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A B S T R A C T

Depending on the lesion site, a stroke typically affects various aspects of cognitive control. While executing a
task, the performance monitoring system constantly compares an intended action plan with the executed action
and thereby registers inaccurate actions in case of any mismatch. When errors occur, the performance mon-
itoring system signals the need for more cognitive control, which is most efficient when the subject notices errors
rather than processing them subconsciously. The current study aimed to investigate performance monitoring and
error detection in a large sample of patients with left hemisphere (LH) stroke.

In addition to clinical and neuropsychological tests, 24 LH stroke patients and 32 healthy age-matched
controls performed a Go/Nogo task with simultaneous electroencephalography (EEG) measurements. This set-up
enabled us to compare performance monitoring at the behavioral and the neural level. EEG data were analyzed
using event-related potentials [ERPs; e.g., the error-related negativity (Ne/ERN) and error positivity (Pe)] and
additionally more sensitive whole-brain multivariate pattern classification analyses (MVPA). We hypothesized
that LH stroke patients would show behavioural deficits in error detection when compared to healthy controls,
mirrored by differences in neural signals, in particular reflected in the Pe component.

Interestingly, despite clinically relevant cognitive deficits (e.g., aphasia and apraxia) including executive
dysfunction (trail making test), we did not observe any behavioral impairments related to performance mon-
itoring and error processing in the current LH stroke patients. Patients also showed similar results for Ne/ERN
and Pe components, compared to the control group, and a highly similar prediction of errors from multivariate
signals. ERP abnormalities during stimulus processing (i.e., N2 and P3) demonstrated the specificity of these
findings in the current LH stroke patients. In contrast to previous studies, by employing a relatively large patient
sample, a well-controlled experimental paradigm with a standardized error signaling procedure, and advanced
data analysis, we were able to show that performance monitoring (of simple actions) is a preserved cognitive
control function in LH stroke patients that might constitute a useful resource in rehabilitative therapies for re-
learning impeded functions.

1. Introduction

After suffering a stroke, patients have to strain themselves to regain
their stroke-impaired functions through rehabilitation. Aside from im-
pairments due to primary sensorimotor deficits (i.e., paresis, sensory
loss), less obvious cognitive deficits often impede rehabilitation. For
example, left hemisphere (LH) stroke patients may show inhibitory
control deficits (Krämer et al., 2013). The presence of such stroke-

related motor-cognitive deficits and their consequences (e.g., lack of
inhibition and difficulties with action planning) can profoundly impact
on the accuracy of executed movements and the occurrence of action
errors. Moreover, putative cognitive impairments, such as reduced
awareness of one’s actions, most likely interfere with an effective re-
learning of impaired motor and cognitive functions due to LH stroke.
From studies with healthy participants, it is well-known that when a
participant consciously detects that a behavior was not as intended (i.e.,
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an error occurred), these errors are monitored and behavioral adjust-
ments are implemented to prevent future errors (Ridderinkhof et al.,
2004). Consequently, measurable behavioral adjustments, such as
slower and more careful responding (e.g., Danielmeier and Ullsperger,
2011), are assumed to reflect successful error processing. These ad-
justments also indicate increased cognitive control, as demanded by the
performance monitoring system after an erroneous action. If cognitive
control functions like performance monitoring fail, patients will have
difficulties adjusting their behavior, resulting in a worse (rehabilita-
tion) outcome. Hence, it is essential to investigate the processes of
performance monitoring and error detection in stroke patients.

Two components of the event-related potential (ERP) allow asses-
sing the neural correlates of performance monitoring and error pro-
cessing. The error(-related) negativity (Ne/ERN; Falkenstein et al.,
1991; Gehring et al., 1993), typically measured at central midline
electrodes as a negative signal deflection, peaks within 50 to 100 ms
after an erroneous response and is generated by the dorsal part of the
anterior cingulate cortex (dACC; Debener et al., 2005; Dehaene et al.,
1994; Roger et al., 2010). The Ne/ERN is supposed to reflect the rapid,
automatic processing of an incorrect action signaling the demand for
increasing cognitive control to other brain regions (for review see
Gehring et al., 2012). The second component, the error positivity (Pe), a
positive voltage deflection measured at more posterior midline elec-
trodes between 150 and 300 ms, immediately follows the Ne/ERN. It is
usually observed when participants detect their own errors (Falkenstein
et al., 1991; Falkenstein et al., 1994), which is why this component has
been discussed as an indicator of error awareness (Nieuwenhuis et al.,
2001) and error evidence accumulation (Steinhauser and Yeung, 2012).
In addition to the response-locked ERPs Ne/ERN and Pe, it is important
to assess two stimulus-locked components, namely the N2 and P3, when
trying to understand how participants process cognitive tasks. While
the N2 is often associated with the evaluation and processing of con-
flicting or difficult stimuli and the respective inhibitory processes (e.g.,
in the case of nogo stimuli) (Cheng et al., 2019; Nieuwenhuis et al.,
2003), the P3(a) has been suggested to be involved in signaling the
need for more cognitive control, in case a conflict has been detected
earlier (Polich, 2007). Thus, both components represent important
cognitive processes whose output (e.g., identifying a nogo stimulus
necessitating a high degree of cognitive control) is of high relevance for
the performance monitoring system.

Previous studies on performance monitoring and error processing in
stroke patients revealed an inconsistent pattern concerning the Ne/ERN
and Pe (Stemmer et al., 2004). Supplementary Table 2 presents an
overview of the results from previous studies. While some studies re-
ported a similar neural processing of errors for stroke patients and
healthy controls (Maier et al., 2015; Ullsperger et al., 2002), most
studies found abnormalities for their patient sample (or for one of their
patient sub-samples in case of multiple groups) (Gehring and Knight,
2000; Maier et al., 2015; Swick and Turken, 2002; Turken and Swick,
2008; Ullsperger et al., 2002; Ullsperger and Cramon, 2006; Wessel
et al., 2014). These abnormalities were mostly due to elevated correct-
related negativity (CRN) leading to a reduced differentiation between
correct responses (i.e., CRN) and errors (i.e., Ne/ERN). Two of these
studies additionally assessed the subjective detection of errors, and both
concluded that, despite other impairments, patients showed no deficits
in error detection (Maier et al., 2015; Stemmer et al., 2004). However,
caution is warranted when considering these results. Sample sizes in
previous studies were generally rather small (maximum of 9 subjects
per patient group) since recruitment focused on patients with specific
lesion location (e.g., lesions restricted to the ACC). Furthermore, the
influence of cognitive deficits (as assessed with neuropsychological
tests) on markers of performance monitoring was not investigated. In
addition to assessing performance monitoring, the applied tasks in some
studies put high demands on other cognitive functions (e.g., working
memory) (Fellows, 2017; McCabe et al., 2010). Finally, concerning the
assessment of error detection, standardized procedures were missing

[e.g., the experimenters manually took notes of the patients’ behavior/
utterances (Maier et al., 2015; Stemmer et al., 2004)]. The current
study therefore aimed at examining error detection in left hemisphere
stroke patients by using a Go/Nogo task with a standardized but simple
procedure for error signaling as previously adapted for healthy controls
(Niessen et al., 2017).

To this end, we first assessed the neural correlates of performance
monitoring and error detection in – for a patient study – a relatively
large sample of LH stroke patients (n = 24) by using classical ERP
analyses (i.e., Ne/ERN and Pe). In addition, in a more explorative ap-
proach, we used more sensitive multivariate pattern classification
analyses (MVPA) based on whole-brain activity. MVPA allows for the
prediction, for instance, of a behavioral outcome (in our case, a correct
or incorrect response) from specific patterns of the underlying brain
activity (Bode et al., 2012; Bode and Stahl, 2014). For this, classifiers
are trained on the spatially distributed ERP data across time, and it is
analyzed how well these activity patterns predict correct from erro-
neous responses, providing an index for error-related information in the
brain at each point in time. By comparing this prediction accuracy
between stroke patients and controls, one can identify even small group
differences in the temporal dynamics of cognitive processes related to
performance monitoring.

