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A B S T R A C T

Detailed explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster
(vinegar fly) have substantially improved our knowledge and understanding of biological processes and path-
ways in metazoan organisms. Extensive functional genomic and multi-omic data sets have enabled the discovery
and characterisation of ‘essential’ genes that are critical for the survival of these organisms. Recently, we showed
that a machine learning (ML)-based pipeline could be utilised to predict essential genes in both C. elegans and
D. melanogaster using features from DNA, RNA, protein and/or cellular data or associated information. As these
distantly-related species are within the Ecdysozoa, we hypothesised that this approach could be suited for non-
model organisms within the same group (phylum) of protostome animals. In the present investigation, we cross-
predicted essential genes within the phylum Nematoda – between C. elegans and the parasitic filarial nematodes
Brugia malayi and Onchocerca volvulus, and then ranked and prioritised these genes. Highly ranked genes were
linked to key biological pathways or processes, such as ribosome biogenesis, translation and RNA processing, and
were expressed at relatively high levels in the germline, gonad, hypodermis and/or nerves. The present in silico
workflow is hoped to expedite the identification of drug targets in parasitic organisms for subsequent experi-
mental validation in the laboratory.

1. Introduction

Parasitic roundworms (nematodes) can cause chronic, debilitating
diseases in humans that are challenging to prevent, treat and control,
particularly those transmitted by arthropod vectors [1–4]. For instance,
Onchocerca volvulus is a filarioid nematode that is transmitted by a
blackfly (Simulium spp.) and causes river blindness (onchocerciasis) in
humans [5,6]. In addition, Brugia malayi, Brugia timori, Mansonella spp.
and Wuchereria bancrofti are related filarioids that are transmitted by
mosquitoes (Aedes, Anopheles and Culex) and cause elephantiasis
(lymphatic filariasis) [7–9]. Collectively, this latter form of filariasis
affects ~ 120 million people worldwide and is amongst the most
neglected tropical diseases as recognised by the World Health Organi-
zation (WHO), with elimination from endemic countries expected in the
next few years [10–12].

Although mass drug administration (MDA) programs [12–14] have
been successful at reducing the prevalence and intensity of filariasis [15]

(https://apps.who.int/neglected_diseases/ntddata/lf/lf.html), there is a
concern about drug resistance [13,16]. This concern emphasizes the
need to search for new drugs or vaccines, built on a sound understanding
the molecular biology and biochemistry of these nematodes and/or their
relationship with their hosts [17,18]. Thus, deep insights into the ge-
nomes, transcriptomes and proteomes of filarial species should allow an
enhanced understanding of the molecular processes, mechanisms
and/or pathways that govern essential biological as well as infection and
disease processes in the host animal. Ultimately, such knowledge should
also assist in identifying possible mechanisms of drug resistance and
provide avenues for the discovery and development of new in-
terventions [19,20]. Detailed and accurate analyses of nucleic acid and
protein sequence data sets, usually by comparison with reference or-
ganisms, will be critical in providing biologically meaningful informa-
tion. In addition, advanced bioinformatic workflow systems are assisting
scientists in their analyses of such data sets, enabling the discovery of
new intervention targets.
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The discovery of novel anthelmintic targets using conventional ap-
proaches is challenging, time-consuming and costly [20–22]. To
circumvent this, we have been exploring, evaluating and promoting the
use of in silico methods for the prediction and prioritisation of essential
genes for subsequent validation as drug target candidates. Our explor-
atory studies [23,24] focused on assessing and employing machine
learning (ML)-based approaches for the prediction of such genes in the
most intensively studied multicellular model organisms – Caenorhabditis
elegans (free-living nematode) and Drosophila melanogaster (vinegar fly).
We have taken this focus because these organisms can be maintained
and studied in culture in the laboratory, and, importantly, because
chromosome-continuous genomes and extensive functional genomic,
transcriptomic, proteomic, biochemical, physiological, biological,
morphological, developmental and reproductive data sets and infor-
mation are publicly available via well-curated databases including
WormBase and FlyBase [25–29]. This wealth of resources has enabled

deep and meaningful investigations of gene essentiality for these two
ecdysozoan species. Our ML-based studies [30,31] have shown that
informative features can be extracted/engineered from such data sets,
allowing the confident (statistically valid) prediction and prioritisation
of known essential genes both within and between C. elegans and
D. melanogaster.

