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N o G

Abstract: Glutamate carboxypeptidase-II (GCPII) is a zinc-dependent metalloenzyme implicated
in numerous neurological disorders. The pharmacophoric requirements of active-site GCPII in-
hibitors makes them highly charged, manifesting poor pharmacokinetic (PK) properties. Herein,
we describe the discovery and characterization of catechol-based inhibitors including L-DOPA, D-
DOPA, and caffeic acid, with sub-micromolar potencies. Of these, D-DOPA emerged as the most
promising compound, with good metabolic stability, and excellent PK properties. Orally administered
D-DOPA yielded high plasma exposures (AUCpjasma = 72.7 nmol-h/mL) and an absolute oral bioavail-
ability of 47.7%. Unfortunately, D-DOPA brain exposures were low with AUCy i, = 2.42 nmol/g
and AUCpyain /plasma ratio of 0.03. Given reports of isomeric inversion of D-DOPA to L-DOPA via
D-amino acid oxidase (DAAQO), we evaluated D-DOPA PK in combination with the DAAO in-
hibitor sodium benzoate and observed a >200% enhancement in both plasma and brain exposures
(AUCplasma = 185 nmol-h/mL; AUCy i, = 5.48 nmol-h/g). Further, we demonstrated GCPII target
engagement; orally administered D-DOPA with or without sodium benzoate caused significant
inhibition of GCPII activity. Lastly, mode of inhibition studies revealed D-DOPA to be a noncompeti-
tive, allosteric inhibitor of GCPIIL. To our knowledge, this is the first report of D-DOPA as a distinct
scaffold for GCPII inhibition, laying the groundwork for future optimization to obtain clinically
viable candidates.

Keywords: catechol; glutamate carboxypeptidase II; CNS; D-DOPA; pharmacokinetics; brain penetration

1. Introduction

Glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane
antigen (PSMA), is a type Il transmembrane metallopeptidase encoded by the folate hydro-
lase (FOLH1) gene in humans [1]. Since its discovery in 1987 [2], its expression in different
tissues such as the prostate, kidney [3], small intestine [4,5], and central and peripheral
nervous system [6—8] has been reported. In the brain, GCPII catalyzes the hydrolysis
of the neurotransmitter N-acetylaspartylglutamate (NAAG) to N-acetylaspartate (NAA)
and glutamate [9], and multiple independent research groups have demonstrated the
therapeutic benefit of inhibiting GCPII to treat neurological dysfunctions [6-8]. Similarly,
perturbation in GCPII expression has been reported in cancer neovasculature [10], tumor
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angiogenesis [11], as well as in inflammatory bowel disease [12-14]. GCPII inhibition is
currently being explored as a therapeutic modality for these diseases [6,15,16].

Structurally, nearly all GCPII active site inhibitors have similar pharmacophoric re-
quirements; the scaffold consists of a zinc-binding group, a linker, and a carboxylic acid-
containing moiety designed to interact with the S1’ glutamate recognition site of the
enzyme [9]. The most extensively explored zinc-binding groups in the design of GCPII
inhibitors include phosphonates/phosphinates, ureas, hydroxamates, and thiols [9]. Given
this, GCPII inhibitors designed to date are highly charged, with poor PK and limited brain
penetration [17-20].

One strategy to overcome these limitations is to design prodrugs to mask the hy-
drophilic sites and thus improve bioavailability [19-21]; for example, our group has re-
ported a five-fold improvement in rodent plasma levels of 4-carboxy-«-[3-(hydroxyamino)-
3-oxopropyl]-benzenepropanoic acid, a potent hydroxamate-based GCPII inhibitor, by
masking its hydrophilic hydroxamate site using para-acetoxybenzyl-esters [20]. Similarly,
oral administration of tetraODOL, and tris-POC prodrugs of the potent GCPII inhibitor
2-(phosphonomethyl)-pentanedioic acid (2-PMPA), yielded significantly improved plasma
exposure compared with equimolar 2-PMPA in dogs and mice [18,21]. Intranasal (IN) ad-
ministration of GCPII inhibitors has also been explored, specifically to improve their brain
penetration index [22,23]. Nedelcovych et al. reported a consolidation of the two strate-
gies by assessing the brain penetration of y-(4-acetoxy benzyl) ester prodrug of 2-PMPA
intranasally and showed that intranasal (IN) administration of the ester prodrug more than
doubled 2-PMPA concentrations in the cerebrospinal fluid [22]. Lastly, dendrimer-based de-
livery systems have been employed to facilitate brain-targeted delivery of GCPII inhibitors
to activated microglia [24,25]. Although these strategies have been somewhat promising in
improving plasma and brain exposures, the search has continued for oral brain penetrable
small-molecule inhibitors.

