two DNA methylation datasets
GSE88929 and GSE102177 with clinical information were
downloaded from the GEO database (http://www.ncbi.nlm
.nih.gov/geo/), both of which were measured by the Illumina
HumanMethylation450 BeadChip assays. The GSE88929
dataset contained 68 umbilical cord blood samples from the
newborns of mothers with GDM and 64 controls without
GDM [12]. The GSE102177 dataset consisted of the peripheral
blood samples from 18 fullsibling pairs that were exposed to
different conditions of intrauterine hyperglycemia (GDM
pregnancy or non-GDM pregnancy). Therefore, there were
18 samples with exposure to maternal GDM and 18 controls
without exposure to GDM in the GSE102177 dataset [23].

2.2. Methylation Data Processing. The methylation β-values
of the normalized CpG sites in GSE88929 and GSE102177
were downloaded. Two sets of DNA methylation data,
respectively, containing 132 and 36 samples were used in this
study, and the CpG sites with missing values or in the sex
chromosomes were removed [33]. Then, an R package minfi
was used to assess the quality of the CpG sites, and the CpG
sites with a detection P value > 0.01 were removed from the
analysis [34].

2.3. Epigenome-Wide Association Study (EWAS). The
epigenome-wide association study was carried out to investi-
gate the relationship of methylation levels of CpGs and the
GDM by using a CpGassoc R package [35, 36]. Briefly, The
CpGassoc function established fixed or mixed-effects models
between the GDM and methylation of individual CpG sites
across the genome using a matrix or data frame of β-values
as input. The significance was assessed by chi-squared tests,
and the P values were calculated. The Manhattan plots were
constructed to show the epigenome-wide association analysis
of GDM and CpG methylation and to identify the significant
CpG sites in GSE88929 with the threshold of P < 0:001.

2.4. GO and KEGG Analyses. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analyses were performed by using the clusterProfiler
package of R [37]. The GO included molecular function
(MF), biological process (BP), and cellular component [5].
P < 0:05 was regarded as statistically significant.

2.5. PPI Analysis. The protein-protein interaction (PPI)
analysis was constructed in the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) database (https://
string-db.org/cgi/input.pl) with the threshold of confidence
score ≥ 0:4 [38]. The visualization of the PPI network was
presented by Cytoscape software [39].

2.6. SVM Models.Machine learning was performed based on
the SVM model by using the e107 R package. We randomly
separated the samples from GSE88929 into the training set
and testing set, containing 66 samples, respectively. The sam-
ples from GSE102177 were used as the independent valida-
tion set. We established the SVM model using the β-values
of the selected CpG sites from EWAS to assess whether the
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samples were GDM, in which the β-values of CpG sites
served as the predictor variable and the occurrence of
GDM served as the outcome variable. The receiver operat-
ing characteristic curve was generated to evaluate the sensi-
tivity and specificity of the models, and the area under the
curve (AUC) was calculated to assess the accuracy of the
models [40–43].

3. Results

3.1. Identification of Specific GDM-Associated CpG
Methylation Sites. It has been identified that epigenetic regu-
lation, such as DNA methylation or CpG methylation, is
closely relative to gestational diabetes mellitus [21, 44]. How-
ever, the specific CpG sites with potential to become the
biomarkers of the patient with GDM remain elusive.
Epigenome-wide association study (EWAS) serves as a prac-
tical tool to study the function of DNA methylation in phys-
iological and pathological processes such as GDM [5, 45]. In
this study, DNA methylation microarray data were obtained
from the GEO database, in which GSE88929 contained 68
GDM fetal cord blood samples and 64 matched normal sam-
ples. Therefore, we tried to identify the CpG sites related to
GDM by EWAS in these samples. Remarkably, EWAS anal-
ysis identified that the methylation of 89 high-quality CpG
sites (P < 0:001) was significantly changed in the GDM
samples compared with the control samples after DNA meth-
ylation processing (Figure 1(a)), in which 62 CpG sites con-
tained the gene annotation (Table S1), implying that these
CpG sites may be potentially related to the development of
gestational diabetes mellitus. Genomic distribution analysis
further revealed that 41 among 62 CpG sites were located in
the body region, and 6 among 62 CpG sites were distributed
in the promoter region (TSS1500 and TSS200), accounting
for 66.13% and 9.69%, respectively (Figures 1(b) and 1(c)).
And other identified CpG sites were located in the exon, 3′
untranslated (3′ UTR), and 5′ UTR (Figures 1(b) and 1(c)).

3.2. GO and KEGG Analyses. For primary comprehensions of
the CpG methylation-related genes, Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were performed by using the clusterProfiler
package of R. A total of 77 significant GO terms and 31
KEGG pathways were revealed based on the 62 identified
CpG sites (Table S2), in which the top 20 remarkable GO
terms and KEGG pathways were demonstrated (Figures 2(a)
and 2(b)). GO analysis displayed several essential biological
processes, such as sodium:potassium−exchanging ATPase
complex and Cul4A−RING E3 ubiquitin ligase complex
(Figure 2(a)). Besides, KEGG analysis revealed that multiple
crucial signaling pathways, containing Type I diabetes
mellitus, Ras signaling pathway, p53 signaling pathway,
and autophagy, were enriched (Figure 2(b)).

