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Abstract: Rituximab is a chimeric anti-CD20 monoclonal antibody. It acts mainly through complement-
dependent cytotoxicity on B cells expressing the CD20 marker. In this review, we analyse the efficacy
and possible pitfalls of rituximab to treat nephrotic syndromes by taking into account pharmacologi-
cal considerations and CD19 marker testing utility. Despite the fact that the drug has been in use
for years, efficacy and treatment schedules in adults with nephrotic syndrome are still a matter of
debate. Clinical trials have proven the efficacy and safety of rituximab in idiopathic membranous
nephropathy. Data from observational studies also showed the efficacy of rituximab in minimal
change disease and focal segmental glomerulosclerosis. Rituximab use is now widely recommended
by new Kidney Disease Improved Outcome (KDIGO) guidelines in membranous nephropathy and
in frequent-relapsing, steroid-dependent minimal change disease or focal segmental glomerulosclero-
sis. However, rituximab response has a large interindividual variability. One reason could be that
rituximab is lost in the urine at a higher extent in patients with nonselective nephrotic proteinuria,
exposing patients to different rituximab plasma levels. Moreover, the association between CD19+
levels and clinical response or relapses is not always present, making the use of this marker in clinical
practice complex. High resolution flow cytometry has increased the capability of detecting residual
CD19+ B cells. Moreover, it can identify specific B-cell subsets (including IgG-switched memory B
cells), which can repopulate at different rates. Its wider use could become a useful tool for better
understanding reasons of rituximab failure or avoiding unnecessary retreatments.

Keywords: rituximab; nephrotic syndrome; membranous nephropathy; B lymphocyte; CD19; focal
segmental glomerulosclerosis; high-resolution flow cytometry

1. Introduction

Starting from the mid-20th century, in parallel with the birth and development of
modern nephrology, glomerulonephritis had received a systematic histopathological classi-
fication and the idea caught on that therapeutic choices should be based accordingly. In
particular, the development of immunofluorescence techniques showed the presence of
immunoglobulin and complement factors trapped inside the glomeruli, supporting the
role of the immune system in the pathogenesis and use of immunosuppressive agents for
their treatment [1]. In this context, humoral immunity and antibody-producing B lympho-
cytes are often involved. They also contribute to tissue injury by producing inflammatory
cytokines and by presenting antigen to T lymphocytes [2].

In recent years, it has become clear that some glomerulonephritis are full-fledged
autoimmune diseases. Accordingly, antibodies against the M-type phospholipase A2
receptor (PLA2R), a podocyte membrane glycoprotein, are detected in nearly 70 to 80% of
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patients with membranous nephropathy (MN) [3]; their titre is related to disease severity [4]
and treatment response [5]. A small percentage of patients are found positive for antibodies
targeting to another podocyte protein, the thrombospondin type-1 domain-containing
7A (THSD7A) [6]. More recently, other autoantigens were described [7,8], adding further
complexity to the understanding of the pathogenesis of MN and to its distinction in primary
or secondary forms [7].

The pathogenetic mechanisms at the basis of minimal change disease (MCD) and
focal segmental glomerulosclerosis (FSGS) are much less clear. Both diseases affect the
podocyte but with a different clinical presentation and treatment response, with MCD
often transitioning to FSGS over its course (especially in those who develop treatment
resistance) [9]. They probably represent a disease spectrum of different morphologic
manifestations and stages and overlapping etiologic factors, including genetic ones, all
causing nephrotic or subnephrotic syndrome as a consequence of podocyte damage [9].
Both humoral and cellular immunity have been implicated in their pathogenesis with
non-well defined circulating factors damaging podocytes [10,11].

Despite significant improvement in the understanding of the pathogenesis, the treat-
ment of nephrotic syndrome has remained quite aspecific, with steroids and immunosup-
pressants given with different doses and schedules representing the most used methods.
These treatments are effective in many cases. However, the use of high-dose steroids
and immunosuppressants can be burdened by several side effects and toxicity. Moreover,
a significant number of patients are treatment resistant and often progress to end-stage
kidney failure.

2. Rational and Mechanisms of Action of Rituximab

Rituximab is a chimeric monoclonal antibody (MoAbs) that depletes B cells expressing
the CD20 antigen. Structurally, the drug is made by the fusion between the binding regions
of the original murine anti-human CD20 with human IgG1 heavy chain and human kappa
light-chain constant regions [12].