Catecholic moieties have been reported to bind to zinc metalloproteases by various
groups [26,27]; therefore, we evaluated known catechols as possible GCPII inhibitors.
Systematic characterization led to identification of D-DOPA as the most promising catechol-
based inhibitor. We herein report a detailed analysis of the oral bioavailability, brain
penetration and GCPII target engagement of orally administered D-DOPA and demonstrate
improvement when co-administered with the D-amino-oxidase inhibitor sodium benzoate.
Moreover, we characterize the allosteric mode of GCPII inhibition of D-DOPA. To our
knowledge, this is the first report of a catechol-based GCPII inhibitor; further evaluation
and optimization may aid in the discovery of a candidate for clinical translation.

2. Materials and Methods
2.1. Reagents and Chemicals

D-DOPA, L-DOPA, caffeic acid, L-DOPA-ring-d3, acetic anhydride, and compounds 3,
5, and 7-9 were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without
further purification. Compounds 4 and 6 were synthesized using the previously reported
methods [28,29]. LC-MS grade water, methanol, acetonitrile, and formic acid were obtained
from Thermo Fisher Scientific (Waltham, MA, USA).

2.2. GCPII Activity Assay

Inhibition potencies against GCPII (ICsy values) were determined using previously
described methods with minor modifications [30]. Briefly, reactions were carried out in the
presence of NAA-[*H]-G and human recombinant GCPII enzyme in Tris-HCI and CoCl, at
37 °C for 20 min. Reactions were stopped with ice-cold sodium phosphate buffer containing
1 mM EDTA. Aliquots were then transferred to 96-well spin columns containing AG1X8
ion-exchange resin and centrifuged. NAA-[3H]-G was bound to the resin and [*H]-G eluted
in the flow-through. Columns were washed with formate to ensure complete elution of
[*H]-G. The flow-through and the washes were collected, and aliquots were transferred
and dried to completion in a solid scintillator-coated 96-well plate. The radioactivity
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corresponding to [®H]-G was determined with a scintillation counter. Subsequently, ICs
curves were generated from CPM results.

2.3. Metabolic Stability Assays

The metabolic stability of caffeic acid and L- and D-DOPA was evaluated in mouse
plasma and brain homogenate using methods described previously by our group [31].
Briefly, brain homogenates were prepared by adding 9X of 0.1 M potassium phosphate
buffer to weighed tissue and homogenization using a probe sonicator. Plasma and crude
brain homogenate (1 mL each) were spiked with the analyte to give a final concentration of
10 uM and then incubated at 37 °C for 1 h. At predetermined time points (0, 30, and 60 min),
an aliquot from each matrix was quenched with 3X volume of acetonitrile containing the
internal standard (IS; losartan: 0.5 uM) and vortex-mixed for 30 s. The final mixtures were
centrifuged at 10,000 x g for 10 min at 4 °C and supernatants were used for LC-MS analyses.

The samples were analyzed using a Dionex Ultimate 3000 ultra-high-performance
LC system coupled with a Q Exactive Focus orbitrap mass spectrometer (Thermo Fisher
Scientific Inc., Waltham MA, USA) operated with a heated electrospray ionization (HESI)
ion source. Each respective analyte was separated using the Agilent Eclipse Plus C18
column (2.1 x 100 mm i.d.; 1.8 um) that was maintained at 35 °C while pumping a flow
of 0.4 mL/min for 9 min using gradient elution of the mobile phases consisting of water
and acetonitrile; both solvents contained 0.1% formic acid. The mass spectrometer was
operated in switching ionization mode to collect both positive and negative molecular ions
while being controlled by Xcalibur software 4.0.27.13 (Thermo Scientific). Analytes were
quantified and the disappearance of the respective catechols was monitored in the full-scan
mode (from m/z 50 to 1600) by comparing samples at the different time-points.

Metabolites were identified from these spectra by comparing samples quenched at 0 vs.
30 min. Accurate m/z values obtained from this analysis were used to propose metabolite
structures.

2.4. Pharmacokinetic Studies in Mice

All of the animal studies were performed as per protocols approved by the Institutional
Animal Care and Use Committee at Johns Hopkins University.

For in vivo PK studies, male CD-1 mice (Harlan Laboratories, Indianapolis, IN, USA)
weighing 25-30 g were used. The mice were maintained on a 12 h light—dark cycle with ad
libitum access to food and water. For initial screening, the mice were dosed perorally (PO)
with a freshly prepared formulation of either caffeic acid (in 10% ethanol/10% tween/80%
PBS v/v/v), L- DOPA or D-DOPA (in PBS) to administer a 50 mg/kg dose (at a dosing
volume of 10 mL/kg) of the respective catechol. The mice were euthanized using CO,
at 30 and 60 min post drug administration; blood samples were collected in heparinized
microtubes by cardiac puncture and spun at 2000 x g for 15 min to collect plasma and then
immediately frozen and stored at —80 °C. Brains were dissected and immediately flash
frozen (—80 °C).