3.3. PPI Network Construction. To further explore the essen-
tial CpG methylation-related genes correlated with GDM, we
constructed a protein-protein interaction (PPI) network
based on the 60 identified CpG sites-related genes in the
STRING online database (https://string-db.org/cgi/input.pl)

and Cytoscape software. Significantly, we observed 12 critical
genes, including C7orf50, RASA3, PPFIA1, CASKIN1,
CUL4A, POLE, MCM5, TUBGCP3, JAKMIP1, TYK2,
C17orf70, and EME2, in the PPI network based on the
threshold of confidence score ≥ 0:4 (Fig S1), indicating that
these genes may be closely associated with the progression
of GDM.

3.4. SVM Model Establishment. It has been recognized that
the DNA methylation within the promoter region plays
a crucial role in the modulation of gene expression
[46, 47]. Our EWAS analysis identified that 6 CpG sites,
including cg00922748, cg05216211, cg05376185, cg06617468,
cg17097119, and cg22385669, were located in the promoter
region. Hence, we tried to establish an SVM diagnostic
model by using the β-values of the identified 6 CpG sites.
Firstly, our data showed that there was no strong collinear-
ity of β-values of the 6 CpG sites (Figure 3(a)), providing
the rationality for SVM-based machine learning by using
the β-values of these 6 CpG sites. We randomly separated
the samples from GSE88929 into the training set and test-
ing set, containing 66 samples, respectively (Table S3).
Accordingly, we constructed an SVM model, in which the
predictor variable was the β-values of these 6 CpG sites in
GSE88929, and the outcome variable was the occurrences of
GDM. Surprisingly, the area under the ROC curve (AUC)
analysis showed the AUC values of the training set and
testing set in the model were 0.8138 and 0.7576, respectively
(Figure 3(b)). Moreover, we obtained DNA methylation
microarray data of 18 pairs of peripheral blood of siblings
from GDM or no GDM pregnancies in GSE102177 of the
GEO database, which was used as an independent validation
set for the SVM model. Importantly, the AUC value of this
independent validation set was 0.6667 (Figure 3(b)),
suggesting that this SVM model is reliable and accurate for
predicting the occurrences of GDM and may benefit the
diagnosis of GDM.

4. Discussion

Gestational diabetes mellitus (GDM) is the most common
metabolic disease during pregnancy [48]. The prevalence of
GDM is quickly rising in the context of the global obesity epi-
demic [48, 49]. GDM is described as carbohydrate intoler-
ance of variable severity with onset or first detection during
pregnancy [50], encompassing abnormal glucose tolerance
and diabetes mellitus, which was undiagnosed prior to or
began concomitantly during pregnancy [51]. Besides, epige-
netic modification plays a critical role in multiple fundamen-
tal cellular processes [52], in which epigenetic alterations are
involved in the early stage of metabolic diseases including
GDM [53]. As a well-recognized epigenetic marker, some
clues of the essential correlation of CpG methylation with
GDM were presented in some studies. It has been found that
DNA methylation profiles in the placenta display that aber-
rant patterns of CpG methylation in GDM may be involved
in the progression of GDM [54]. In addition, early preg-
nancy peripheral blood DNA methylation is different in
repeat pregnancies with the change in GDM status [55].
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Figure 1: Identification of specific GDM-associated CpG methylation sites. (a) The Manhattan plot showed the association of gestational
diabetes mellitus with CpG methylation in the epigenome-wide association studies of GSE88929. The x-axis was the location of each site
across the genome. The y-axis was the –log10 of P value. The blue line indicated the significance threshold of P < 0:001. (b) The numbers
among 62 identified CpG sites in the genomic region were presented in the bar diagram. (c) The distribution percentage of 62 identified
CpG sites in the genomic region was demonstrated in the pie chart.
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Deregulation of CpG methylation in adipose tissues and
blood cells is correlated with gestational diabetes and neo-
natal outcome [56]. A study also provides pieces of evi-
dence that placental global DNA hypermethylation is
associated with GDM [57]. In this study, we identified 62
significant CpG methylation sites with the gene annotation
in the GDM samples compared with the control samples
from the GSE88929 of the GEO database by using the EWAS

analysis, in which these CpG sites were distributed within the
body region, promoter region, exon, 3′ UTR, and 5′ UTR.
These data suggest that the identified CpG sites may be poten-
tially related to the result of GDM, providing new evidence of
the correlation of CpG methylation with GDM.