CD20 is a calcium-dependent co-stimulatory receptor of B cells, expressed on the cell
membrane in the central phase of B lymphocyte development [13]. The rationale for using
rituximab in B-cell targeted protocols resides in the particular kinetics of expression of this
CD20 during B cell maturation. When CD20+ effectors and memory B lymphocytes are
depleted, the activation chain leading to allo- and auto-antibody production is blocked.
By the same token, early B cell precursors are spared, ensuring the survival of immature
cells able to regenerate new antigen-naïve B cells, at least initially devoid of pathogenic
autoreactivity. Mature plasmacells are also spared, thus preserving long-term defensive
antibody memory [14]. Moreover, the high level of expression of CD20 on B cell membrane
(around 150,000 antigen copies per B cell) and the closeness of its relevant epitopes to the B
cell surface favour a high concentration of MoAb on its target and the optimal development
of a series of cytotoxic interactions [15].

The main mechanism of action of rituximab on B cells is complement-dependent
cytotoxicity mediated by the Fc portion of the antibody [16]. When rituximab binds two
adjacent CD20 molecules on B cell surface, a complex molecular interaction takes place,
greatly increasing the affinity for complement fixation [17]. This structural model is the
key for subsequent complement recruitment. Complement activation may also have a
causative role also in infusion toxicity during rituximab treatment [18].

A second mechanism of action of rituximab is antibody-dependent cellular cytotox-
icity by a variety of effector cells, including natural killer (NK) cells, granulocytes and
macrophages [16]. NK cells and presumably complement factors could have a synergistic
effect [19]. This could be of interest from a clinical point of view, since both parameters can
be deficient in various clinical settings.

Finally, studies have suggested that rituximab can act directly on podocytes to stabilize
the cytoskeleton and improve proteinuria through an apparent B-lymphocyte independent
mechanism [20,21]. The fact that rituximab effects go beyond CD20+ lymphocyte depletion
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could be a possible explanation why in clinical practice the correlation between the number
of CD20+ cells and disease activity is not perfect and that in some patients the treatment
effect seems to persist even after CD20 count normalisation.

3. Rituximab Therapy in Nephrotic Syndrome

New KDIGO guidelines on glomerulonephritis suggests a wider use of rituximab in
adult patients with nephrotic syndrome than what was recommended eight years ago,
reflecting consistent changes in available evidence and clinical practice [22].

The higher degree of evidence on rituximab use is available for MN, as several ran-
domised clinical trials have become available in recent years. The Prospective Randomized
Multicentric Open Label Study to Evaluate Rituximab Treatment for Idiopathic Membra-
nous Nephropathy (GEMRITUX) trial [23] compared two 375 mg/m2 rituximab infusions
one week apart with no therapy in 75 patients and found that a higher number of patients
receiving rituximab achieved complete or partial remission of proteinuria at six months
(albeit the difference was not statistically significant). This went together with a higher
number of patients experiencing anti–PLA2R antibodies depletion. However, after a longer
observation period (median follow-up was 17 months), remission occurred in 64.9% of the
patients treated with rituximab compared to only 34.2% in those treated with supportive
therapy. Safety was comparable in the two groups.

In the Membranous Nephropathy Trial Of Rituximab (MENTOR) trial [24], 130 subjects
were assigned either to rituximab (1000 mg on days 1 and 15) or cyclosporine with a starting
dose of 3.5 mg/kg/day then given for six to fourteen months depending on proteinuria
response (tapered and discontinued over two months if remission was observed at six
months).

In comparison to cyclosporine, rituximab obtained complete or partial remission in a
higher percentage of patients at one year (52% vs. 62%, p = 0.004 for non-inferiority) and
two years (20% vs. 60%, p < 0.001 for both non-inferiority and superiority). This went
together with a better safety profile and a faster and larger decline in anti PLA2R titre (in
those achieving remission) favouring rituximab. However, the big difference in remission
at two years was partially influenced by proteinuria recurrence in some patients following
cyclosporine discontinuation [25]. Moreover, the enrolment of patients with moderate CKD
may have increased the number of side effects related to cyclosporine use [25].

Recently, a meta-analysis of 21 studies (603 patients) confirmed the efficacy of ritux-
imab in MN, showing an overall remission rate of 67% and a mean proteinuria decrease
of −4.90 g/day (95% CI −6.18, −3.63); rituximab efficacy was not significantly related to
anti-PLA2R antibody status or previous immunosuppressive therapy [26].