For full PK studies, D-DOPA was dissolved in PBS and administered either PO at a
dose of 50 mg/kg or intravenously (IV; 10 mg/kg). For combination studies with sodium
benzoate, a separate cohort was dosed with 400 mg/kg sodium benzoate IP, 5 min prior to
D-DOPA (50 mg/kg PO). All of the formulations were freshly prepared prior to the dosing.
The mice were sacrificed at specified time points (0.08, 0.25, 0.5, 1, 3, and 6 h) post drug
administration. Brain and plasma collection were carried out as described above.

2.5. Bioanalysis in Plasma and Brain

Quantification of caffeic acid and L- or D-DOPA was performed using sensitive and
selective methods reported in the literature with some modifications [32,33]. Caffeic acid
was analyzed underivatized. For caffeic acid analysis, calibration standards were prepared
by spiking standard solutions (in methanol containing 0.5 M losartan) into naive plasma
or brain extract (prepared in methanol containing 0.5 uM losartan). Plasma and brain
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tissue samples were processed by matching dilutions of the calibration standards. Plasma
samples were vortex mixed and brain samples were homogenized in a Geno grinder for
3 min at 1500 cycles per minute followed by centrifugation at 10,000x g for 10 min at 4 °C
to collect the supernatant and 50 pL aliquots of the supernatant were transferred to 250 uL
polypropylene autosampler vials sealed with teflon caps. Then, 2 uL of the sample was
analyzed using LC/MS/MS system.

L- and D-DOPA were analyzed using a previously described analytical method em-
ploying derivatization with an anhydride [32]. Briefly, for L-/D-DOPA analysis, calibration
standards were prepared by spiking standard solutions of the analyte (in acetonitrile con-
taining 0.1% formic acid) and internal standard (L-DOPA-ring-d3; 1 uM in acetonitrile
containing 0.1% formic acid) in either plasma or brain extract (in acetonitrile containing
0.1% formic acid). Plasma and brain tissue samples were processed by matching the dilu-
tions of calibration standards of the respective tissues. Plasma samples were vortex mixed
and brain samples were homogenized in a Geno grinder for 3 min at 1500 cycles per minute
followed by centrifugation at 10,000 g for 10 min at 4 °C to collect the supernatant. To the
supernatants, sodium bicarbonate (0.2 M; pH = 8.3) was added followed by derivatizing
solution (acetic anhydride in equal volume acetonitrile). The solutions were vortexed for
15 s and then allowed to sit at room temperature for 45 min. These mixtures were vortexed
again for 10 s and centrifuged at 10,000 x g for 10 min to collect the supernatant. Then, 2 pL
of the sample was injected into the LC/MS/MS system for analysis.

For D-DOPA we also conducted intra-day and inter-day precision and accuracy tests
for QC samples in plasma and brain (for inter-day, n = 3/day over 2 days), and tabulated
statistical estimates. In addition, we evaluated autosampler stability at 4 °C by analyzing
QC samples (n = 3/each QC level) immediately after sample preparation and after storage
on the benchtop or in the autosampler for 18 h. To assess carryover between injections we
injected a double blank sample immediately after the highest standard in the calibration
curve (upper limit of quantitation-ULOQ; 100 nmol/mL in plasma).

Chromatographic analysis was performed using a Thermo Scientific Vanquish UPLC
system consisting of an analytical pump and an autosampler coupled with a TSQ Altis mass
spectrometer. For all analytes, the mobile phase used for the chromatographic separation
consisted of 0.1% formic acid in acetonitrile and 0.1% formic acid in water. The mobile
phase was delivered as a gradient at a flow rate of 0.400 mL/min. Separation of the
analyte was achieved using an Agilent EclipsePlus C18 RRHD, 1.8 pm (2.1 mm x 10 mm)
column. The analyte was monitored using a ThermoScientific TSQ Altis triple-quadrupole
mass-spectrometric detector equipped with an electrospray interface, and operated in
negative ion mode. The instrument was controlled by Thermo Scientific Xcalibur (version
4.2.47) software. The spectrometer was programmed in selected reaction monitoring (SRM)
mode to monitor the transitions for caffeic acid m/z 179.0 — 107.1, 135.1 and losartan
m/z421.1 — 127.1, 179.1, for L- and D-DOPA m/z 322.0 — 238.1, 260.0, 262.1, for L-DOPA-
ring-ds m/z 325.0 — 241.1, 265.1, 283.0.

For PK analyses, plasma levels (nmol/mL) and brain tissue concentrations (nmol/g)
were determined and plotted against time, and then non-compartmental analysis modules
in Phoenix WinNonlin version 7.0 (Certara USA, Inc., Princeton, NJ, USA) were used to
quantify exposures (AUCy_¢), half-life (t; /), volume of distribution (V4), and clearance (CI).

2.6. D-DOPA Target Engagement Studies

GCPII activity measurements were carried out based on a modification of a previ-
ously published protocol [34]. Briefly, brain samples were homogenized in ice-cold Tris
buffer containing protease inhibitors. Resulting homogenates were spun down and the
supernatants collected for both GCPII activity measurements and protein analysis. GCPII
reaction was initiated upon the addition of homogenate, cobalt chloride, and *H-NAAG
(0.04 uM, 20 mCi/umol). Reactions were carried out in 50 pL reaction volumes for 2 h at
37 °C. At the end of the incubation period, reactions were terminated with ice-cold sodium
phosphate buffer and [*H]-glutamate measured as described above. Finally, total protein
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measurements were carried out using BioRad’s detergent compatible protein assay kit and
data were presented as fmol/mg/h.