The hypothesis that LH stroke patients would exhibit deficits in
performance monitoring or error detection is based on the observation
that the insula is a commonly damaged brain region after LH stroke.
The insula has consistently been associated with error awareness in
imaging studies with healthy participants as well as in patients with
neurological or psychiatric diseases (for a review see Klein et al., 2013;
Hester et al., 2009). Note that those patients included in the two pre-
vious studies showing no impairments in error detection for stroke
patients (Stemmer et al., 2004; Maier et al., 2015) were not suffering
from lesions affecting the insula.

2. Material and methods

2.1. Participants

Initially, 33 patients suffering from a single first-ever unilateral is-
chemic stroke affecting the left hemisphere and 33 healthy matched
controls took part in the current study. The data from the healthy
controls have been published previously (Niessen et al., 2017). In total,
ten participants had to be excluded from subsequent analyses due to a
variety of reasons: technical problems during EEG measurements (one
control participant), violation of inclusion criteria (one patient with a
visual field defect due to a stroke in the territory of the posterior cer-
ebral artery; in one patient the initial clinical stroke diagnosis could not
be confirmed by later examinations), and poor task performance (four
patients conducted only undetected errors, meaning that they might not
have understood the task and did not engage in performance mon-
itoring; three patients revealed signs of exhaustion during testing).
Hence, the final sample comprised 24 patients with LH stroke (mean
age ± standard deviation [SD]: 56.4 ± 12.5 years, 4 female) and 32
healthy control participants (mean age ± SD: 56.4 ± 10.1 years, 12
female) who were matched for age (independent-samples t-test p= .99)
and sex (Fisher’s exact test p > .1). MRIcron (Version 12, 2012;
Rorden and Brett, 2000) was used for lesion mapping and estimating
lesion size. Fig. 1 shows an overlay plot of the lesions of 21 out of the 24
patients (two patients had no demarcated stroke despite persistent
deficit; one patient did not approve to obtain the clinical images). The
left MCA territory was affected in all patients, and the most substantial
lesion overlap was in the insula.

The study was performed following the Code of Ethics of the World
Medical Association (Declaration of Helsinki) and approved by the local
ethics committee of the Medical Faculty of the University of Cologne.
After giving written informed consent, patients and controls were
screened for right-handedness with the Edinburgh Handedness
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Inventory (EHI, Oldfield, 1971), and intact color vision with Ishihara
color plates (Ishihara, 1994). Further, any signs of general cognitive
decline as assessed with the Mini Mental State Examination (MMSE;
Folstein et al., 1975) and the clock test (Shulman et al., 1993), as well
as conspicuous symptoms of depression (Beck's Depression Inventory,
BDI; Hautzinger, 1991) led to exclusion of participants. Patients who
received a craniectomy during treatment of their stroke also had to be
excluded due to potential EEG artifacts. Finally, patients were excluded
for any sign of psychiatric disorders, including alcohol or drug abuse.

Patients were recruited prospectively during the sub-acute or
chronic phase after stroke (i.e., more than four days post-stroke) re-
sulting in a mean interval between testing and stroke of 54 days
(SD: ± 65 days; range: 11–268 days).

A structured interview was additionally conducted with healthy
control participants to assure no previous history of any neurological or
psychiatric diseases. During the interview, the experimenter explicitly
ruled out previously experienced (symptoms of a) stroke or transient
ischemic attack (TIA). Table 1 summarizes the data of the stroke pa-
tients and controls.

2.2. Assessments and procedure

The complete data acquisition was carried out on one day in healthy
controls, whereas the assessment was split and conducted on two days
for stroke patients (Day 1: neuropsychological testing, Day 2: EEG
study) to prevent fatigue effects during the primary task of interest.
Data acquisition began with the neuropsychological tests related to the
exclusion criteria (EHI, Ishihara, MMSE, clock test, BDI). The trail
making test (TMT; Reitan, 1958) was used as a measure for executive
functions and was always carried out as a paper and pencil test with the
non-dominant, left hand, which was also the less affected ipsi-lesional
hand in our left hemisphere stroke patients. For the patient group,

additional neuropsychological tests were applied to assess clinical
symptomatology: These comprised the Cologne Apraxia Screening
(KAS; Weiss et al., 2013), the short version of the Aphasia Check List
(ACL-k; Kalbe et al., 2005), the Medical Research Council scale for
degree of paresis (MRC; Masur, 2000; O'Brien, 2010), and the modified
Rankin scale for general impairment (e.g., degree of disability or de-
pendence on caregiver) after stroke (mRS; Rankin, 1957).

The main task implemented a previously established Go/Nogo
paradigm (Niessen et al., 2017) with simultaneous electro-
encephalography (EEG) recordings. We decided to use the Go/Nogo
task (which is one of the standard tasks for this type of research), be-
cause the error detection for inhibition errors (‘Did I press the response
button or not?’) appears to be more feasible for stroke patients than
error detection in more complex response conflict errors (‘Did I press
the left or right response button?’), which is a feature of most other
tasks (e.g., Erikson Flanker task or Stroop task). The nogo-stimulus was
shining red, while seven reddish colors served as go-stimuli, with a go/
nogo ratio of 80:20 (see Fig. 2b). Participants were asked to press a
response button (LumiTouch, Burnaby, Canada) with the index finger of
their non-dominant, left hand (i.e., the ipsilesional, non-paretic hand of
patients) after the presentation of go-stimuli. After an incorrect button
press in response to a nogo-stimulus, participants were trained to in-
dicate the detection of these errors by pressing the response button a
second time. The use of only one response button and implementing
task difficulty through color discrimination (leading to an error rate of
~20%) was most convenient for the group of stroke patients. Pilot work
with different task versions suggested that, for example, multiple re-
sponse buttons or more complex rules for signaling error detection
exhausted the stroke patients. In total, 360 trials separated into six
blocks were presented using Presentation software (Neurobehavioural
Systems, version 14.5). Each trial lasted 2000 ms and was otherwise
identical for go and nogo trials (100 ms stimulus presentation, 1100 ms
blank screen, 800 ms central fixation cross). Together with a rando-
mized inter-trial interval between 600 and 1000 ms, the total task
duration was approximately 20 min (see Fig. 2a). The six blocks were
divided by breaks without predefined duration so that the breaks could
be adjusted individually to the needs of each participant. All partici-
pants were asked to press the response button as fast as possible without
mentioning accuracy. Signaling of error detection should occur after the
appearance of the fixation cross (i.e., during the interval from 1200 to
2000 ms after stimulus onset). We used delayed signaling to preclude
any confound, which could be caused by an overlap of ERP signals
evoked by the second button press in the case of detected errors (e.g.,
an additional readiness potential) (Colebatch, 2007). Thus, for incorrect
nogo trials, we differentiated between trials with two button presses
and one button press, which from now on will be labeled as a detected
and undetected error, respectively. Each participant underwent a
training session (without EEG), including feedback about accuracy be-
fore the actual task, ascertaining that all colours were perceived

Fig 1. Lesion overlay. The lesion overlay for 21 of
the 24 LH stroke patients is shown. One patient did
not give informed consent to obtain the clinical CT/
MRI images for lesion mapping, and for two pa-
tients, no clear lesion demarcation in early clinical
imaging was detectable for lesion mapping despite
persistent deficits. The overlay indicates that all
patients suffered a single LH stroke affecting the left
middle cerebral artery (MCA) territory. Color shades
represent the increasing number of overlapping le-
sions. Slices are shown with MNI- coordinates ran-
ging from −17 to 63.

Table 1
Data of stroke patients and healthy matched controls.

Patients Controls

N 24 32
Age (mean ± SD) 56.4 ± 12.5 years 56.4 ± 10.1 years
Age range 30–84 years 30–72 years
Sex 20 men, 4 women 20 men, 12 women
Clinical measures
Days after stroke 54 ± 65 (range 11–268 days)
ACL-k (max. 40, cut-off ≤ 33) 27.8 ± 10.3
KAS (max. 80, cut-off for apraxia ≤

76)
72.0 ± 12.3

MRC Scale 4.7 ± 0.5
Modified Rankin Scale 1.5 ± 1.2

Table reports means and standard deviations (SD). ACL-k = short aphasia
check list; KAS = Cologne Apraxia Screening; MRC = Medical Research
Council scale.
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correctly, and familiarizing the participant with the signalling proce-
dure (for more details of the task, see Niessen et al., 2017). For both the
healthy control and the stroke group, the experimenter then prepared
the EEG cap, followed by the execution of the Go/Nogo task with si-
multaneous EEG recordings. As pointed out above, we wanted to pre-
vent any performance impairment in stroke patients due to fatigue.
Therefore, we conducted the training session and the experimental Go/
Nogo task with the stroke patients on a second testing day.