The Sequential Treatment with Tacrolimus and Rituximab versus Alternating Corticos-
teroids and Cyclophosphamide in PMN study (STARMEN) compared treatment with corti-
costeroids and cyclophosphamide to a sequential regimen of tacrolimus (0.05 mg/Kg/day
for six months then decreased and stopped at month nine) and rituximab (1 g at months six).
The rational of the combination is that the non-immunosuppressive effects of calcineurin
inhibitors could be reinforced by rituximab and that the latter could prevent relapses at
the time of calcineurin inhibitor decalage or interruption. The combination of steroids
and cyclophosphamide showed superiority in comparison to tacrolimus plus rituximab in
achieving complete or partial remission at 24 months (83.7% vs. 58.1%, respectively; RR
1.44; 95% CI 1.08 to 1.92) [27]. The percentage of severe adverse events was comparable in
the two groups (even if those randomized to the Ponticelli’s regimen experienced more
severe infections, more adverse events and more adverse events per patient).

The Rituximab versus Steroids and Cyclophosphamide in the Treatment of Idiopathic
Membranous Nephropathy (RI-CYCLO) trial [28] compared two rituximab infusions (1 g)
two weeks apart to a regimen with corticosteroids and cyclophosphamide. At 24 months,
the probability of complete or partial remission was comparable in rituximab and cyclic
regimen (85% vs. 81%, respectively). The reduction of anti-PLA2R1 serum levels during
follow-up occurred more rapidly in the rituximab arm and was accompanied by a decrease
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in proteinuria. The percentage of severe adverse events was comparable in the two groups
(even if the patients randomized to rituximab experienced more drug infusion reactions).

Table 1 summarises the main efficacy and safety data of the GEMRITUX, MENTOR,
STARMEN, and RI-CYCLO trials.

Table 1. Main efficacy and safety data of the GEMRITUX, MENTOR, and STARMEN trials in membranous nephropathy.

CLINICAL TRIAL GEMRITUX [23] MENTOR [24] STARMEN [27] RI-CYCLO [28]

Country France The United States and
Canada

Spain, France and the
Netherlands Italy and Switzerland

Publication Year 2017 2019 2020 2021

Randomized patients (n) 75 130 86 74

Inclusion criteria

• Proteinuria
≥3.5 g/day or a
urinary
protein-to-creatinine
ratio ≥3500 mg/g,
and serum albumin
< 30 g/L for at least
6 months with
maximal dose of
RAS blockade

• eGFR >
30 mL/min/1.73 m2

• Proteinuria >
5 g/day on two
samples

• Decline of < 50% in
proteinuria despite
NIAT for at least 3
months before
randomization

• eGFR or creatinine
clearance
>40 mL/min/1.73 m2

• Proteinuria >
4 g/day after 6
months of
observation

• Hypoalbuminemia
(≤3.5 g/dL)

• eGFR
≥45 mL/min/1.73 m2

• Proteinuria >
3.5 g/day on three
24-h urine
collections (once a
week for 3 weeks),
on RAS blockade

• eGFR
≥30 mL/min/1.73 m2

Rituximab group 375 mg/m2 on days 1 and
8 in association with NIAT

• 1000 mg on days 1
and 15

• A second course
administered if
proteinuria was
reduced by at least
25% at 6 months but
no complete
remission

• Continuing NIAT

• Oral tacrolimus
(0.05 mg/Kg/day),
to reach target blood
levels of 5–7 ng/mL,
for six months. At
day 180, rituximab
(1 g) and tacrolimus
dosage was reduced
by 25% per month,
with complete
withdrawal at the
end of month 9

• 1000 mg on days 1
and 15

• Continuing NIAT

Control group NIAT

• Cyclosporine with a
starting dose of
3.5 mg/kg/day.

• Target trough blood
levels of 125 to
175 ng/mL

• Tapering according
to remission status
at 6 months (total
treatment length
from 6 to 14 months)

• Continuing NIAT

• 1 g × 3
methylprednisolone
at months 1, 3 and 5,
then 0.5 mg/Kg/day
orally from day 4 to
30). At months 2, 4
and 6, oral
cyclophosphamide
adjusted for age and
renal function
(1.0–2.0 mg/Kg/day
for 30 days)

• 1 g × 3
methylprednisolone
at months 1, 3 and 5,
then 0.5 mg/Kg/day
orally from day 4 to
30). At months 2, 4
and 6, oral
cyclophosphamide
(2.0 mg/Kg/day for
30 days)

• Continuing NIAT

Baseline characteristics:
- Mean Age (years) 56 Around 52 55.7 55
- Body weight (kg) 76 Around 90 78.5 76
- Protein-to-

creatinine ratio,
mg/g

7363.2 (4702.9–9735.0) NA NA NA

- Proteinuria (g/day) NA 8.9 (median) 7.4 (median) 6
- eGFR

(mL/min/1.73 m2) 68.6 NA 79.8 84

- CrCl
- (mL/min/1.73 m2) NA Around 86 NA NA

- Positive
Anti-PLAR2 (%) 73.3 73.8 77% 66%
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Table 1. Cont.