2.7. D-DOPA Mode of Inhibition Studies

To determine the mode of inhibition, enzymatic activity assays were carried out as
described in the GCPII assay section above [15,30,34], except that concentrations of NAA-
[*H]-G were extended up to 4 uM and in the presence and absence of D-DOPA (0, 100,
200, 300, 400 nM). K, Vimax calculations were determined using Michelis-Menten kinetic
analysis using GraphPad Prism (version 9.3.0, Dotmatics, San Diego CA, USA).

3. Results and Discussion
3.1. IC5 of Catechol-Based Scaffolds

The inhibitory potencies of the catechols were determined using a modified
radioactivity-based assay involving human recombinant GCPII enzyme as previously
reported [30]. Based on literature reports of catecholic moieties binding to zinc metallopro-
teases [26,27], we tested the potency of L-DOPA (1) against GCPII activity and discovered
that it is a submicromolar inhibitor. Although its potency is weaker than those of known
GCPII inhibitors containing multiple carboxylate groups, L-DOPA represents one of the
most potent monocarboxylate-based GCPII inhibitors. This prompted us to evaluate
analogs of L-DOPA (Table 1) to determine the essential structural features responsible for
its GCPII inhibitory activity. Both removal of the meta-hydroxy group and methylation
of the two hydroxy groups resulted in substantial loss of potency as seen in compounds
2 and 3. Replacement of the catechol moiety with a 2-pyridone (compound 4) also led to
complete loss of potency. These findings suggest that the catechol moiety of L-DOPA is es-
sential for the GCPII inhibitory activity. Subsequently, we tested L-DOPA analogs retaining
the catechol moiety (compounds 5-10). Alpha-methylation (compound 5), N-acetylation
(compound 6), and decarboxylation (compound 7) resulted in loss of potency, whereas
the removal of the alpha-amino group (compound 8) led to only a 6.7-fold decrease in
inhibitory potency. Interestingly, conversion of the alpha-beta single bond of compound 6
to a double bond (compound 9, caffeic acid) generated another potent GCPII inhibitor with
an ICsp value of 300 nM. Finally, D-DOPA, an enantiomer of L-DOPA, was found to be the
most potent catechol with an ICsg value of 200 nM. Taken together, these structure—activity
relationship (SAR) studies highlight the critical role played by the catechol and carboxylate
groups of L-DOPA in GPCII inhibition as well as the insignificant contribution of the alpha
amino group. We chose to further assess the three submicromolar inhibitors (L-DOPA, caffeic
acid, and D-DOPA) for their potential to serve as in vivo pharmacological probes for GCPII
inhibition.

Table 1. ICs5, values using human recombinant GCPIL

Compound Structure ICs0 (uM) Compound Structure I1Cs5¢ (UM)
o) O
HO
1 HO o 06 . WOH 20
(L-DOPA) NH HO HN.__O
HO 2 \f
2 Q . HO:©/\/NH2
OH 1 . 1
(Tyr) NH, 00 (Dopamine) HO >100
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o] o]
HsCO. H
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N OH OH
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o (@]
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3.2. In Vitro Metabolic Stability of Caffeic Acid, L-DOPA, and D-DOPA

Our primary objective was to identify catechols that would resist systemic and CNS
metabolism to ensure biodistribution to the central nervous system (CNS) where the
compounds could then inhibit GCPII activity. Caffeic acid, L-DOPA, and D-DOPA were
first screened in vitro, both in plasma and in brain homogenate (Figure 1) to assess their
metabolic stability. Caffeic acid was found to be stable (98% remaining) in brain homogenate
when incubated at 37 °C for up to 1 h post spiking; whereas in plasma, it was found to
be partially metabolized (56% remaining at 60 min; Figure 1a). Although some instability
was observed in plasma, no metabolites were identifiable in metabolite identification
(MET-ID), perhaps due to formation of smaller, polar metabolites not amenable to reverse-
phase LCMS analyses. L-DOPA was stable in plasma (64% remaining at 60 min) and
unstable in brain (0% remaining by 30 min; Figure 1b). In contrast, D-DOPA was stable in
plasma (100% remaining at 60 min) and brain (82% remaining at 60 min; Figure 1c). The
metabolism of L-DOPA to dopamine by aromatic L-amino acid decarboxylase (AAAD)
is well reported [35], and thus we expected L-DOPA to be rapidly metabolized in brain
homogenate. This was further confirmed by MET-ID which showed significant dopamine
levels in brain homogenate at 30 min (Figure S1). The moderate stability of L-DOPA in
plasma could be attributed to the activity of AAAD expressed in endothelial cells of blood
vessels. However, no dopamine was observed in L-DOPA-spiked plasma samples, perhaps
due to rapid conversion to downstream metabolites [36,37]. The D-enantiomer, D-DOPA, is
not recognized or metabolized by AAAD and thus was observed to be completely stable in
both plasma and brain and qualitative MET-ID studies did not reveal dopamine increases
in D-DOPA-spiked brain homogenate.

