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The rise of CO2 in the atmosphere, which results in severe climate change and

temperature increase, is known as the major reason for the greenhouse effect. Reducing

CO2 to value-added products is an attractive solution to this severe problem, along

with addressing the energy crisis, to which the catalysts being employed are of

vital importance. Due to their high porosity and tunable compositions, metal-organic

frameworks (MOFs) show great potential in energy conversion systems. By thermal

or chemical treatment methods, the MOFs are easily turned into MOF-derived

carbon nanomaterials. The much higher level of conductivity enables MOF-derived

carbon nanomaterials to be employed in CO2 conversion processes. The present

review, discusses the state of the art of MOF-derived carbon nanomaterials in CO2

electrochemical, photocatalytic, and thermal reduction applications. The corresponding

reaction mechanisms and influence of various factors on catalyst performance

are elaborated. Finally, the deficiencies and recommendations are provided for

future progress.
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INTRODUCTION

The catalytic reduction of carbon dioxide (CO2) to value-added products is an effective way of
alleviating the severe environmental problem of global warming (Ran et al., 2018; Li et al., 2019).
Great efforts have been devoted to developing advanced CO2 conversion systems, including CO2

electrochemical (Tripkovic et al., 2013; Ma et al., 2017; Wang et al., 2017), photocatalytic (Crake
et al., 2017; Pipelzadeh et al., 2017; Cardoso et al., 2018; Li et al., 2019), and thermal catalytic
reduction systems (Chaemchuen et al., 2019; Lin et al., 2019; Zeng et al., 2020). For these CO2

conversion systems, the key factor which impacts the efficiency and conversion rate is the CO2

reduction catalyst (Samanta et al., 2012; Zheng et al., 2017; Yaashikaa et al., 2019).
Metal-organic frameworks (MOFs), as an emerging category of porous materials, have attracted

great interest due to their unique physicochemical properties, such as their highly specific surface
area, tunable porosity, and controllable functionality (Liu et al., 2010; Aiyappa et al., 2019;
Bhadra et al., 2019). Therefore, MOFs have been widely applied in various energy conversion and
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storage systems, such as gas separation and storage (Furukawa
and Yaghi, 2009; Salehi and Anbia, 2017), drug delivery (Cai
et al., 2019a,b; Safaei et al., 2019), biosensors (Zhang et al.,
2016; Qiu et al., 2019), heterogeneous catalysis, and CO2/N2

conversion (An et al., 2017; Luo et al., 2019). However, because
of their unsatisfactory electrical conductivity and stability, it
greatly hinders their application in CO2 reduction processes. By
thermal or chemical treatment, the pristine MOF composites
can be converted into MOF-derived carbon materials with
embedded metal nanoparticles or metal oxides (Qian et al., 2017;
Bhadra et al., 2019; Shi et al., 2019). These MOF-derived carbon
materials generally combine the advantageous physicochemical
properties of the pristine MOF (porosity and tunable chemical
compositions) and carbon/metal (high conductivity, active metal
sites) which offers more possibilities for catalysis. The strategies
of design of carbon materials derived from MOFs can not only
improve the charge transportation abilities of materials and
shorten the CO2 molecules diffusion path, but also create more
active sites on the materials.

In this mini review, we highlight recent advances in the
application of MOF-derived carbon materials for CO2 reduction
processes, including electrochemical, photocatalytic, and thermal
reductions. Recent progress and development of MOF-derived
carbon materials for CO2 conversion were also discussed.
Additionally, at the end of this review, we give a brief perspective
of MOF-derived carbon materials in CO2 conversion.