CLINICAL TRIAL GEMRITUX [23] MENTOR [24] STARMEN [27] RI-CYCLO [28]

Primary endpoint
Complete or partial
remission of proteinuria at
6 months

Complete or partial
remission of proteinuria at
24 months

Complete or partial
remission of proteinuria at
24 months

Complete or partial
remission of proteinuria at
12 months

Primary outcome

n = 13 (35.1%; 95% [95%
CI, 19.7 to 50.5) in the
rituximab group and n = 8
(21.1%; 95% CI, 8.1 to 34.0)
in the NIAT group;
p = 0.21

n = 39 (60%) in the
rituximab group and
n = 13 (20%) in the
cyclosporine group (risk
difference, 40 percentage
points; 95% CI, 25 to 55; p
< 0.001 for both
non-inferiority and
superiority).

n = 36 (83.7%) in the
corticosteroid-
cyclophosphamide group
and n = 25 (58.1%) in the
tacrolimus-rituximab
group (RR 1.44; 95% CI
1.08 to 1.92)

n = 23 (62%) in the
rituximab group and
n = 27 (73%) receiving the
cyclic regimen (OR, 0.61;
95% CI, 0.23 to 1.63).

Anti–PLA2R-Ab trend

At 6 months deletion in13
of 26 (50%) in the
rituximab group and 3 out
of 25 (12%) in NIAT group
(p = 0.004)

In the subgroup achieving
partial or complete
remission higher
reduction of anti PLAR2
ab titre for rituximab
group in comparison to
cyclosporine at all-time
points

Significant decrease in
both treatment groups. A
higher proportion of
anti-PLA2R-positive
patients achieved
immunological response
at 3 and 6 months in the
corticosteroid-
cyclophosphamide group
(77% and 92%,
respectively), as compared
to the
tacrolimus-rituximab
group (45% and 70%,
respectively)

Anti-PLA2R levels
decreased in both arms
during follow-up, more
rapidly in the rituximab
arm.

Safety
Eight (21%) serious
adverse events in each
group

Serious adverse events in
11 patients (17%) in the
rituximab group and in 20
(31%) in the cyclosporine
group (p = 0.06)

More adverse events and
more adverse events per
patient in the
corticosteroids-
cyclophosphamide group
than in the
tacrolimus-rituximab
group (p = 0.04).

Serious adverse events
occurred in 19% of
patients receiving
rituximab and in 14%
receiving SOFIJA
the cyclic regimen.

Legend: GEMRITUX, Evaluate Rituximab Treatment for Idiopathic Membranous Nephropathy; MENTOR, Evaluate Rituximab Treatment
for Idiopathic Membranous Nephropathy; RAS, Renin Angiotensin System; NIAT, non-immunosuppressive antiproteinuric treatment;
eGFR, estimated glomerular filtration rate; CrCl, creatinine clearance; Anti–PLA2R-Ab, antiphospholipase A2 receptor antibody; RI-CYCLO,
Rituximab versus Steroids and Cyclophosphamide in the Treatment of Idiopathic Membranous Nephropathy; STARMEN, Sequential
Treatment with Tacrolimus and Rituximab versus Alternating Corticosteroids and Cyclophosphamide in PMN study.

Recently, another study compared low-dose rituximab (a single dose of 375 mg/m2),
a standard rituximab protocol (four weekly doses of 375 mg/m2) with Ponticelli’s regimen
(cyclic regimen with corticosteroids and cyclophosphamide) [29], obtaining similar data to
those of the RI-CYCLO study [28].

According to the 2021 KIDIGO guidelines [22], rituximab should be offered as initial
treatment to MN patients at moderate or high risk, whereas the Ponticelli’s regimen
should be considered for those at very high risk of progression (1B). Rituximab is also
recommended as a therapeutic option at first recurrence or when anti PLA2R antibodies
did not become negative after six months. Either the rheumatological schedule (1 g given
two weeks apart) or the classical weekly 375 mg/m2 dose for four weeks can be chosen as
a dose.