2.3. EEG recording

EEG was recorded with a 64-channel system consisting of sintered
Ag/AgCl electrodes (Acticap, Brain Products, Germany). The interna-
tional 10–20 system served as the basis for positioning 61 electrodes on
electrode caps. The reference and ground electrodes were arranged on
the left mastoid and AFz, respectively. Vertical and horizontal electro-
oculograms (EOG) were recorded from electrodes positioned below and
above the left eye and on the outer left and right canthi. Data were
recorded with a digital BrainAmp amplifier and VisionRecorder soft-
ware (Brain Products, Germany). The sampling rate was 500 Hz. For
online filtering, we employed a high-cutoff filter (70 Hz) and a notch
filter (50 Hz).

2.4. Data and statistical analysis

Based on previous and our work, we used a minimum of six trials
per response type as an individual inclusion criterion for ERP analyses
(Niessen et al., 2017; Pontifex et al., 2010; Steele et al., 2016). As a
consequence, we will present results from response rates and stimulus-
locked ERPs from the complete sample, whereas reaction time (RT)
analyses and response-locked ERP analyses were only conducted with a
subgroup of participants with at least six (detected) error trials. The
subgroup consisted of 17 patients (aged 53.6 ± 12.2 y, 13 male) and
24 healthy controls (aged 56.0 ± 9.4 y, 15 male). The minimum
amount of trials necessary to conduct MVPA analyses was ten error
trials (in order for standard cross-validation methods to be applied; see
Bode and Stahl, 2014). In order to carry out this advanced analysis
method, we created a second subgroup of patients and controls for the
MVPA analysis consisting of 14 (out of 24) stroke patients (aged

54.9 ± 13.9 y, 11 male) and 21 (out of 32) controls (aged
56.3 ± 10.3 y, 13 male). For these participants, we collapsed data
from detected and undetected errors to increase the statistical power for
the MVPA analyses. Furthermore, due to the small number of incorrect
go trials (i.e., correct responses after go-stimuli with subsequent error-
signaling), misses, and undetected errors, we will only report response
rates for these response types, but they will not be part of the electro-
physiological analysis.

All statistical tests were Bonferroni-corrected if applicable. The
Greenhouse-Geisser correction was applied when sphericity was vio-
lated, and alpha was adjusted accordingly. In addition to frequentist
repeated-measures analysis of variances (RM ANOVAs), we also used
Bayesian RM ANOVAs and non-directional independent-samples t-tests
with a Cauchy prior of 0.707 (JASP version 0.9.0.1). We chose to report
the Bayes factor and not the more commonly used effect sizes because,
for our main results, effect sizes will be less relevant than Bayes factors
in the context of non-significant group differences. For the analyses, we
present two types of Bayes factors (BF): BF10 represents evidence for
H1, which indicates that data are likely to stem from two different
conditions/ groups rather than from the same condition/ group. In case
that BF10 was smaller than 3, we report BF01 demonstrating evidence
for H0 in favor over H1. For both cases (thus independent of being in
favor of H0 or H1), a BF of 1–3 indicates anecdotal evidence, 3–10
moderate evidence, 10–30 strong, and more than 30 presents very
strong evidence (Wagenmakers et al., 2016).

2.4.1. Behavioral Data: Neuropsychological assessment and Go/Nogo task
The individual median RTs for detected errors after nogo-stimuli

and for correct responses after go-stimuli were computed for the subset
of 17 S patients and 24 controls. Post-error behavioral adjustments
were operationalized as median RTs on trials following errors (post-
error slowing; PES) minus median RTs on trials following correct trials
(post-correct slowing; PCS) (Rabbitt, 1966) and will be referred to as
ΔPES. The RT of the second button presses were only investigated to
ensure that participants were responding within the delay interval and
will not be discussed further. The mean of the individual median RTs
was then computed, and relative response rates were calculated for go-
and nogo-stimuli separately. Finally, we computed an error detection
rate, which is the percentage of all reported errors relative to all errors

Fig 2. Go/Nogo task. A) The procedure for go and
nogo trials was identical, apart from the instruction
to press a button after the presentation of go-stimuli
and to withhold a response after nogo-stimuli.
Stimuli were presented for 100 ms, followed by a
blank screen for 1100 ms. The appearance of a
fixation cross signaled that participants were al-
lowed to press the response button a second time in
the case of detected errors. A random inter-trial in-
terval (ITI) of 600–1000 ms was used, during which
the fixation cross was presented as well. B)
Illustrations of go- and nogo-stimuli (for details on
RGB values of the different colors, see Niessen et al.,
2017).
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made on nogo trials. All task-related variables (RTs of correct responses
and detected errors, RTs reflecting ΔPES, error rate, and error detection
rate) were submitted to an independent-samples t-test assessing po-
tential group differences.

Time to completion in the Trail Making Test (TMT) was compared
between groups with independent-sample t-tests for TMT Part A, TMT
Part B, and the quotient thereof. Further, descriptive statistics of pa-
tients’ clinical scores are presented (see Table 1).

2.4.2. Electrophysiological data
Pre-processing of the electrophysiological data and analysis on ERPs

were conducted with BrainVision Analyzer 2. We applied the current
source density transformations (Perrin et al., 1989) before conducting
the ERP analyses because those transformations provide a superior
spatial resolution in contrast to raw data (e.g., Stahl, 2010), and the
transformed signals are independent of the mastoid references.

2.4.2.1. Stimulus-locked ERPs. We were not only interested in response-
locked ERPs, but we also wanted to compare neural activity associated
with cognitive processes before error commission reflecting the neural
input fed into the performance monitoring system. For that, we
analyzed two classical ERP components associated with stimulus
processing, namely the N2 and the P3. These stimulus-locked ERPs of
correct responses to go-stimuli and correct withholds after nogo-stimuli
were examined for all participants. The associated epochs for those two
response types ranged from 100 ms before and 800 ms after stimulus
onset. The interval of 100 ms preceding stimulus-onset was used for
baseline correction. All data were screened for artifacts; trials exceeding
minimum or maximum amplitudes of ± 150 μV were rejected from
further analyses. Ocular corrections were performed before artifact
rejection (Gratton et al., 1983). The electrode site of interest was the
centrally located FCz, which has been suggested to capture the
inhibitory N2 (Enriquez-Geppert et al., 2010) and the attention-
related P3a (Polich, 2007). Amplitudes and latencies of the N2 and
P3 components were extracted at the most negative and positive peak in
a time window from 200 to 350 ms and from 350 to 500 ms,
respectively.

We compared the peak amplitudes and latencies of two components
(N2, P3) by employing separate RM ANOVAs with the between-subjects
factor group and the within-subject factor response type (correct re-
sponses and correct withholds for stimulus-locked data; correct re-
sponses and detected errors for response-locked data).

2.4.2.2. Response-locked ERPs. For 17 patients1 and 24 healthy
controls, ERPs for the two response types correct responses after go-
stimuli and detected errors2 after nogo-stimuli were averaged time-
locked to the onset of the response. These response types were
evaluated in epochs that ranged from 100 ms before and 600 ms after
a response occurred. Pre-processing of the response-locked ERPs
regarding baseline correction, artifact rejection, and ocular correction
were performed as described for the stimulus-locked ERPs. Peak
amplitudes were extracted from each participant's grand average
separately for both response types from the electrode sites FCz and
Cz, since they best represented the Ne/ERN and Pe, respectively. Ne/
ERN peak amplitude and latency (CRN for correct responses) were
quantified as the most negative peak in the interval from 0 to 150 ms

after response onset. Pe peak amplitude (Pc for correct responses) was
quantified as the most positive peak in the time window from 150 to
300 ms after response onset.