FABRICATION OF MOF-DERIVED CARBON
MATERIALS

MOFs can be assembled by metal ions/clusters and organic
linkers through coordination bonds by hydrothermal (Chen
et al., 2020), microwave (The Ky et al., 2020), electrochemical
(Vehrenberg et al., 2020), ultrasonic (Zhao et al., 2020), or
hydrodynamic cavitation methods (Aiyappa et al., 2019; Kim
et al., 2020; Sun et al., 2020a,b). Generally, the MOFs possess
special properties, including porous structures and tunable
chemical compositions which enable the desirable design of
MOF-derived composites with high catalytic activity. In the
first report of MOF-derived carbon materials (Liu et al., 2008),
carbon materials were synthesized by thermal transformation
of pristine MOFs. Due to the special structure of MOFs (a
topology in which metal atoms are connected by ligands),
metal oxides, metal phosphides, metal chalcogenides, and metal
carbides can be synthesized in-situ in the carbon matrix.
Researchers have studied the impact of synthesis conditions
on the physicochemical properties of MOF-derived carbon
materials. The results show that under the high-temperature
conditions of pyrolysis treatment, the structure of pristine MOFs
tended to collapse, and their porosities were damaged, leading to
the aggregation of metal atoms in the carbon matrix. In addition,
recent studies (Khalid et al., 2018; Bhadra et al., 2019) indicated
that by choosing appropriate pristine MOFs and controlling
the synthetic conditions subtly, the morphologies of pristine
MOFs can be reserved after the pyrolysis process. The high-
temperature treatment of pristine MOFs offers an effective way

of precisely controlling the shape, size, and structure and at
the same time maintains the materials’ functionalities in one
step. Generally, the most used pyrolysis synthetic methods of
MOF-derived carbonmaterials can be categorized into two types:
self-templating and external templating methods. In the self-
templating method, only pristine MOF is pyrolyzed, while in
the external templating method, pristine MOF, as well as some
external templates (including metal nanoparticles, graphene,
silica, and metal oxides) are pyrolyzed. A typical scheme of
the self-templating method and external-templating method
is shown in Figure 1. Besides the above-mentioned synthetic
methods, the in-situ growth of MOF crystals on carbon materials
is also an effective and easily performed method to synthesis
MOF-derived carbon materials.

MOF-DERIVED CARBON MATERIALS IN
CO2 ELECTROCHEMICAL REDUCTION

As a promising approach to produce value-added products, the
electrochemical reduction of CO2 has attracted many researchers
since it was first reported by Hori et al. (1985). Double-cell
reactors, with a Nafion membrane used to separate the cells, are
widely used for this process (Figure 2A).

Typically, the oxidation reaction occurs on the anode of the
system, water is oxidized to produce oxygen and protons, the
proton then goes through the Nafion membrane to take part
in the CO2 reduction reaction which happens on the cathode.
Generally, the electrochemical reduction of CO2 involves
different reaction pathways, which lead to various products
(Equations 1–6). By tuning the compositions and functionalities
of the electrochemical reduction catalysts, the selectivity and CO2

conversion rate can be largely improved.

CO2 + 8H+
+ 8e− → CH4 + 2H2O (1)

2CO2 + 14H+
+ 14e− → C2H6 + 4H2O (2)

CO2 + 6H+
+ 6e− → CH3OH +H2O (3)

2CO2 + 12H+
+ 12e− → C2H5OH + 3H2O (4)

3CO2 + 18H+
+ 18e− → CH3CH2CH2OH + 5H2O (5)

3CO2 + 18H+
+ 18e− → CH3CH(OH)CH3 + 5H2O (6)

As MOF-derived carbon materials possess the properties of high
conductivity, large porosities, and highly active reaction centers,
they are excellent catalysts for high-efficiency CO2 reduction.

Copper is reported to have high activity and selectivity in
CO2 electrochemical reduction. Fabricating copper or copper
oxides containing carbon materials based on MOFs offers a
facile method to synthesize highly active CO2 electrochemical
reduction catalysts (Xuan et al., 2019, 2020). The most used
pristine Cu MOF in the fabrication of CO2 electrochemical
catalysts is HKUST-1. Oxide-derived Cu/carbon (OD Cu/C)
catalysts were synthesized by the carbonization of HKUST-1.
Zhao et al. fabricated OD Cu/C catalysts with temperatures
of 900, 1,000, and 1,100◦C. The obtained materials exhibited
high selectivity in CO2 reduction to alcohol products, and the
highest selective CO2 reduction to ethanol was achieved on OD
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FIGURE 1 | Typical synthetic process of MOF-derived carbon materials (HKUST-1 as the pristine MOF): self-templating method (A) and external-templating method

(B). (BTC, 1,3,5-Benzenetricarboxylicacid; PVP, polyvinyl pyrrolidone; HKUST-1, a kind of Cu MOF).