Several case series and retrospective studies suggest the efficacy and safety of ritux-
imab also in MCD and FSGS [30–33]. In particular, rituximab seems particularly useful in
the subset of patients who are steroid- or calcineurin- dependent. In 2014, the Rituximab
in Nephrotic Syndrome of Steroid-Dependent or Frequently Relapsing Minimal Change
Disease or Focal Segmental Glomerulosclerosis (NEMO) Study [34] reported a decrease
in the relapse rate in a cohort of 30 patients with steroid-dependent or frequently relaps-
ing nephrotic syndrome in remission at the time of treatment with rituximab (a single
375 mg/m2 dose in most cases). Conversely, rituximab was found of little use in an Italian
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cohort of 8 FSGS patients who had biopsy-proven FSGS with contraindications to corti-
costeroids or conventional immunosuppression [35]. These opposing efficacy data could
be partially due to an insufficient characterization of the different FSGS forms (primary,
secondary or genetic). In this regard, segmental versus diffuse foot process effacement
or disease onset with either full-blown nephrotic syndrome or sub-nephrotic proteinuria
could be of help in identifying the patients on whom insisting with immunosuppression
therapy [36]. Recently, a meta-analysis of 16 observational studies on either FSGS or MCD
seemed to support the efficacy of rituximab in these nephropathies; as expected, patients
with MCD achieved remission in higher percentage in comparison to those with FSGS [37].

In recent years, some randomised, clinical trials provided further evidence on the
efficacy and safety of rituximab in children with steroid-resistant or steroid-dependent
nephrotic syndrome compared to placebo [38], steroids [39,40] or calcineurin inhibitors [40,
41].

As for MN, new KDIGO guidelines suggest a wider use of rituximab in patients with
MCD or FSGS [22]. In MCD, rituximab can be used as initial therapy in those patients who
have contraindications to glucocorticoids or better in those who are frequent relapsing or
steroid dependent.

4. Pitfalls and Open Issues of Rituximab Therapy in Nephrotic Syndrome

Even if rituximab is an effective treatment for MN, a significant percentage of patients
do not achieve a satisfactory decrease of proteinuria. Several reasons have been hypothe-
sised to explain treatment failure in MN, in general or more specifically in those receiving
rituximab.

First of all, available evidence for rituximab use comes from trials testing different
treatment schedule and doses. Probably the higher the dose, the better the results, as
testified by the finding of the MENTOR trial in MN [24]. However, lower doses have not
been tested properly by long-term randomized clinical trials. Indeed, in the GEMRITUX
trial [23], the primary endpoint was evaluated only at six months and the patients were
treated with two doses of 375 mg/m2 each.

Patients with high titres of baseline anti-PLAR2 antibody are more resistant to treat-
ment [42–44]. In this subset of patients, rituximab efficacy can be improved by a second
course of treatment [45]. Similarly, high titres of anti-SOD2 and anti-α-enolase antibodies
at diagnosis were associated with poor clinical outcome, with patients having combined
positivity showing the poorest one [8]. PLA2R1 epitope spreading has been reported
as another marker of poor outcome and treatment failure (even if this has been recently
contradicted) [8,46]. In the future, the serological classification could better characterise the
patients and possibly personalise treatment schedules accordingly [47].

The development of neutralising anti-rituximab antibodies has also been described
and is probably underestimated in clinical practice [48].

Also in MCD and FSGS, several open questions are pending on rituximab doses and
schedules. Some studies showed remission of proteinuria with lower total rituximab doses,
questioning the benefit of additional dosing [49–51]. However, in children with SSNS,
a higher rate of relapse and a shorter time to first relapse have been described in those
who received lower doses of rituximab [52–54]. These data may support that rituximab is
characterised by a dose-dependent efficacy.

5. The Nephrotic Syndrome and Rituximab Plasma Levels

The administration schedules of rituximab for nephrotic syndrome were borrowed
from those in use for non-Hodgkin’s lymphoma (NHL) or autoimmune diseases. However,
in nephrotic patients, the pharmacokinetics profile of rituximab can be different in compari-
son to other treatment indications, as the degree of proteinuria may have a significant effect
on rituximab levels. Indeed, patients with MN have significantly lower rituximab serum
concentrations in comparison to subjects with rheumatoid arthritis [55] or myasthenia
gravis with no proteinuria [48], while receiving the same rituximab schedule. Interestingly,
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rituximab concentrations were higher at retreatments, possibly as a consequence of an
improvement of the nephrotic syndrome. In patients with MN and nephrotic syndrome,
rituximab also has a much shorter half-life in comparison to that observed in subjects with
myasthenia gravis [48], NHL or rheumatoid arthritis [56].

It has been hypothesised that rituximab could be lost in the urine at a higher extent
following a loss in the selectivity of the glomerular membrane (as it is the case in many
forms of nephrotic syndrome) [33,57,58]; the urinary loss of rituximab in nephrotic syn-
drome may cause insufficient drug exposure and shorter serum drug half-life. In severe
cases, rituximab half-life could be extremely reduced (less than one day), also because of
pleural and peritoneal fluid loss [57,59]. It is then possible that poor results in children
with steroid-resistant nephrotic syndrome may partially be due to insufficient rituximab
plasma levels [51,53].