Statistical analyses were performed as described for the stimulus-
locked ERPs by using peak amplitudes and latencies of the two re-
sponse-locked components Ne/ERN and Pe for errors and CRN and Pc
for correct responses.

2.4.2.3. Additional analyses. To ensure that our findings from response-
locked data reflecting processes of performance monitoring were valid
and robust, additional analyses of the area under the curve and peak-to-
peak calculations were performed for response-locked ERPs for errors
and correct responses. The area under the curve was extracted for the
same time windows as had been used for peak extraction of amplitude
and latencies from electrode FCz. Peak-to-peak was represented by the
difference in amplitude and latency between Ne/ERN and Pe for errors
(i.e., Ne/ERN amplitudes/ latencies were subtracted from Pe
amplitudes/ latencies). Statistical comparisons were conducted
employing RM ANOVAs with the factors group and response type for
the area under the curve and peak-to-peak separately.

The area under the curve for the response types correct responses
and errors were submitted to an RM ANOVA with the between-subject
factor group and the within-subject factor response type. Peak-to-peak
values were statistically compared with an independent-samples t-test.

2.4.2.4. Multivariate pattern classification. For the multivariate pattern
classification analysis (MVPA) of the response-locked data, we used the
MATLAB-based Decision Decoding ToolBOX (DDTBOX; Bode et al.,
2018) to investigate whether there were group differences between
patients and controls in how well spatially distributed patterns of ERPs
could be used to directly predict response types (i.e., errors and correct
responses). In other words, we asked whether the underlying patterns
of neural signals contained different amounts of error-related
information across time between groups. For each participant
separately, we trained a classifier to identify brain activity patterns
for small analysis time windows (in particular leading up to the
response onset; Bode and Stahl, 2014) to predict the response type in
a given trial and averaged the resulting classification accuracy
separately for each group. Then, we statistically tested the time
course of classification accuracies between patients and controls using
a series of t-tests for independent samples.

Data pre-processing for the response-locked analysis started with
grouping correct responses and errors for each participant. To assure an
identical amount of trials per classification group, the number of trials
was matched to the response type with the fewest trials (the minimum
amount of trials per response type was set to 10). The epochs of the
response-locked data ranged from −100 to 300 ms, because we aimed
to detect potential differences in classification accuracies before and
after the response onset, given that these signals might be important
neural precursors to post-response error-related processing (Bode and
Stahl, 2014). Within these epochs, we constructed analysis windows of
10 ms width for a spatial decoding analysis (thus containing 5 data
points per analysis time window) that were moved in non-overlapping
10 ms steps through the entire trial. Each analysis window contained
data from all 61 EEG channels (but not the EOG channels), hence
61 × 5 = 305 data-points in total. Starting with the first analysis time
window, a linear support vector machine classifier (standard regular-
ization parameter C = 1) as implemented in the LIBSVM toolbox
(Chang and Lin, 2011) was then trained on the data to define a decision
boundary which optimally discriminated between activity patterns as-
sociated with the two examined response types (note that these ana-
lyses were conducted separately for each participant). For this, a
“training set” consisted of 90% of trials randomly drawn from the
overall data set. The remaining 10% of trials was used as an in-
dependent “test set” to explore whether the trained classifier could
predict the corresponding response type from the EEG data. The

1 Please note that those 17 stroke patients included in the analysis of re-
sponse-locked ERPs and the seven stroke patients excluded were not sig-
nificantly different from each other in terms of demography (e.g., age) or stroke
severity as revealed by non-parametric t-tests. For more information, please see
the supplementary Table 1.

2 Supplementary Analysis 1 presents the main analysis of response-locked
ERPs for detected and undetected errors combined, thus independent of error
detection).
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resulting classification accuracy (i.e., how well this 10% of test data
could be predicted above chance level) was noted, and the procedure
was repeated in a classical ten-fold cross-validation procedure, which
means that each subset of 10% of the data served as the test set once
while the remaining 90% of data was used as the independent training
set. To further prevent potential drawing biases, which could have
occurred by allocating the data to the ten sets, the entire ten-fold cross-
validation process was additionally repeated ten times (i.e., the random
allocation into ten data sets was independently repeated ten times),
which led to 100 analyses per time point in total. The prediction ac-
curacies of these 100 analyses were then averaged, leaving one classi-
fication accuracy score per time window per participant (see Bode
et al., 2018, for details on the classification procedure). The group
averages of these very conservatively estimated classification ac-
curacies could then be computed and statistically compared between
patients and controls for each time point.

For comparisons of the classification accuracies for each analysis
time window with chance level, a shuffled-labels analysis was con-
ducted as implemented in DDTBOX. In short, an identical ten-fold cross-
validation analysis with ten iterations was computed for each analysis
time window and each participant, precisely as described for the main
analysis, using the same data and “labels” for response types. The dif-
ference, however, was that the assignment of data (i.e., trials) to labels
(i.e., trial type) was randomly shuffled for each cross-validation step
(see Bode et al., 2018; Bode and Stahl, 2014, for details). The result is
an empirical (control) distribution of classification results for the case
that the association between data and response types were truly
random. Paired-samples t-tests were calculated for each time point for
each group separately to test for differences in classification accuracy
between real and shuffled label classification results to determine when
error-related information was present above chance. The next and
crucial statistical test then involved again using independent-samples t-
tests to test for a difference in (real) classification accuracies (i.e., error-
related information) between patient and control groups. The adjusted
critical alpha to correct for multiple comparisons was p = .00125 for
this analysis (corrected for 40 time points).

2.4.3. Influence of clinical and cognitive profile
Since a secondary interest of this study was to investigate a potential

influence of stroke-related deficits on performance monitoring, we
computed Pearson correlations between clinical measures and task-re-
lated variables for the patient group. We further applied linear re-
gression analyses to further investigate the variables that showed sig-
nificant correlations. We used one simple forward regression to predict
the latency of ΔNe/ERN (dependent variable) based on lesion size
(independent variable). To correct for multiple comparisons, the ad-
justed critical alpha level for the correlation analyses was p = .025.

We used lesion size and days post-stroke, and correlated those with
behavioral (RT, error rate, and error detection rate) as well as neural
measures of the Go/Nogo task. For the interested reader, the same
correlational analysis can be found for the influence of apraxia and
aphasia strength in the Supplementary Analysis 2. For the neural
variables, we aimed to obtain information about neural indices in-
dependent of the individual baseline activity. We, therefore, computed
difference scores for the stimulus-locked (ΔN2 and ΔP3 = correct
withholds – correct responses) and response-locked ERPs (ΔNe/ERN
and ΔPe = errors – correct responses) and used those for the correlation
analysis. As a wide range of days post-stroke was present in our final
patient sample, we additionally categorized our patients as sub-acute
when they had suffered their stroke within the past 4–28 days (i.e.,
within 4 weeks post-stroke) and as being in their chronic phase there-
after (i.e., more than 4 weeks post-stroke). In addition to the correla-
tional approach, we tested the influence of time after stroke on the
above mentioned behavioural and neural measures by applying a two-
samples t-test to the two sub-groups of sub-acute versus chronic pa-
tients.

3. Results

Unless stated otherwise, all results are expressed as the mean ±
standard error of the mean (SEM).

3.1. Behavior

Neuropsychological assessment. According to the KAS (max. 80
points, cut-off for apraxia ≤76), 11 out of 24 patients showed symp-
toms of apraxia (72 ± 3 points, range: 24 to 80). Out of our 24 patients
(28 ± 2 points, range: 5 to 40), fifteen patients were aphasic as in-
dicated by the ACL-k (max. 40 points, cut-off ≤33). Of those, seven
patients were suffering from expressive aphasia only, while eight pa-
tients had expressive and receptive language deficits. The degree of
paresis of the contralesional hand (4.7 ± 0.1 points on the MRC scale:
perfect/ unaffected score = 5) and the general impairment after stroke
(1.5 ± 0.3 points of the mRS: perfect/ unaffected score = 0, max.
impairment = 5) were mild to moderate. Thus, the current sample of
left hemisphere stroke patients suffered from remarkable apraxic and
aphasic deficits, whereas their deficits were less pronounced regarding
hemiparesis and general impairment.