The etiology of GDM is complicated, with genetic and
environmental factors involved in mechanistic and epidemio-
logical studies [48]. GDM is regularly the result of β-cell
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Figure 2: GO and KEGG analyses. (a, b) The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were
performed by using the clusterProfiler package of R. The top 20 significant cellular processes and signaling pathways were demonstrated by
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dysfunction in a setting of chronic insulin resistance during
pregnancy, and β-cell impairment and tissue insulin resis-
tance represent critical components of the pathophysiology
of GDM [58]. There are multiple contributors involved in
the development of GDM. ATPase-associated protein partic-
ipates in the progression of GDM [59]. Ras-related protein
Rap1A is decreased in the GDM samples and influences insu-
lin resistance [60]. Autophagy is enhanced in GDM patients
and displays a substantial function in GDM [61]. The
ROCK1/p53/NOXA axis modulates the apoptosis disorder
in response to GDM [62]. Moreover, the diagnosis of GDM
is critical for the early treatment of GDM to reduce the risk
of adverse events [63–66]. Several biomarkers of GDM are
identified, including itaconic acid, microRNAs, inflamma-
tory markers, and PD-1 [67–70]. The HbA1c showed high
sensitivity with relatively low specificity for the diagnosis of
GDM in pregnant women [71, 72]. Furthermore, emerging
evidence revealed the use of DNAmethylation as biomarkers
that could benefit the early diagnosis of GDM, improving the
management of GDM and enhancing health outcomes [66].
Our GO and KEGG analyses based on the 62 CpG sites dem-
onstrated that several important cellular processes, such as
sodium:potassium−exchanging ATPase complex and Cul4A
−RING E3 ubiquitin ligase complex, and many essential sig-
naling pathways, including Type I diabetes mellitus, Ras sig-
naling pathway, p53 signaling pathways, and autophagy,
were identified in the system. It suggests that these cellular
processes and signaling may play crucial roles in the develop-
ment of GDM, enriching the potential mechanism of GDM
progression. Besides, we found 12 related genes, including
C7orf50, RASA3, PPFIA1, CASKIN1, CUL4A, POLE, MCM5,

TUBGCP3, JAKMIP1, TYK2, C17orf70, and EME2, in the
PPI network. It indicates that these genes may participate
in the GDM progression and may serve as promising bio-
markers for the GDM diagnosis. The specific effect of these
genes on GDM progression is needed to investigate further.

Machine learning has the potential to be extremely useful
in clinical prediction [73, 74], which is being developed to
benefit the diagnosis of clinical samples [75, 76]. As a widely
applied machine learning algorithm, SVM is reported to be
used in the investigation of GDM. It has been reported that
SVM is applied in the identification of diagnostic biomarkers
in patients with GDM based on transcriptome gene expres-
sion and methylation analysis [7]. The artificial immune rec-
ognition system and SVM model contribute to predicting
GDM [77]. In the present study, our EWAS analysis identi-
fied that 6 CpG sites, including cg00922748, cg05216211,
cg05376185, cg06617468, cg17097119, and cg22385669, were
located in the promoter region. Among the 6 CpG sites,
cg22385669 is located in the promoter region of AQR, which
encodes the spliceosomal intron binding protein [78]. Song
et al. revealed that AQR was related to type 2 diabetes melli-
tus and involved in the regulation of glucose metabolism-
related pathways [79]. AQR deletion could not only promote
the uptake of glucose but also restore the sensitivity of
insulin. cg00922748 is located on NRIP2, a member of
the aspartic protease family [80]. Although there is no evi-
dence on the association between NRIP2 and GDM, it was
shown that decreased NRIP1 expression was able to affect
the glucose metabolism [81]. However, the association of
the corresponding genes of the left 4 CpG sites with
GDM or glucose metabolism remains unclear, which still
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Figure 3: SVMmodel establishment. (a) Correlation matrix presented the collinearity of β-values of the 6 CpG sites, containing cg00922748,
cg05216211, cg05376185, cg06617468, cg17097119, and cg22385669, by using collinearity analysis in GSE88929. The color and area of the
circle represented the collinearity, Pearson’s correlation coefficient. (b) The receiver operating characteristic (ROC) curve showed the
performance of the SVM model based on the β-values of the 6 CpG sites, including cg00922748, cg05216211, cg05376185, cg06617468,
cg17097119, and cg22385669. The x-axis and the y-axis were specificity and sensitivity, respectively. Accuracy was evaluated by the area
under the curve (AUC). The red line was the training set (GSE88929, AUC = 0:8138), the blue line was the testing set (GSE88929, AUC =
0:7576), and the black line was the independent validation set (GSE102177, AUC = 0:6667).
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needs further investigation. We established an SVM diag-
nostic model, in which the predictor variable was the β-
values of the identified 6 CpG sites in GSE88929, and the
outcome variable was the occurrences of GDM. Surpris-
ingly, the AUC values of the training set and testing set
in the model were 0.8138 and 0.7576, respectively. More-
over, the AUC value of the independent validation set of
GSE102177 was 0.6667. Our data suggest that this SVM
model is reliable and accurate for the diagnosis of GDM.
Meanwhile, the models need to be further optimized for
improving the performance in GDM prediction.

5. Conclusion

In conclusion, this study identified potential diagnostic CpG
biomarkers in patients with gestational diabetes mellitus by
the combination of epigenome-wide association study and
SVM model. The SVM model based on the identified 6
CpG sites reliably predicted the occurrence of GDM in
patients, benefiting the diagnosis of GDM. Our finding pro-
vides new insights into the cross-application of EWAS and
machine learning to explore the correlation of DNA methyl-
ation with GDM development.
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