(@ (b) (©
125
2125 M Plasma W Plasma 125 u Pla§ma
E Brain 3 M Brain Es M Brain
£ 10 E 100 = 100
§ g g
_; 75 g 75 275
-] < <
< s g s & s
& a2 a2
SES 225 225
3 By X
B
0 0
0 30 60 0 30 60 0 30 60

Time (min) Time (min) Time (min)

Figure 1. In vitro metabolic stability of (a) caffeic acid, (b) L-DOPA, and (c) D-DOPA in mouse plasma
and mouse brain homogenate spiked with 10 uM concentration in respective matrix. Data expressed

as mean = standard error of mean (SEM), n = 3.

3.3. Bioanalytical Methods for Caffeic Acid, L-DOPA, and D-DOPA

To conduct in vivo assessment of selected catechols we searched literature reports for
facile and sensitive LC-MS methods. Caffeic acid resolved well on reverse-phase column
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and was detectable on MS with low nM sensitivity; however, reported methods for DOPA
analyses either required complex sample preparation, such as solid phase extraction [38],
or used harsh acidic conditions (e.g., 0.4 M perchloric acid) [38,39]. To circumvent this,
we initially explored hydrophilic interaction liquid chromatography (HILIC) methods;
however, these methods required longer run/equilibration times (>10 min) and afforded
poor sensitivity (lower limit of quantitation; LLOQ > 100 nM). Furthermore, instability
of DOPA at neutral pH presented additional challenges in sample preparation. DOPA
is prone to oxidation and degrades over 4-8 h at room temperature forming melanin
oligomer [40]. It was thus important to stabilize the analytes during sample preparation
to prevent oxidation and also render them amenable for UPLC-MS analyses. We thus
employed a derivatization method previously reported and validated by van Faassen et al.,
with minor modifications [32]. In addition, although many methods have been reported
for DOPA analysis in plasma, few have evaluated brain levels. Given these challenges,
we used acetic anhydride in the presence of sodium bicarbonate (pH = 8.3; 0.2 M) to
acetylate the polar catecholic and amino groups thus improving the lipophilicity of DOPA
for better retention on reverse-phase column (Scheme 1) while also stabilizing the molecule
for accurate analysis. For DOPA analyses, we used L-DOPA-ring-d; as an internal standard.
DOPA and L-DOPA-ring-d; were derivatized at three sites, including both phenolic sites
as well as the primary amine of the amino acid [38]. The structures of acetylated L-DOPA,
D-DOPA, L-DOPA-ring-d3, as well as underivatized caffeic acid, losartan, and their mass
spectra and extracted chromatograms at the lower limit of quantitation are presented in
Figure 2. The LLOQ for DOPA in plasma and brain was observed to be 0.03 nmol/mL
and 0.10 nmol/g respectively; similarly, the LLOQ for caffeic acid in plasma and brain
was observed to be 0.01 nmol/mL and 0.01 nmol/g respectively. These were similar or
better than literature reports of LLOQ of L-DOPA in rat plasma, which varies from 0.02
to 0.15 nmol/mL [41,42], whereas for caffeic acid it is reported to be 0.03 nmol/mL [33].
A correlation coefficient of >0.99 was obtained in all analytical runs and internal standard
variation of <15% was observed for all analyses. The mean-predicted accuracy for calibration
standards ranged from 85 to 111% for caffeic acid, and 97 to 111% for L-DOPA. For quality
control samples, the mean-predicted accuracy ranged from 86 to 98% for caffeic acid, and 86
to 113% for L-DOPA.

o o YO 0
0
HO o )’L Ok - O:©/% OH
NH, NaHCO; (pH=8.3) o HNT(

HO Water:ACN / Room Tem
/go
3,4-Dihydroxy-D-phenylalanine Derivatized - D-DOPA
(D-DOPA) OR
OR Derivatized - L-DOPA
3,4-Dihydroxy-L-phenylalanine
(L-DOPA)

Q9 “p 0
)kok \(T ©®)

» OH
= HN
NaHCO; (pH=8.3) 0 D Y
Water:ACN / Room Temp.
D O
/&O
3,4-Dihydroxy-L-phenylalanine- ring-d; Derivatized - L-DOPA-d;

(L-DOPA-dj3)

Scheme 1. Derivatization reaction for D-DOPA, L-DOPA, and L-DOPA-ring-d3 with acetic anhydride
in presence of 0.2 M sodium bicarbonate, pH 8.3. Three acetyl groups were incorporated (i.e., two on
the catecholic hydroxyls and one on the primary amine) forming a nonpolar compound that could be
retained on a reverse-phase column.
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Figure 2. Mass spectra and extracted chromatograms of analytes at LLOQ and internal standards.
(@) Product ion scan and extracted chromatogram for acetylated D-DOPA (0.03 nmol/mL); (b) Product ion
scan and extracted chromatogram for acetylated L-DOPA (0.03 nmol/mL); (¢) Product ion scan and ex-

tracted chromatogram of caffeic acid (0.01 nmol/mL); (d) Product ion scan and extracted chromatogram
of acetylated L-DOPA-d3 (1 uM); (e) Product ion scan and extracted chromatogram of losartan (0.5 uM).