Consistently, MN patients treated with higher rituximab doses have higher serum
levels, lower CD19+ counts and lower level of anti-PLA2R1 antibodies at six months [60].
However, serum rituximab levels in the 15 days following rituximab infusion did not
differ significantly between responders and non-responders [55]. However, low residual
rituximab levels at month 3 were shown to be correlated with poor B-cell depletion at
months 3 and 6, with high anti-PLA2R1 titre at months 3, 6, and 12, and with proteinuria at
months 3, 6 and 12 [48].

6. The Correlation between CD19+ Depletion and Treatment Response

CD19+ B-cell depletion occurs fast (within few hours) and almost all patients achieve
it, even after receiving small doses when the infusion of the drug is stopped prematurely
due to side effects (personal experience). At three months, circulating CD19+ B cells
start to recover, but at six months most patients still have counts below the reference
range. Afterwards, CD19+ lymphocytes progressively re-emerge into the circulation from
month six to the end of the first year, usually returning to pre-treatment levels within
twelve months (even if some patients maintain reduced CD19+ levels for much longer
periods). However, the repopulation rate is extremely variable, depending on rituximab
doses, underlying disease, previous immunosuppression and individual factors [61,62]. For
instance, the repopulation rate seems to be longer in patients with systemic vasculitis [63]
compared to those affected by rheumatoid arthritis [64]. On the contrary, it seems to be
shorter in patients with systemic lupus erythematosus [65].

Some authors reported that the achievement and duration of clinical remission cor-
relate well with CD19+ cell in MCD-FSGS [66,67] and MN [68,69]. Conversely, relapses
are often preceded by B-cell repopulation. This has been well described in children with
steroid-dependent (SDNS) and frequent-relapsing (FRNS) nephrotic syndrome [53,70–72].
Accordingly, a “CD19-targeted therapy” has been proposed to avoid unnecessary addi-
tional infusions or prevent relapses when needed. In this respect, Ramachandran et al. [73]
reported their clinical experience on 109 MN patients who were treated with three different
dosing regimens (375 mg/m2 weekly for four weeks, 1 g on days 0 and 15 and CD19-guided
rituximab therapy. No difference was found in the response rate to the different ritux-
imab schedules, but the patients receiving the CD19-guided scheduled regimen needed
a lower rituximab dose and possibly had a better safety profile. Good results were ob-
tained also in 53 adults with MCD/FSGS with SDNS, FRNS and steroid-resistant nephrotic
syndrome who received CD19-targeted rituximab while in remission [74]. Most of the
patients maintained a sustained remission over a median follow-up of 36 months allowing
the withdrawal of calcineurin inhibitors and steroids in nearly 80% of the cases. The mean
total dose of rituximab at one year was 788.7 ± 128.1 mg.

Unfortunately, this approach is limited by the fact that the correlation between CD19+
levels and the response to treatment is weak in many instances. Indeed, despite complete
peripheral CD19+ B-cell depletion, not all the patients have a clinical response to ritux-
imab [23,75–77]. On the contrary, some patients who do not achieve B-cell depletion have
an improvement in proteinuria [51,78,79]. Relapses during a full B-cell depletion have



J. Clin. Med. 2021, 10, 5847 8 of 16

been also described [33,80,81]. Finally, some treated patients maintain long-term clinical
remission even after total B-cell recovery [53,70,72,82,83].

Even if B-cell depletion is easy to achieve with low-dose rituximab, insufficient dosing
may delay remission [56] or expose the patient to a higher rate of relapse and to a shorter
time to the first relapse compared to patients receiving higher doses [66,82].

Altogether, CD19+ count alone may not be sufficient alone for driving optimal dosing
and administration schedule of rituximab in relation to the single patient needs and clinical
course.

In recent years, the concept is emerging that other cellular biomarkers could be
more accurate than the mere CD19+ count. In particular, memory B cells could escape
rituximab-mediated depletion or repopulate earlier, thus favouring relapses. Memory B
cells expressing the immunoglobulin-G (IgG)-switched phenotype are irreversibly commit-
ted to plasma cell differentiation and are considered as the reservoir of potential pathogenic
autoantibodies, as opposed to IgD/IgM memory and naïve B cells. Long-lived plasma-
cells lose the CD20 surface antigen, are refractory to conventional immunosuppression,
including rituximab and hard to eliminate [84].

Moreover, traditional flow cytometric (FCM) analyses may lack of sufficient sensitivity
to detect very low CD19+ count level that could burst or maintain active immunological
activity.