Further, the current LH stroke patients exhibited severe deficits in
all domains of executive control assessed by the TMT. Five participants
were not able to complete part B of the TMT in the available time.
Compared to healthy controls, stroke patients were generally slower
[TMT Part A: patients 48 ± 6 s, controls 29 ± 2 s; t(54) = 3.19,
p < .01, BF10 = 38] and were more vulnerable to interference [TMT
Part B: patients 132 ± 15 s, controls 64 ± 5 s; t(49) = 4.15,
p < .001, BF10 = 1563]. Correcting for motor speed (which is sup-
posed to be measured with Part A), the TMT quotient reflecting relative
interference was still significantly higher for patients than controls
[TMT quotient: patients 3.6 ± 0.4 s, controls 2.3 ± 0.1 s; t
(49) = 3.30, p < .01, BF10 = 132].

Behavioral parameters of the Go/Nogo task3. For the Go/Nogo task,
response rates were evaluated as relative percentages separately for
each stimulus type. On go trials, the majority of responses were correct
for both patients (95.0 ± 2.0%) and controls (95.0 ± 0.9%). Hardly
any incorrect go trials were observed for patients (0.9 ± 0.3%) and for
controls (0.6 ± 0.1%), while misses after go trials occurred more
often, but similarly in patients (4.1 ± 1.7%) and controls
(4.8 ± 0.9%). Group differences could not be found for any of these
response types [t(54) = 0.19, p = .85, BF01 = 3.6; t(54) = 0.91,
p = .37, BF01 = 2.4; and t(54) = −0.38, p = .71, BF01 = 3.5, re-
spectively]. Compared to go trials, the general accuracy on nogo trials
was lower, but similar for stroke patients (22.1 ± 3.5% overall errors)
and healthy controls [24.3 ± 3.3%; t(54) = −0.46, p = .65,
BF01 = 3.4]. The error detection rate for errors after nogo-stimuli, i.e.,
the relative amount of detected errors, was again similar for both pa-
tients (77.8 ± 6.9% detected errors) and controls [78.3 ± 4.8%; t
(54) = −0.07, p= .94, BF01 = 3.7; see Fig. 3 and Table 2]. Additional
explorative analyses revealed that the detection of conducted errors
became generally better with time on task, which was independent of
group (but please see Supplementary Fig. S1 for more details).

Regarding RT, there was no significant group difference for correct
responses after go stimuli, from now on referred to as ‘baseline RT’
[patients: 433 ± 15 ms vs. controls: 416 ± 15 ms; t(39) = 0.75,
p = .46, BF01 = 2.6]. RTs of errors were shorter than RTs of correct
responses, but the mean RT was again similar for patients
(352 ± 16 ms) and controls [350 ± 16 ms; t(39) = 0.05, p = .96,

3 Please note that we also assessed d’ as conceptualized in signal detection
theory (i.e., z(hit rate) – z(false alarms)) as this is a standardized measure for
performance on the Go/Nogo task. Again, d’ was not significantly different
between the LH stroke patients and healthy controls. For the sake of brevity, we
do not report these results in more detail.
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BF01 = 3.2]. Finally, PES could be observed for both groups, with a
similar slowing of responses in trials following errors for both groups
[ΔPES; patients: 65 ± 18 ms; controls: 86 ± 19 ms; t(38) = −0.77,
p = .45, BF01 = 2.5]. Thus, we can conclude that at the behavioral
level, stroke patients were able to perform the Go/Nogo task as well as
healthy controls, despite persistent deficits (e.g., apraxia, aphasia, and
executive functions).

3.2. Electrophysiological data

3.2.1. Stimulus-locked ERPs
The RM ANOVA for N2 amplitudes for correct go and correct nogo

trials showed a significant main effect of response type [F(1,
53) = 8.05, p < .01, BF10 = 9.6], but neither a significant main effect
of group [patients: −21.5 ± 3.2 μV/m2, controls –22.5 ± 2.7 μV/m2;
F(1, 53) = 0.06, p= .81, BF01 = 2.1] nor a significant interaction [F(1,
53) = 1.49, p = .23, BF01 = 1.9]. Thus, independent of group, the N2
amplitude was generally larger following nogo-stimuli
(–23.7 ± 2.2 μV/m2) than go-stimuli (−20.3 ± 2.0 μV/m2). When
examining N2 latency, the main effect of response type [F(1,
53) = 0.37, p = .55, BF01 = 3.7] was not significant, while a sig-
nificant main effect of group emerged [F(1, 53) = 7.49, p < .01,
BF10 = 5.4]. This suggests that processing was slower for patients
(303 ± 6 ms) than for controls (280 ± 5 ms). The interaction was not
significant [F(1, 53) = 1.24, p = .27, BF01 = 2.2].

Analysis of the P3 amplitudes revealed two significant main effects.

The main effect of response type [F(1, 53) = 36.69, p < .001,
BF10 = 166373] indicated that the P3 amplitude was generally larger
following nogo- than go-stimuli (24.8 ± 2.8 μV/m2 and
11.3 ± 1.9 μV/m2, respectively). The main effect of group [F(1,
53) = 18.89, p < .001, BF10 = 326] revealed that independent of
response type, stroke patients had a lower P3 amplitude compared to
controls (9.0 ± 3.2 μV/m2 and 27.1 ± 2.7 μV/m2, respectively). The
interaction between response type and group was not significant [F(1,
53) = 0.47, p = .49, BF01 = 3.0]. Regarding P3 latency, we only ob-
served a significant main effect of response type [F(1, 53) = 9.86,
p < .01, BF10 = 15], while the main effect of group [patients:
453 ± 6 ms, controls: 453 ± 5 ms; F(1, 53) = 0.01, p = .96,
BF01 = 3.5] and the interaction effect [F(1, 53) = 0.02, p = .89,
BF01 = 3.9] were not significant. The main effect of response type
demonstrated a faster processing of go-stimuli (445 ± 5 ms) in con-
trast to nogo-stimuli (460 ± 4 ms). The results of N2 and P3 compo-
nents are depicted in Fig. 4a.

3.2.2. Response-locked ERPs
The RM ANOVA for Ne/ERN amplitudes on the respective subgroup

of stroke patients (n = 17) and controls (n = 24) demonstrated a
significant main effect of response type [F(1, 38) = 10.29, p < .01,
BF10 = 23]. This was due to larger amplitude after errors
(–23.5 ± 3.3 μV/m2) than after correct responses (−11.8 ± 1.6 μV/
m2). However, we did not observe a main effect of group [F(1,
38) = 1.18, p= .29, BF01 = 2.6], hence similar amplitudes for patients
(−19.7 ± 2.9 μV/m2) and controls (−15.6 ± 2.5 μV/m2), and no
significant interaction effect [F(1, 38) = 1.31, p = .26, BF01 = 1.9].
Please see Table 3 for amplitude sizes of the Ne/ERN and CRN for both
groups separately. Results for Ne/ERN latency were very similar: a
significant main effect of response type [F(1, 38) = 10.24, p < .01,
BF10 = 33] suggested faster processing of correct responses
(36 ± 3 ms) compared to errors (51 ± 4 ms) for both stroke patients
and healthy controls. The main effect of group [patients: 46 ± 4 ms,
controls: 42 ± 4 ms; F(1, 38) = 0.43, p = .52, BF01 = 3.1] and the
interaction [F(1, 38) = 0.17, p = .68, BF01 = 3.1] were again non-
significant.

Regarding Pe amplitudes, we observed a significant main effect of
response type [F(1, 38) = 21.20, p < .001, BF10 = 959], while the
main effect of group [patients: 30.0 ± 5.0 μV/m2, controls
38.0 ± 4.2 μV/m2; F(1, 38) = 1.56, p = .22, BF01 = 1.9] and the
interaction between response type and group [F(1, 38) = 0.01, p= .92,
BF01 = 2.5] were not significant. The main effect of response type
suggested larger Pe amplitudes after errors (43.8 ± 4.6 μV/m2) than
after correct responses (24.1 ± 3.0 μV/m2) which was similar for
patients and controls. Finally, for Pe latency we did not observe any
significant differences between response types [F(1, 38) = 2.54,

Fig 3. Behavioral results for error rate and error detection rate. A) The boxplot shows the percentage of all errors made after nogo-stimuli for patients and controls
separately, that were significantly different from each other. B) The percentage of all detected errors amongst all errors made after nogo trials is displayed, again
showing no group difference. For both boxplots, the thick line indicates the group median and error bars represent 95% confidence intervals.