We next assessed the linearity, precision, accuracy of the LC-MS method, and benchtop
and autosampler stability of derivatized D-DOPA, as some modifications were made to the
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method reported and validated by van Faassen et al. [32]. The results for these are presented
in Table SIA-C. Acetylated D-DOPA was found to be stable on the benchtop and in the
autosampler for up to 18 h with a <5% deviation from nominal concentrations in plasma.
A blank injection following the highest standard of 100 nmol/mL in plasma revealed a
minimal acceptable carry-over area of >1% for both the analyte and internal standard. The
mean-predicted accuracy for calibration standards ranged from 93.7-112% and 93.6-115% in
plasma and brain, respectively (Table S1A). Inter-day accuracy and precision (%RSD) of QCs
(n =3/day; 2 days) ranged from 95.9-107% and 3.15-5.40% in plasma, and 95.0-101% and
1.05-2.52% in brain, respectively (Table S1B). Thus, the LC-MS method used for D-DOPA
analyses was found to be precise and accurate for the presented bioanalyses.

3.4. Initial Pharmacokinetic Studies of Caffeic Acid, L-DOPA, and D-DOPA in Mice

We evaluated caffeic acid and L- and D-DOPA in vivo in a two time-point PK study with
the primary objective of selecting the compound that showed the best in vivo levels in plasma
and brain for further analyses. Among the three catechols, D-DOPA showed ~22-fold higher
plasma levels (84.3 nmol/mL; Figure 3c) compared with L-DOPA (3.74 nmol/mL; Figure 3b)
and ~13-fold higher levels versus caffeic acid (6.47 nmol/mL; Figure 3a) at 30 min post dose.
By one hour, the levels of both D- and L-DOPA had decreased, but D-DOPA maintained the
highest concentration at 21.5 nmol/mL. In brain, L-DOPA and caffeic acid were below the
limit of quantification (0.10 nmol/g for L-DOPA and 0.01 nmol/g for caffeic acid) at both
time points; in contrast, D-DOPA showed quantifiable levels (~1 nmol/g) at both time points.
These results clearly demonstrated the superiority of D-DOPA versus both L-DOPA and
caffeic acid in terms of systemic and brain exposures following oral administration.
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Figure 3. Initial mouse pharmacokinetic studies of (a) caffeic Acid, (b) L-DOPA, and (c) D-DOPA
dosed at 50 mg/kg PO. Drug levels were measured in plasma and brain at 30 and 60 min post
administration. Data expressed as mean + SEM, n = 3.

Although caffeic acid was the most stable of the three analogs in metabolic stud-
ies in vitro, it showed low plasma levels (67 nmol/mL) following oral administration,
which was consistent with its widely reported poor oral bioavailability and low intesti-
nal absorption [43]. Furthermore, its hydrophilicity due to the presence of a negative
charge limited its brain penetration. L-DOPA has also been widely studied previously
and its clearance is expected to occur primarily via metabolism to dopamine during first
pass metabolism [44,45]. To circumvent this, decarboxylase inhibitors such as carbidopa
are routinely employed in combination with L-DOPA [46] and abundant evidence exists
supporting higher peripheral and brain L-DOPA exposure when L-DOPA /carbidopa are
co-administered [47]. For example, Diederich et al. demonstrated that co-administration of
carbidopa significantly enhanced L-DOPA levels in rat brain [48] upon systemic admin-
istration (250 mg/kg L-DOPA IP with 40 mg/kg carbidopa) giving a brain/plasma ratio
of 0.3-0.7 at 30 min post-dose. These preclinical data, as well as the approved use of this
combination as a standard-of-care for Parkinson’s disease (PD) support further exploration
of L-DOPA + carbidopa combination for GCPII inhibition; however, we advanced D-DOPA
for further evaluation versus L-DOPA for the following reasons. First, chronic use of
L-DOPA / carbidopa therapy is associated with neurotoxicity in preclinical models [49,50];



Pharmaceutics 2022, 14, 2018

10 of 16

mechanistic studies show that L-DOPA neurotoxicity is related to dopamine generation
and is not phenocopied with D-DOPA [51]. In PD patients, its long-term use is shown
to cause disabling motor effects such as levodopa-induced dyskinesias (LIDs) and motor
fluctuations in at least two thirds of patients [52,53]. Such side effects are not expected to
occur with D-DOPA. Second, L-DOPA therapy would both increase dopamine and inhibit
GCPII, whereas D-DOPA would not have a significant effect on dopamine and thus may
inhibit GCPII more selectively.