As the complete life cycles of species of filarioid nematodes are long
and cannot be readily maintained in vitro, and laboratory culture con-
ditions vary from those in nature (i.e. in the arthropod vector and in the
definitive host), establishing high-throughput functional genomic assays
for different developmental stages and sexes of these parasitic nema-
todes has been a major obstacle to evaluating the essentiality of genes,
and to inferring or prioritising intervention target candidates. Now that
we have demonstrated the feasibility of an ML-based bioinformatic
approach for the reliable prediction and prioritisation of essential genes
in each C. elegans and D. melanogaster, and across these two species [30,

Fig. 1. The workflow used for the prediction of essential genes in Brugia malayi and Onchocerca volvulus using machine learning (ML) and complementary analyses. A
range of features (see Section 2. Materials and methods) were extracted from B. malayi and O. volvulus genes, and selected features were used to train ML models and
predict essential genes. The relationship between essentiality and transcription was investigated by clustering analyses; other complementary analyses included GO/
pathway enrichments and the mapping of gene essentiality probability to genomic locations.
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31], we propose that this approach will be applicable to cross-species
prediction between related nematodes or arthropods (ecdysozoans),
provided that suitable, high-quality genomic, transcriptomic and/or
proteomic data sets are available for analyses and inferences. Extending
our recent work (reviewed by [31]), we now apply our ML workflow to
predict and prioritise essential genes of B. malayi and O. volvulus,
employing C. elegans and D. melanogaster data for algorithm-training
purposes and comparative analyses, and we explore the relationship
between gene essentiality and transcription in both parasitic nematodes.
These filarioid species were selected because of their global importance
worldwide and because well-assembled, annotated genomes as well as
extensive transcriptomic data sets are available for these pathogens),
providing a solid foundation for detailed bioinformatic analyses.

2. Materials and methods

2.1. Data sets and pre-processing

First, we obtained published genomic and transcriptomic data sets
for B. malayi and O. volvulus (Table S1; [32,33]) from WormBase Para-
Site (release WBPS19; cf. [25]) and employed a workflow (Fig. 1) for the
prediction of essential genes. The reference genome assemblies for
B. malayi (BioProject PRJNA10729; Bmal-4.0; 88.2 Mb; four autosomes
[I to IV] and one sex chromosome [X]) and O. volvulus (representing four
autosomes; sex chromosome unresolved) were independently assessed
for size, ploidy and order of assembled contigs. Six RNA-seq data sets
representing 152 samples from B. malayi (whole worms) and one data
set comprising 10 samples representing different developmental stages
and both sexes of O. volvulus were obtained from WormBase ParaSite
[25]. These RNA-seq data sets had been pre-processed previously [25]
and made publicly available on the web. Briefly, reads that mapped to
individual genes were enumerated for each sample and normalised
using transcripts per million (TPM). This information was loaded into
data frames in R (https://www.r-project.org) for subsequent use and
analyses. Genes without evidence of transcription (mapped read counts
= 0) in a sample were removed.

2.2. Feature extraction and selection

From the 10,842 protein-coding genes predicted/annotated for the
genome of B. malayi (see [32]) and 12,109 genes of O. volvulus (see
[33]), we extracted 9569 features linked to: DNA sequences, protein
sequences and subcellular localisation (inferred using DeepLoc 1.0;
[34]) using established methods [23,24]. Then, we selected 26 features
of essential genes in both C. elegans and D. melanogaster that were pre-
viously identified as predictors [30]. One additional feature (Ortho-
Finder_species), i.e. protein sequence conservation between species, was
added. In brief, predicted proteomes (FASTA files) representing 15
eukaryotic species from divergent branches of the Tree-of-Life [35] were
obtained from the Ensembl genome database (https://asia.ensembl.
org/index.html; [36]); orthologous groups were identified in these 15
species as well as in B. malayi and O. volvulus using the tool OrthoFinder
[37] employing default parameters. Then, we identified the number of
species represented within individual orthologous protein groups for
C. elegans, D. melanogaster, B. malayi and O. volvulus. The 27 features
selected for both species (Table 1) were used in subsequent analyses.

2.3. Predicting and ranking gene essentiality by ML

We assessed the individual and collective powers of the 27 features
selected to predict essential genes within C. elegans and D. melanogaster
employing six distinct machine-learning (ML) models (Gradient Boost-
ing Machine - GBM, Generalised Linear Model - GLM, Neural Network -
NN, Random Forest - RF, Support Vector Machine – SVM, and Extreme
Gradient Boosting Machine - XGB) [23,24]. For this evaluation, features
with low variance were removed, the remaining features were

normalised and a feature selection approach was employed (cf. [23,24]).
Then, subsets with 10 to 90 % (using 10 % increments) of the
essential/non-essential genes and their features were used to train the
ML models; remaining data were used for testing and evaluation using
ROC-AUC and PR-AUC metrics. The best-performing ML models estab-
lished for C. elegans and D. melanogaster, based on ROC-AUC and
PR-AUC, were employed to predict essential genes in B. malayi and
O. volvulus. We ranked all genes of both parasitic nematodes based on
their probabilities (descending) of being essential (defined using the two
best-performing ML models). This approach was used to obtain the two
lists of high-priority essential genes.