Table 2
Overview of behavioral data.

Patients Controls t-tests
significance

Analysis of Trail Making
Test

N = 24 N = 32

TMT A 48.3 ± 5.9 28.6 ± 1.9 p < .01
TMT B 131.6 ± 15.3 64.2 ± 5.5 p < .001
Analysis of response types N = 24 N = 32
Incorrect go trials (in %) 0.9 ± 0.3 0.6 ± 0.1 p = .55
Misses on go trials (in %) 4.1 ± 1.7 4.8 ± 0.9 p = .75
All errors on nogo trials (in

%)
22.1 ± 3.5 24.3 ± 3.3 p = .54

Detected errors of all nogo
errors (in %)

77.8 ± 6.9 78.3 ± 4.8 p = .42

Analyses of reaction times N = 17 N = 24
Baseline RT (go correct) 433 ± 15 ms 416 ± 15 ms p = .46
RT for detected errors 352 ± 16 ms 350 ± 16 ms p = .96
ΔPES after detected errors 65 ± 18 ms 86 ± 19 ms p = .44

Table reports means and standard error of the mean (SEM). TMT = Trail
Making Test.
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p = .12, BF01 = 1.2], groups [patients: 218 ± 9 ms, controls:
229 ± 8 ms; F(1, 38) = 0.83, p = .37, BF01 = 2.5], and also no
significant interaction between response type and group [F(1,
38) = 0.05, p = .83, BF01 = 3.1]. The results of Ne/ERN and Pe
components are shown in Fig. 4b.

3.2.3. Additional analyses on response-locked data
Given that the previous group comparisons for the response-locked

ERPs were non-significant, we conducted additional analyses using the
area under the curve and peak-to-peak as alternative measures to make
sure that we did not overlook any differences that were due to the
choice of analysis techniques. However, there were again no significant
differences between groups for area under the curve of the Ne/ERN
[patients: 13.7 ± 1.6, controls: 15.1 ± 1.4; F(1, 38) = 0.40, p = .53,

BF01 = 3.0] and the Pe [patients: 22.0 ± 3.8, controls: 31.9 ± 3.2; F
(1, 38) = 3.93, p = .06, BF01 = 0.8]. The interactions between group
and response type were also not significant [Ne/ERN: F(1, 38) = 1.27,
p = .27, BF01 = 1.5, Pe: F(1, 38) = 0.68, p = .42, BF01 = 2.3, re-
spectively]. This pattern was further supported by the results of the
peak-to-peak analyses. We did not detect any significant group differ-
ence regarding build-up from Ne/ERN to Pe component in contrast to
the build-up from CRN to PC, neither in terms of amplitude [patients:
−18.6 ± 3.6 µV, controls: −17.4 ± 3.1 µV; F(1, 38) = 0.08,
p = .79, BF01 = 3.9] nor in terms of latency [patients: 187 ± 9 ms,
controls: 172 ± 8 ms; F(1, 38) = 1.42, p = .24, BF01 = 3.1]. Again,
the interaction terms between group and response type were also not
significant [amplitude: F(1, 38) = 1.40, p = .25, BF01 = 0.7, latency: F
(1, 38) = 0.08, p = .78, BF01 = 0.3, respectively].

Hence, irrespective of analysis method, all our results suggested that
stroke patients showed a highly similar pattern of results in the Go/
Nogo task compared to healthy controls.4

3.2.4. Multivariate pattern analysis
Highly sensitive MVPA was used to identify error-related

Fig 4. Main results of stimulus- and response-locked
ERPs A) The N2 and P3 components are shown for
correct responses to go stimuli (green) and correct
withholds after nogo-stimuli (red) for all partici-
pants. Dashed lines represent the patient group, and
the bold line represents healthy controls.
Independent of response type, the N2 peaked later in
patients than in controls. The P3, being larger in
amplitude for nogo than go trials, was smaller in
amplitude for patients than for controls. B) For all
participants who made at least six detected errors
(17 patients and 24 controls), the Ne/ERN and Pe
components are illustrated for correct responses
after go-stimuli (green) and detected errors (red).
The Ne/ERN was larger for errors than for correct
responses, but there was no significant difference
between the groups. The same was true for the Pe
component for which again no significant group
difference emerged. For illustrative purposes only,
results are plotted using a high cut-off filter (10 Hz,
12 dB/oct). (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)

Table 3
Peak amplitudes of response-locked ERPs for correct and error trials.

Patients Controls

CRN [µV] −11.8 ± 1.9 −12.0 ± 2.3
Ne/ERN [µV] −27.7 ± 5.9 −19.4 ± 3.8
Pc [µV] 20.3 ± 4.0 27.0 ± 4.1
Pe [µV] 39.5 ± 5.9 48.1 ± 6.7

The table reports means and standard error of the mean (SEM). Please note that
there was no significant difference between the groups.

4 Note that we also re-analysed our data without the CSD transformation, i.e.,
with the raw data, in case that this might have biased the results. However, we
again found the same pattern of results and no group differences on any mea-
sure (data not shown).
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information represented in distributed brain activity patterns for the
different response types during the time intervals of interest. First, for
all participants combined, we found a significant prediction of response
type (correct vs error) in time windows immediately following re-
sponses (from 0 to 20 ms and 40–80 ms; all p < .05). These effects
were expected, because the time window corresponds to the time
window in which the Ne/ERN peaks. After demonstrating that in-
formation about the response type was present and decodable in the
EEG data, we compared the classification accuracies of stroke patients
and healthy controls within these time windows. Crucially, we did not
find any difference for patients and controls in any of these time win-
dows (all p > .14, see Fig. 5). In summary, the classifier showed si-
milar performance for both groups, indicating that the underlying brain
activity in patients and controls was similarly suited to enable the
classifier to discriminate correct responses and error responses in re-
sponse-locked brain activity.

3.3. Influence of clinical and cognitive profile

The time interval post-stroke (in days) did not significantly correlate
with any task-related measure (all p > .05; note Type I error-corrected
p level = 0.025). For lesion size, we observed a significant association
with the latency of the ΔNe/ERN (r = 0.63, p = .009) indicating that
patients with large lesion sizes needed longer to detect an error (for all
other correlations p > .025). Linear regression analyses confirmed
results from the correlation analyses. The regression of the latency of
the ΔNe/ERN by lesion size was significant (F(1,12) = 9.50, p < .01,
r2 = 0.44).

For brevity, we here only report significant correlations, but please
see Table 4 for a detailed summary of all correlational analyses.

The sub-group analysis of patients in the sub-acute and chronic
phase after stroke revealed a significant group difference for the ΔNe/
ERN amplitude size only (t(15) = −2.33, p = .034; all other p > .29).
Patients in their sub-acute phase showed no significant difference in the

Ne/ERN amplitude for correct responses (−13.57 ± 1.79) and errors
(−15.26 ± 7.75), while chronic patients showed the commonly ob-
served pattern of increased Ne/ERN amplitudes for errors
(−38.67 ± 7.15) as compared to correct responses (−10.14 ± 3.28).
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Fig. 5. Main results of response-locked MVPA. Results of the MVPA on response-locked data are illustrated as the percentage of classification accuracy (i.e.,
indicating how well errors and correct responses could be predicted from small time windows of spatially distributed brain activity patterns). At time 0 (‘Response’),
the (correct or incorrect) button press occurred. In this illustration, the x-axis represents the chance level. Mean accuracies are shown for patients (red line) and
controls (blue line) separately, with error bars indicating standard errors of the mean. Classification accuracies did not differ between groups for any of the tested
time windows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Results of correlational analysis.