The off-target toxicity of L-DOPA, three-fold higher potency of D-DOPA versus L-
DOPA, and superior in vitro stability of D-DOPA over other catechols justified the advance-
ment of D-DOPA for further assessment as a potential GCPII inhibitor.

3.5. Pharmacokinetic and Target Engagement Studies of D-DOPA + Sodium Benzoate in Mice

PK profiles of D-DOPA in mouse plasma and brain are presented in Figure 4a—c,
and detailed PK parameters in Figure 4e. After a single IV dose of 10 mg/kg, D-DOPA
achieved a maximum concentration (Cpax) of 61.1 nmol/mL in plasma at 5 min (Tmax)
(Figure 4a). The half-life (t; /), volume of distribution (V4), and clearance (Cl) of D-DOPA
in plasma were calculated to be 0.35 h, 0.834 L/kg, and 28 mL/min/kg, respectively.
The overall exposures in plasma (AUC|y.plasma) Were calculated to be 30.5 nmol.h/mL
(Figure 4e). After a single PO dose (50 mg/kg), D-DOPA achieved a Cnax of 99.0 nmol/mL
in plasma at 15 min and 1.74 nmol/mL in brain at 30 min (Figure 4b). AUCpo_plasma
and AUCpo_prain Were calculated to be 72.7 nmol.h/mL and 2.42 nmol.h/g, respectively.
D-DOPA also exhibited excellent oral bioavailability at 47.7% (AUCpg,/1v). The brain
penetration index was low with AUCg4in/pPlasma = 0.033. However, even with this low
index, the concentrations of D-DOPA exceeded its ICsy up to 1 h. Several groups have
reported that D-DOPA is unidirectionally converted to its L-isomer in vivo by oxidative
deamination by the enzyme D-amino acid oxidase (DAAO) [54-56]; the resulting alpha-
keto acid is then transaminated to L-DOPA by dopa transaminase. Thus, we strategized to
evaluate the PK of D-DOPA when co-administered with a DAAQO inhibitor as a mechanism
to enhance its plasma and brain exposures.

Mice were dosed IP with 400 mg/kg of the DAAO inhibitor sodium benzoate, fol-
lowed by PO administration of D-DOPA (50 mg/kg). D-DOPA achieved a 1.53-fold
higher Cpax (151 nmol/mL) in plasma at 15 min and a 1.84-fold higher Cpy,x in brain
(3.20 nmol/g at 30 min) compared with D-DOPA monotherapy (Figure 4b,c). Furthermore,
plasma exposures (AUCpo_plasma) improved by 2.54-fold (185 nmol.h/mL; * p < 0.05) and
AUCPO prain by 2.26-fold (5.48 nmol.h/g; * p < 0.05). Similar modulation in the PK of
D-serine, a substrate of DAAO, has been reported by our group and others where D-serine
combination with a DAAO inhibitor significantly decreased its clearance and increased
its exposures [57,58]. The sodium benzoate combination with D-DOPA also enhanced
the oral bioavailability of D-DOPA (47.7% as monotherapy versus >100% in combination)
and was superior to known active site inhibitors with <56% bioavailability [59,60], with
the exception of thiol-based GCPII inhibitor, that exhibit ~30-40% oral bioavailability in
preclinical species [61].

The brain levels of D-DOPA, although low, remained above its ICsy value of 0.2 pM
for over 3 h (Figure 4c). Lastly, we qualitatively assessed GCPII target engagement
in the brain from D-DOPA monotherapy (Cmax =1.74 nmol/g) and combination ther-
apy (Cmax = 3.2 nmol/g), by evaluating ex vivo effects on GCPII enzymatic activity [62].
Both treatment groups showed significant inhibition of brain GCPII activity with the co-
administration group having a superior effect (*** p < 0.001—untreated vs. combination
therapy, ** p < 0.01—untreated vs. monotherapy; * p < 0.05—monotherapy vs. combi-
nation therapy corroborating the PK results (Figure 4d). We observed ~25% inhibition
of GCPII although the concentration of D-DOPA was 10-fold higher than its ICs5, value.
This is likely due to the dilution of tissue during the ex vivo homogenization procedures
which permitted the dissociation of D-DOPA from the GCPII enzyme. In addition, it is
important to note that we measured total D-DOPA levels in the reported PK studies and
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thus target engagement results may be confounded due to binding of D-DOPA to other
endogenous proteins. This off-target binding is expected to limit the availability of free
D-DOPA concentrations at the target site, thus moderating the inhibition of GCPII.
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Figure 4. PK profile of D-DOPA in mice following (a) IV dose of 10 mg/kg D-DOPA, (b) PO dose of
50 mg/kg D-DOPA, (c) PO dose of 50 mg/kg D-DOPA and IP dose of 400 mg/kg sodium benzoate.
(d) GCPII activity in mouse brain at 30 min post administration of PO D-DOPA at 50 mg/kg +
the IP DAAO inhibitor sodium benzoate at 400 mg/kg. Statistical analysis was performed using a
two-tailed, two-population t-test; *** p < 0.001, ** p < 0.01; *p < 0.05. (e) PK parameters of D-DOPA in
plasma and brain. Calculated using noncompartmental analysis in WinNonlin, with data expressed
as mean or mean £ SEM (n = 3 mice/time point).