7. High-Sensitivity Flow Cytometric Cell Counting for Immune Monitoring of
Anti-CD20 Therapies

In the last decade, the measurement of B cell levels and their functional subsets has
been greatly influenced by the technical evolution of FCM techniques. In particular, the
availability of high-sensitivity, multi-colour, FCM techniques has made possible the precise
detection and count of extremely low levels of B cells and B cell subsets in the peripheral
blood of patients receiving anti-CD20 MoAbs [14,85,86].

A standardised and easily applicable FCM immune monitoring protocol (ISCCA
Protocol) has been recently developed to accomplish this task [85]. A number of technical
requirements are needed to ensure a precise and reproducible analysis: (i) a high-resolution
technique including at least one million leucocytes (the more, the better) to allow the
acquisition of a sufficient number of B cells and their small subsets which can be greatly
reduced under treatment; (ii) a multi-colour FCM technique using 8 fluorescence channels
and 10 cellular markers [86]; (iii) a timing scheme that includes serial measurements at
pre-defined timepoints during the patients’ follow-up to adjust the therapy protocol on an
individual basis. An example of a simplified analysis protocol is depicted in Figure 1.

A simplified gating strategy in a healthy subject with the acquisition of about 1,126,000
leukocyte events is represented. In each diagram the axes labels indicate the respective cell
surface markers and fluorochrome types, as described in detail in the reference by Gatti
et al., 2020 [86]. Lymphocytes are captured and divided into T, B, and NK cells. B cells
are cleaned from contaminants and divided into CD19+ CD27− naïve and CD19+ CD27+
memory cells. Memory B cells are further dissected into surface IgG-switched and IgM
memory cells. T cells are divided into the CD4+ and CD8+ subsets. The table reports the
relevant cell event numbers and the percentages of each cell subsets with reference to the
respective parent population, to be included in the clinical report.

The ISCCA Protocol includes the simultaneous enumeration of T-cell subsets and NK
lymphocytes. This is of importance since some anti-CD20 MoAbs are dependent from
the availability of functional Fc-gamma receptors on NK cells [87]. Moreover, a relatively
preserved T cell and Treg repertoire is a prerequisite to prevent excess immunosuppression
after anti-CD20 treatments and possibly to cooperate in the cytotoxic mechanisms [87,88].
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Figure 1. The ISCCA Protocol for the high-resolution analysis of functional B cell subsets.

Another important feature of the ISCCA Protocol is the further subsetting of CD19+
CD27+ memory B cells into surface IgG+ (committed memory Ig-switched) and IgM+
(relatively immature memory B) cells. This provides a deeper insight of the functional
status of the memory B cell response, since the IgG switch represents a point of no return
in B cell activation. The latter point has proved valuable in dissecting patients with
rheumatoid arthritis with different responses to therapy [14,86] and could be applied in
other immune-mediated disorders, including autoimmune renal diseases (Figure 2).

Figure 2. The functional heterogeneity of CD19+ CD27+ memory B.

Marked differences in the relative proportions of IgG-switched and IgM memory B
cells can be present in different patients and can be associated with various degrees of
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disease activity and response to therapy. This indicates that the evaluation of the mere
percentage of memory B cells is not informative enough in clinical immune monitoring.
Four representative cases of patients with autoimmune disorders are depicted (in columns
A, B, C and D, respectively), with opposite IgG/IgM distributions, despite similar levels of
total memory B cells.

8. High-Sensitivity Flow Cytometric Cell Counting in Clinical Practice

A wider use of quantitative monitoring protocols may provide clinicians with addi-
tional information to evaluate the clinical response and better calibrate immunosuppression
in the single patient, especially when nephrotic proteinuria acts as a confounding factor.

In most of the patients, an operational B cell ‘disappearance’ (i.e., <0.01/µL by high-
resolution FCM) is obtained after the first rituximab dose, and may last up to 8–10 months.
Besides, the repopulation of as few as 0.5 B cells/µL can be considered as an indicator that
the effect of rituximab is wearing off. Looking at B cell subsets, sustained depletion of
CD27+ memory B cells and the reappearance of naïve B cells are more precise indicators
of clinical response [79,89,90]. In particular, the repopulation of an unbalanced B cell
repertoire, with an excess of CD19+ CD27+ memory B cells and a lower proportion of
CD19+ CD27- naïve B cells are considered as an indicator of impending relapse [14].

The kinetics of B-cell repopulation was analysed in one patient with MN by means of
using fluorescence-activated cell sorter analysis [91]. Rituximab rapidly induced complete
disappearance of CD19+ B cells, plasmablasts, and memory B cells. Despite persistence of
CD19+ depletion, plasmablasts and memory B cells re-emerged early before naive B cells.