Lesion size Days post stroke

Baseline RT r = 0.23
p = .31

r = −0.37
p = .07

Error rate r = −0.43
p = .05

r = 0.10
p = .63

Error detection rate r = 0.30
p = .19

r = 0.11
p = .61

ΔN2 amplitude r = 0.16
p = .48

r = −0.15
p = .47

ΔN2 latency r = −0.10
p = .67

r = −0.29
p = .17

ΔP3 amplitude r = 0.14
p = .54

r = 0.24
p = .26

ΔP3 latency r = 0.20
p = .38

r = 0.03
p = .90

ΔNe/ERN amplitude r = 0.12
p = .68

r = 0.41
p = .10

ΔNe/ERN latency r = 0.67
p = .01

r = 0.30
p = .24

ΔPe amplitude r = −0.45
p = .11

r = −0.40
p = .11

ΔPe latency r = −0.40
p = .16

r = −0.48
p = .05

Table shows the correlation coefficients and p-values of the corresponding
variables. Coefficients printed in bold are significant according to the Type I
error-corrected p level.
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4. Discussion

4.1. Summary of findings

Using a simplified color-Go/Nogo-task, we investigated the integrity
of performance monitoring and error detection in a large sample of LH
stroke patients. The left MCA territory, which is the most frequently
damaged stroke territory (Bogousslavsky et al., 1988), was affected in
all patients. As confirmed by neuropsychological tests, patients ex-
perienced deficits of motor cognition, language processing, and ex-
ecutive functions. Our electrophysiological data also indicated deficits
in stimulus processing in the LH stroke patients compared to the con-
trols: Patients were slower in the processing of the two stimulus types
indicated by a later peaking of the N2. Further, the demand for more
attentional resources related to stimulus-elicited conflict (reflected by
the reduced P3/ P3a amplitude; Polich, 2007) was less distinct in pa-
tients. The N2 is commonly associated with processes of inhibition
(Falkenstein et al., 1999) and conflict processing (Groom and Cragg,
2015). A delay in the initiation of stimulus processing, but also deficits
with conflict detection and increased demand for attentional resources,
could, therefore, hint at apparent, subthreshold difficulties of patients
with the Go/Nogo task that were nevertheless not strong enough to
result in overt performance deficits.

Intriguingly, we did not find any abnormalities in the behavioral
markers of performance monitoring in the Go/Nogo task for the LH
stroke patients despite their obvious clinical symptoms. Compared to
healthy age-matched controls, patients showed both a similar error rate
and a similar error detection rate. There was neither a general RT dif-
ference (i.e., for correct responses after go stimuli), nor a differential RT
pattern for the two response types. Both groups were comparable, re-
sponding faster on error trials compared to correct trials, and both
groups slowed down to a similar degree immediately after an error (i.e.,
similar PES). These findings indicate similar error detection perfor-
mance and behavioral adjustments after errors in the two groups. This
was surprising considering that the largest lesion overlap in our sample
was located in the left insula. Previous studies suggested that the insula
may constitute the neural correlate of anosognosia (Moro et al., 2011),
which is defined as a diminished deficit awareness due to brain damage
(Vossel et al., 2012). While anosognosia has classically been related to
right hemisphere damage, recent reports showed that anosognosia also
occurs for aphasia (Cocchini et al., 2009) and apraxia (Kusch et al.,
2018) after left hemisphere stroke. Thus, given the conceptual simila-
rities of error awareness and anosognosia, we expected to observe
deficits in error awareness in our patient sample. Besides, the fact that
LH stroke patients showed not even slower responses, in general, was
particularly notable given that nearly half of the sample suffered from
apraxia, and given that they were significantly slower in finishing the
TMT (on average 20 s and 70 s slower on Part A and B, respectively).
We also tested whether the severity of apraxia and aphasia influence
the performance parameters and neural correlates related to the Go/
Nogo task (Canzano et al., 2014; Kusch et al., 2018). We found longer
RTs with stronger apraxia and aphasia, but interestingly no further
influence on behavioural or neural measures related to error detection.
We report and discuss these analyses in more detail in the Supplement
(Supplementary Analysis 2).

The lack of significant differences in behavior between healthy
control and stroke groups in our Go/Nogo task was surprising because
several studies reported behavioral deficits in response tasks such as the
Erikson flanker task and the Stroop task (e.g., Swick and Turken, 2002;
Wessel et al., 2014). See Supplementary Table 2 for a direct comparison
of all EEG studies testing error processing in stroke patients. These
striking behavioral findings were further supported by the ERP ana-
lyses, which showed no group differences in neural correlates of per-
formance monitoring and error processing (i.e., response-related ERP
components, Ne/ERN, and Pe). To validate our findings, we used dif-
ferent ERP measures, yet no group difference could be identified. Even

the very sensitive MVPA, which utilizes the entire spatially distributed
activity across all scalp electrodes and detects subtle information that
would otherwise be overlooked (e.g., Bode et al., 2012; Bode and Stahl,
2014), did not find any group differences in error-related information
neither before nor after the response. This results remained even when
a very liberal statistical threshold was applied. The information time
course was well above chance level for both groups but highly similar,
pointing to preserved performance monitoring in our patients.

Several new and important questions arise from our current find-
ings: Why did our results not mirror previous findings? Why did we find
a difference in early, stimulus-related but not in late, response-related
indicators of cognitive processing? Moreover, what do the findings
mean for the underlying basic performance monitoring processes of LH
stroke patients?

4.2. Divergence of our findings from previous studies

Two critical factors that might have led to different – and pre-
sumably less biased – findings compared to previous studies are briefly
discussed here.

One crucial improvement of our study was the standardization of
the error signaling procedure for patients, which is necessary for es-
tablishing a valid association between error detection and the Pe
component (Maier et al., 2015). Reported abnormalities of the Pe am-
plitude in some stroke patient studies might rely on the lack of assessing
patients’ error detection (e.g., Ullsperger, 2006; Ullsperger et al., 2002;
Wessel et al., 2014). Without an indicator of error detection, a reduced
Pe amplitude in one group might reflect (hidden) group differences in
error awareness. Since most previous experimental tasks did not cap-
ture this process explicitly (for an exception see Maier et al., 2015),
reported “abnormalities” in Pe amplitudes have to be interpreted with
caution. Importantly, our standardized approach confirmed the asso-
ciation between error awareness and the Pe amplitude and showed at
both the behavioral and the neural level that this process was un-
affected by LH stroke.

The second advantage of our task was the use of non-linguistic sti-
muli. To substantiate the importance of this factor, we want to draw
attention to some inconsistencies in the recent literature: Whereas some
studies also found similar error rates for patients and controls, other
studies reported an increased amount of errors in patients (see
Supplementary Table 2). Interestingly, all studies demonstrating ele-
vated error rates in patients used linguistic stimuli (letters or words,
Gehring and Knight, 2000; Swick and Turken, 2002; Wessel et al.,
2014). Given that the majority of these patients suffered from LH
stroke, the aphasic deficits common after LH stroke most likely im-
paired processing of linguistic stimuli and thereby led to increased error
rates. Unfortunately, these studies reported no data concerning the
assessment of aphasia. Thus, we can only speculate that elevated error
rates of stroke patients might have been a result of stroke-related cog-
nitive (here: aphasic) deficits rather than being related to performance
monitoring per se.

More generally, however, the diverging findings might not only
result from varying methods but could also stem from conceptual dif-
ferences (e.g., action types, task difficulty). The (preserved) awareness
of errors in simple actions (i.e., button presses) differs from the (im-
paired) error awareness for complex actions (i.e., performing gestures;
Canzano et al., 2014; Howard et al., 2019; Kusch et al., 2018). Further,
differences in task difficulty could explain different performance results
in stroke patients and controls, if patients were pushed to the limit of
their cognitive capacity (Remington and Loft, 2015). Finally, previous
studies may have suffered from relatively low statistical power due to
small sample sizes resulting in the inability to differentiate between the
Ne/ERN and CRN in their patient groups (e.g., Ullsperger and Cramon,
2006). The current large patient sample allowed a clear differentiation
between Ne/ERN and CRN. Moreover, the variance (e.g., of error rates;
see Fig. 3) was similar between the current LH stroke patients and
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healthy controls. Thus, differences in variance cannot account for the
lack of significant group differences.