3.6. Characterization of D-DOPA’s Mode of GCPII Inhibition

Most GCPII inhibitors designed to date contain pharmacophoric features for active
site binding; viz., phosphonic acid-based [63,64], thiol-based [65], urea-based [66], and
hydroxamic acid-based [67]. As discussed earlier, our initial premise for exploring the
inhibition potencies of catechols against GCPII activity was their propensity for zinc
binding in other similar metalloproteases [27]. Considering the structural differences
between current active site inhibitors of GCPII versus catechols, we thought it important to
evaluate the mode of inhibition.

To evaluate this, NAAG saturation experiments were performed in presence of dif-
ferent concentrations of D-DOPA (Figure 5a). When the rate of reaction was plotted
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against NAAG concentrations at increasing inhibitor concentrations, there was a decrease
in maximal rate (Vmax) whereas the Michaelis constant (Ky,) was unchanged (Figure 5a).
Vmax and Ky, for each dataset at a given inhibitor concentration were obtained from non-
linear regression fits to Michaelis—-Menten kinetics (Figure 5d). A double reciprocal plot
(Lineweaver—Burk plot) of the data yielded lines with varying slopes that intersected in
the second quadrant (Figure 5b), indicative of non-competitive inhibition. A secondary
plot of Ky, apparent/Vmax versus [D-DOPA] gave a K; value of ~400 nM (Figure 5c). Al-
though the covalent binding of catechols, including L-DOPA and its analogs, to proteins
via sulphahydryl interactions have been reported, this is the first description of a sub-
micromolar, non-competitive inhibitor of GCPII. Thus, the mode of inhibition studies
disproved our initial hypothesis and revealed D-DOPA to be an allosteric inhibitor of
GCPIL Further, Parellada et al. tested various catechols and reported that the phenolic
hydroxyl groups do not coordinate with the catalytic zinc of the active site in zinc met-
allopeptidases [68]. This report further supports the allosteric, non-competitive mode of
inhibition demonstrated by our studies.
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Figure 5. Mechanism of inhibition of GCPII by D-DOPA. (a) Rate of reaction plotted against substrate
(NAAG) concentration, in the presence of several concentrations of D-DOPA. Recombinant human
GCPII enzyme (40 pM) was incubated with increasing concentrations of radiolabeled NAAG and
coupling reagents for 2 h at 37 °C. (b) Lineweaver-Burk plot to illustrate the non-competitive
inhibition by D-DOPA. (c) Secondary plot (Kyt app/Vmax vs. [D-DOPA]) to obtain the binding
constant (K; = —X intercept) of D-DOPA. (d) Vmax and Ky values were obtained from non-linear
regression fits to Michaelis-Menten kinetics using GraphPad Prism.

4. Conclusions

Small-molecule GCPII inhibitors containing glutamate-mimetics have been used as a
treatment for neurological disorders in preclinical models [15,64,66,69-77]; however, their
therapeutic potential in the clinic has been hampered, in part due to poor oral bioavailability
and negligible brain penetration. To overcome these limitations, we assessed known
catechols and identified three with submicromolar potencies for GCPII inhibition. This is
the first report of the characterization of catechols as GCPII inhibitors. D-DOPA emerged
as the most promising catechol-based inhibitor, demonstrating a non-competitive mode of
inhibition and an excellent PK profile which was enhanced by co-administration with the
DAAOQ inhibitor sodium benzoate, resulting in robust target engagement in the brain. To
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our knowledge this is the first systematic assessment of a submicromolar, catechol-based,
allosteric inhibitor of GCPIL Future studies will focus on optimization of this scaffold for
clinical translation of this new class of GCPII inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/pharmaceutics14102018/s1, Figure S1. Dopamine release from
(a) D-DOPA (red plot) and (b) L-DOPA (black plot) spiked brain homogenate at 30 min post-spike.
Dopamine is observed in L-DOPA spiked brain homogenate and is not observed in D-DOPA spiked
brain homogenate; Table S1A. Statistical evaluation of calculated concentrations of derivatized D-
DOPA obtained from the calibration curves (n = 3) prepared in mouse plasma and brain; Table
S1B. Inter and intra-day precision and accuracy for derivatized D-DOPA in mouse plasma and
brain determined by analyzing replicates (n = 3/day) of spiked samples at 4 different concentration
levels over 2 subsequent days. Statistics for inter-day evaluation are generated from n = 6 samples;
Table S1C. Stability of derivatized D-DOPA in mouse plasma and brain when stored at benchtop
(18 h, room temperature) and autosampler (18 h at 4 °C).
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