FIGURE 2 | Scheme of CO2 reduction systems: electrochemical reduction system (A), photocatalytic reduction system (B), and thermal catalytic reduction

system (C).
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Cu/C-1000 at an overpotential of 190mV. The electrochemical
catalytic activity of this catalyst was attributed to the synergistic
effect between the highly dispersed copper and the matrix of
the porous carbon (Zhao et al., 2017). Cheng et al. used the
external template method to synthesize a Pd nanoparticle-doped
carbonized HKUST-1 catalyst (C-Pd/Cu). The noble metal-
copper embedded in the carbon matrix structure enabled the fast
transportation and easy adsorption of CO2 molecules, facilitating
CO2 hydrogenation (Cheng et al., 2019b).

Due to its special surface charge density distribution which
leads to high CO2 adsorption ability, metal-N sites containing
MOF-derived carbon materials have recently attracted attention
(Cheng et al., 2019a). Bao’s group has devoted large efforts to this
area. Fe-N and Ni-N active sites containing ZIF-derived carbon
materials were successfully synthesized by direct carbonization
of pristine Fe/Ni-doped ZIF. Ammonia treatment was also
employed on the Fe-N-containing catalyst to improve the specific
area andmesopore areas, thus effectively boosting CO2 reduction
(Yan et al., 2018b). A coordinatively unsaturated Ni-N active
site containing a ZnNi ZIF-derived porous carbon catalyst was
also fabricated and employed in CO2 electrochemical reduction.
The highest CO Faradaic efficiency of 98% was achieved.
Density functional theory (DFT) calculations revealed that the
CO2 reduction reaction was favored more than the hydrogen
evolution reaction over Ni-N sites embedded in the porous
carbon structure (Yan et al., 2018a).

MOF-DERIVED CARBON MATERIALS IN
CO2 PHOTOCATALYTIC REDUCTION

Photocatalytic CO2 reduction is a process in which the
catalyst absorbs sunlight radiation and creates electron-
hole pairs to evoke CO2 molecules, generating value-added
products (Figure 2B). In this energy converting process, three
fundamental steps are needed: (1) sunlight absorption by the
catalyst to create electro-hole pairs; (2) generation and migration
of redox equivalents; and (3) reduction and oxidation reactions
with the redox equivalents at the catalytic active centers (Zhang
and Lin, 2014).

Due to their unique structures, tunable compositions,
and porosities, MOF-derived carbon materials can contain
photosensitizers and catalytic active centers in a single solid.
A number of recent studies have demonstrated that MOF-
derived carbon materials show high catalytic activity in CO2

photocatalytic reduction. Hu et al. reported an HKUST-1-
derived hollow C-Cu2−xS nanotube/g-C3N4 composite for CO2

photoreduction with H2O vapor. During the CO2 photocatalytic
reduction process, the carbon coat in the catalyst acted as an
electron reservoir, which facilitated electron-hole pair separation.
The optimized C-Cu2−xS@g-C3N4 acted as a photocatalyst. The
reactivity and selectivity were boosted to 1062.6 µmol g−1 and
97% respectively, which were much higher than those when
bare Cu2S or g-C3N4 was applied under the same conditions
(Hu et al., 2019).

In-situ growth of MOF crystals on carbon materials is an
effective method to synthesize MOF-derived carbon materials

that possess both the properties of porous MOF and carbon
materials. Liu et al. fabricated a g-C3N4/ZIF-8 composite by a
simple in-situ heterogeneous deposition method. The designed
hybrid photocatalyst not only inherited the broadened optical
properties of g-C3N4, but also had a high CO2 adsorption
capacity due to the porous structures of ZIF-8. Herein, the g-
C3N4/ZIF-8 photocatalyst exhibited much higher activity for
CO2 photocatalytic reduction, reaching 0.75 µmol h−1g−1

under 365 nm light radiation. This study provided a promising
method for the easy synthesis of MOF-derived carbon materials
(Liu et al., 2017).