4.3. Stroke-induced alterations in stimulus-related but not in response-
related processing

The fact that we did not observe alterations of the response-related
ERP components in stroke patients was especially striking, considering
that both stimulus-related ERP components were abnormal in patients as
compared to controls. The alterations of N2 and P3 imply that the
presented stimuli were processed and evaluated less efficiently in LH
stroke patients, and it is, therefore, reasonable to assume that this
generated a different neural input for the performance monitoring
system. Given that we did not observe any successive changes (neither
concerning behavior nor response-locked processes), it follows that the
observed deficits in stimulus processing and evaluation were success-
fully compensated in the LH stroke patients. It is widely accepted that
under excessive task demands, a breakdown of performance can be
observed in patients (Price and Friston, 1999). Simplifying the Go/
Nogo task as much as we did allowed us to specifically test the cognitive
functions of interest, i.e., performance monitoring and error proces-
sing/ detection in simple actions. More complex tasks also involve re-
lated cognitive functions such as working memory (Wessel et al., 2014),
which was shown to impede error processing and error detection in
particular (Maier and Steinhauser, 2017). Such interdependencies of
multiple cognitive functions during a given task, as well as the se-
paration of these functions, are frequent and challenging problems of
studies investigating cognitive control in patients (Fellows, 2017) – a
challenge that we successfully met with our current task. Hence, our
findings suggest that even under circumstances in which stimulus
processing is sub-optimal and demands more resources for stroke pa-
tients, the general performance monitoring system can be preserved.

4.4. Significance of findings for the processes underlying basic performance
monitoring in LH stroke patients

In previous patient studies of error processing, patients were in-
cluded based on their lesion location in order to elucidate the in-
volvement of specific brain regions in performance monitoring pro-
cesses (see Supplementary Table 2). In our study, the enrolled stroke
patients were intended to represent the majority of patients suffering a
left hemisphere stroke (Bogousslavsky et al., 1988), which we con-
firmed by clinical, neuropsychological, and imaging data. For this more
representative group of LH stroke patients, we demonstrated using both
standard and advanced analysis techniques that the basic performance
monitoring was intact. Interestingly, the explorative analysis between
the LH patients in their sub-acute and chronic phase after stroke re-
vealed no difference between the Ne/ERN and CRN amplitude in sub-
acute patients, while chronic patients showed the commonly observed
pattern of increased Ne/ERN amplitudes compared to CRN amplitudes.
This finding is in contrast with previous studies, which reported absent
differences between the Ne/ERN and CRN in their patients, who were
all in their chronic phase (e.g., Ullsperger and Cramon, 2006; Wessel
et al., 2014). Due to the cross-sectional design of our study, and the
relatively small sample sizes of both sub-groups, however, these results
should be interpreted with care. One possible explanation for these
results is that the stroke-related lesions in the left hemisphere initially
disturbed the neural mechanisms of performance monitoring. Notably,
in the sub-acute phase after stroke, this potential disturbance did not
lead to behavioral impairments, which may result from a compensation
by non-lesioned brain regions (ipsi- or contralesionally). Thus, during
stroke rehabilitation, the neural mechanisms of performance mon-
itoring might have been reinstated again, which would explain why in
our chronic patients, the typical pattern of increased Ne/ERN ampli-
tudes compared to CRN amplitudes were observed again. However,
these possible explanations clearly need to be systematically addressed

in longitudinal studies.
Another argument for the preserved basic performance monitoring

in our patients could be that the brain regions lesioned in our patients
were not involved in performance monitoring and error processing in a
relevant manner. Indeed, no patient showed a lesion of the dACC,
which has been suggested to generate the Ne/ERN. Importantly, this
allowed us to observe a reliable Ne/ERN in the first place. However, it is
interesting that we did not find any variation in this component, be-
cause besides the dACC, a large network is recognized as being involved
in performance monitoring. This network is assumed to comprise the
DLPFC, basal ganglia, thalamus and insula (Bruijn et al., 2011; Seifert
et al., 2011; Ullsperger, 2006), of which several regions were lesioned
in our patient sample. Despite this, our patients did not show an effect
on basic performance monitoring nor the corresponding neural mar-
kers. This observation was especially surprising since even individual
differences such as age (Hoffmann and Falkenstein, 2011), perfec-
tionism (Stahl et al., 2015) or anxiety (Moser et al., 2013), which
supposedly have smaller effects, were nevertheless related to variations
in the Ne/ERN. This makes the preserved performance monitoring and
unchanged neural correlates despite the striking cortical lesions in our
patient sample even more remarkable.

4.5. Strengths and limitations

Although we suggest that our version of the Go/Nogo task and our
general study design has many advantages, it also has disadvantages. A
reduction of the total duration of the experiment was necessary to
prevent fatigue effects in the patient group. Consequently, the small
number of trials (in particular, the small number of nogo trials) reduced
the power of the analyses. As a result, we were unable to analyze ERPs
related to undetected errors. Although it is difficult to increase the rate
of undetected errors specifically, this warrants particular attention in
future studies. The fact that the experiment was conducted in one ses-
sion for the healthy control group, while patients were tested on two
days, could have led to stronger cognitive fatigue in controls compared
to patients. However, we did not observe a differential decrement in
performance for the two groups throughout the Go/Nogo task (see
Supplementary Fig. S1). This observation, together with the fact that
the task would have been naturally more demanding in patients than
controls, makes it unlikely that this caused any significant differences in
fatigue between the two groups. One potential disadvantage of our
approach is that because a simplified version of the Go/Nogo task was
used, we necessarily observed a relatively low number of errors, which
in turn led to reduced statistical power. Whether our results hold in
more complex tasks and more demanding environments is, therefore, a
question for future research. Hence, future studies are warranted that
implement experimental tasks with varying degrees of task difficulty.

Compared to prior studies, the relatively large sample size (n = 24;
the largest previous sample comprised nine patients; Ullsperger and
Cramon, 2006) allowed us to increase the statistical power. On the
other hand, the sample size of 24 patients is still relatively small in
comparison with most EEG studies using healthy participants. Another
innovative aspect of our study was that we not only assessed stroke-
related clinical and cognitive deficits (Maier et al., 2015; Stemmer
et al., 2004) but also used this information to examine a potential re-
lationship between the degree of deficits and performance monitoring.
Finally, MVPA enabled us to investigate the temporal dynamics of error
processing with the conclusion that not even the time courses of error-
related information represented in the neural signals differed between
LH stroke patients and controls. These findings have important im-
plications for rehabilitation of LH stroke patients since this implies that
it might not be necessary or advisable to specifically target performance
monitoring with rehabilitative therapies for LH stroke patients. If def-
icits with error detection are apparent in individual patients, those
might be due to interfering deficits in other cognitive domains (like
language processing or working memory). This further implies that
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breaking down tasks into simple components might be helpful for
stroke patients to monitor their performance successfully.

5. Conclusion

The current study investigated performance monitoring and error
detection in patients with left hemisphere (LH) stroke by using an
adapted color-discrimination Go/Nogo task that allowed the signaling
of consciously detected errors while recording EEG. The group of LH
stroke patients (n = 24) experienced clinically relevant cognitive def-
icits (i.e., aphasia and apraxia) and executive dysfunction. Despite these
stroke-related deficits, we did not observe any behavioral or neural
impairment related to performance monitoring and error processing:
Patients showed similar RTs, PES, error rates, and error detection rates,
as well as similar amplitudes and latencies of the Ne/ERN and Pe
components. The absence of group differences in error-processing was
confirmed by more sensitive MVPA analyses based on spatially dis-
tributed brain activity patterns. We demonstrated the validity and
specificity of our findings by showing abnormalities in stimulus-pro-
cessing for the patient group (i.e., N2 and P3 components). The current
results stress the importance of well-designed experimental tasks
adopted for patient studies that precisely tap on specific cognitive
functions (here: performance monitoring and error processing) and are
less affected by other cognitive processes (here: language processing
and working memory) that might also be disturbed in the patients.
Finally, future patient studies should also characterize the cognitive and
clinical profile of the given patient sample to enable the investigation of
potential relationships between the cognitive/ clinical deficits of the
patients and specific measures of their task performance.
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