More recently, it has become possible to directly delete surface IgG and IgM expression
and thus to identify IgG-switched CD19+ CD27+ cells. This is a particular subset of memory
B cells that represents the earliest population potentially endowed with the pathogenic
autoantibody memory [92].

9. New Anti-CD20 Targeted Therapies for Nephrotic Syndrome

A great deal of evidence has been accumulated over the last decade on the use of
newly developed anti-B cell treatments in autoimmune disorders, such as ocrelizumab,
ofatumumab and obinutuzumab, each endowed with different potency, a different balance
of the respective cytotoxic mechanisms, and half-lives [93,94]. Despite belonging to the
same pharmaceutical class and hitting the same cell target than rituximab, the new anti-
CD20 MoAbs should be considered as different drugs in many respects [94]. Given their
different mechanism of action on B-cell depletion and being fully humanised, they possibly
overcome resistance or immunogenicity towards rituximab.

Ofatumumab recognizes an epitope encompassing both the small and large extracel-
lular loops of the CD20 antigen. It has been shown to be effective in rituximab-resistant
nephrotic syndrome [95]. Moreover, it brings a faster depletion of anti-PLA2R antibody
when associated with double-filtration plasmapheresis [96]. Recently, Ravani et al. [97]
showed similar efficacy and safety of ofatumumab in comparison to rituximab in 140 chil-
dren and young adults (aged 2–24 years) with nephrotic syndrome maintained in remission
with prednisone and calcineurin inhibitors. Unfortunately, the marketing authorization of
ofatumumab was withdrawn in the European Union for commercial reasons.

Obinutuzumab is the first recombinant IgG1 type-II anti-CD20 monoclonal antibody
with Fc engineered to optimize the interaction with cellular Fc-γReceptor III-A. This
change makes obinutuzumab more efficient in antibody-dependent cellular cytotoxicity
(ADCC), in opsonic phagocytosis, and in inducing direct apoptosis of the cell target, as
compared with rituximab [93,94]. Obinutuzumab also recognizes a CD20 epitope different
from that of rituximab and was proven effective in rituximab-resistant haematological
malignancies [94]. Anecdotally, it was found effective in the case of membranoproliferative
glomerulonephritis secondary to CLL [98]. Recently, the Mayo Clinic Group described
successful treatment with obinutuzumab of three cases of treatment-resistant MN [99].
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Ocrelizumab is a humanized B cell depleting antibody, approved for treatment of
multiple sclerosis (MS) [100]. As compared to rituximab, it displays an increased ADCC and
a reduced complement-dependent cytotoxicity, while showing a longer half-life. Recently,
a patient with MS and PLA2R-associated MN was successfully treated with this drug [101].

10. Future Developments

Anti-CD20 therapies have become an important treatment strategy of several glomeru-
lonephritis. With increasing use, a wide patient- and disease-related variability of the
clinical response to treatment has emerged. Although the use of high-dose rituximab proto-
cols may obtain good clinical responses, one must pay a high price in terms of side effects
and associated morbidity (especially in aged patients). On the contrary, some patients
would need much lower doses to obtain remission and avoid relapses and are treated
unnecessarily with high doses and/or repeated treatments.

Anti-CD20 therapies are a unique opportunity to directly measure the net immunosup-
pressive effect on the relevant cell target, to monitor the occurrence of escape or resistance
phenomena, and to evaluate the timing and the cell composition of the post-treatment
B cell recovery. In this context, the use of new objective biomarkers could help in tai-
loring the therapeutic regimens on each patient’s clinical features (especially to avoid
over-immunosuppression).

However, recent studies have shown that following anti-CD20 treatment other lym-
phocyte functional mechanisms may further play a role, thus making the interpretation of
the biological findings more complex and sometimes controversial. Evidence is becoming
available that the spleen can be a sanctuary where rituximab-resistant memory B cells with
a peculiar phenotype and autoreactive plasma cells may settle [102]. Atypical ‘double-
negative’ memory B cells expressing the CD19+ CD27− sIgD− sIgG+ phenotype have
been demonstrated and hypostasised to be the real precursors of pathogenic autoantibod-
ies [103]. Double-negative memory B cells are also partly overlapped with CD19+ CD21−
CD11c+ Tbet+ Age-related B cells that accumulate during inflammaging. Rituximab also
affects T cell and myeloid cell functions, while repopulating naïve B cells appear with a
more activated phenotype, as compared to their pre-rituximab baseline counterparts [104].

The more in-depth immune system cells are studied, the wider the heterogeneity of
functional cell subset and response or regulatory mechanisms is evidenced, thus necessitat-
ing a continuous upgrade of our knowledge and diagnostic panoply.
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