MOF-derived carbon materials offer the possibility of tuning
the size of active sites in the photocatalyst. Mu et al. successfully
synthesized a series of C-BMZIF with a rhombic dodecahedral
structure. The Zn and reduced Co presented in the carbonmatrix
could prevent Co active sites from aggregation. They came up
with the idea that the size of Co active sites could be regulated by
adjusting the Zn/Co ratio, thus influencing the compositions of
the resulting products (Mu et al., 2018).

MOF-DERIVED CARBON MATERIALS IN
CO2 THERMAL CATALYTIC REDUCTION

CO2 thermal catalytic reduction is an approach in which high
temperature and pressure are applied to realize the conversion
of CO2 into value-added products (Figure 2C). Compared with
the above-mentioned methods to convert CO2 into value-
added products, the CO2 thermal catalytic reduction method
has a longer history. Nowadays, various approaches to CO2

thermal conversion have been widely used in industrial-scale
applications. Generally, industrial-scale CO2 thermal catalytic
reduction approaches can be divided into two types: pure
CO2 decomposition and CO2 conversion with a co-reactant.
As the CO2 thermal catalytic reduction process involves high
temperature and high pressure, therefore, catalysts with high
stability are required. The carbon matrix structure enables MOF-
derived carbon material to endure the high temperature in CO2

thermal catalytic reduction and at the same time offers more
anchoring dots for the CO2 molecules.

A robust and easily collected pyrolyzed bimetallic Zn/Co ZIF
catalyst was successfully synthesized by Chaemchuen et al., and it
showed high catalytic activity for the cycloaddition of CO2 into
epoxides. The metal dispersion and catalytic properties of the
catalyst were improved by the Co species hybrid with N species
in the carbon matrix wall (Chaemchuen et al., 2019).

Lu et al. pyrolyzed ZIF-67 at a temperature of 700◦C to
fabricate a cobalt-based nonprecious metal catalyst for CO2

hydrogenation. The Mott-Schottky effect at the metal-support
interface in the catalyst caused an electron transfer over the
Schottky barrier. The first-principle mechanistic study revealed
that the Co embedded in the carbon matrix could increase
CO2 activation during the reaction (Lu et al., 2019). Lin et al.
presented a facile synthesis of hierarchical Ni@C spheres with
Ni nanoparticles confined in carbon shells for CO2 methanation
under relatively low temperatures. The hollow and porous
structures of the catalyst afforded a high surface area and isolated
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more active sites for CO2 methanation, therefore, resulting in
high activity and superior selectivity in the CO2 thermal catalytic
reduction (Lin et al., 2019).

CONCLUSIONS AND PERSPECTIVES

In this mini review, the application of MOF-derived carbon
materials in CO2 reduction was summarized. MOF-derived
carbon materials inherit the properties of high specific surface
area, porous structures, and tunable compositions from pristine
MOF. Furthermore, their charge transportation ability, electron-
hole separation ability, and stability are improved comparing
with pristine MOF. Though MOF-derived carbon materials have
been widely used in the field of CO2 reduction, there still remain
problems to be solved:

(1) The reaction mechanisms of the CO2 electrochemical
reduction in the aqueous phase electrolyte on MOF-derived
carbon materials are still not clear. In-situ detecting methods
should be utilized to further clarify the reaction pathways of
CO2 reduction for various products.

(2) The porous structure of the carbon matrix in MOF-derived
carbon materials is unstable and prone to collapse during
the pyrolysis and reduction reaction process. Substituting the
internal carbon matrix with external carbon templates and
building more robust MOF-derived carbon materials could be
a solution for this issue.

(3) The cost of MOF-derived carbon materials is high compared
with traditional catalysts. To satisfy the need of MOF-derived
carbon material applications in the industrial scale CO2

reduction process, large scale MOF-derived carbon material
synthetic methods should be developed to lower the cost and
improve the efficiency.
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