2.4. Gene clustering based on transcription

For each B. malayi and O. volvulus, genes were assigned to eight
clusters, according to their transcription profiles in different

Table 1
Features (n = 27) used to predict essential genes in Brugia malayi andOnchocerca
volvulus; these features are predictive for essential genes in both Caenorhabditis
elegans and Drosophila melanogaster [30].

Feature Description Source

OrthoFinder_species Orthologs in other
species

OrthoFinder analysis

exons Number of exons BioMart (WomBase
ParaSite)

exons_total_length Total length of exons BioMart (WomBase
ParaSite)

Cytoplasm Subcellular
localisation

DeepLoc analysis

Mitochondrion Subcellular
localisation

DeepLoc analysis

Nucleus Subcellular
localisation

DeepLoc analysis

AAC_S Protein sequence
feature

Extracted using protR*

APAAC_Pc2.
Hydrophobicity.2

Protein sequence
feature

Extracted using protR*

CTDC_secondarystruct.
Group1

Protein sequence
feature

Extracted using protR*

CTDD_prop4. G2.residue0 Protein sequence
feature

Extracted using protR*

CTDD_prop4. G2.residue25 Protein sequence
feature

Extracted using protR*

CTriad_VS153 Protein sequence
feature

Extracted using protR*

CTriad_VS431 Protein sequence
feature

Extracted using protR*

CTriad_VS613 Protein sequence
feature

Extracted using protR*

DC_HA Protein sequence
feature

Extracted using protR*

DC_MP Protein sequence
feature

Extracted using protR*

DC_MS Protein sequence
feature

Extracted using protR*

DC_VF Protein sequence
feature

Extracted using protR*

DC_LA Protein sequence
feature

Extracted using protR*

Geary_CHOC760101.lag7 Protein sequence
feature

Extracted using protR*

Moran_CHAM820102.lag7 Protein sequence
feature

Extracted using protR*

GC DNA sequence feature BioMart (WormBase
ParaSite)

kmer_3_GCT DNA sequence feature Extracted using rDNAse*
PseKNC_3_Xc1. CCC DNA sequence feature Extracted using rDNAse*
PseKNC_5_Xc1. CGT DNA sequence feature Extracted using rDNAse*
PseKNC_5_Xc1. GCT DNA sequence feature Extracted using rDNAse*
TACC_Nucleosome.lag2 DNA Sequence feature Extracted using rDNAse*

* Refer to documentation on the R packages protR (https://cran.r-project.org/
web/packages/protr/vignettes/protr.html) and rDNAse (https://github.
com/wind22zhu/rDNAse) for further information regarding sequence features.

T.L. Campos et al.

https://www.r-project.org
https://asia.ensembl.org/index.html
https://asia.ensembl.org/index.html
https://cran.r-project.org/web/packages/protr/vignettes/protr.html
https://cran.r-project.org/web/packages/protr/vignettes/protr.html
https://github.com/wind22zhu/rDNAse
https://github.com/wind22zhu/rDNAse


Computational and Structural Biotechnology Journal 23 (2024) 3081–3089

3084

developmental stages and/or conditions (samples). For this analysis, we
used unsupervised clustering, employing uniform manifold approxi-
mation and projection (UMAP; “umap” package for R), with random
initialisation - all the other settings were kept default. Following

assignment, gene clusters were displayed using “ggplot2″ for R. We also
assessed the association of essential genes with specific clusters using
Fisher’s exact tests in R.

Fig. 2. Machine learning (ML) performance metrics (ROC-AUC and PR-AUC) for the prediction of essential genes in Caenorhabditis elegans (top) or D. melanogaster
(bottom) using features available for Brugia malayi. ML methods used: Gradient Boosting Machines (GBM), Generalised Linear models (GLM), Neural Networks (NN),
Random Forest (RF), Support-Vector Machines (SVM) and Extreme Gradient Boosting Machines (XGB).

T.L. Campos et al.
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2.5. Inferring genome, tissue and/or cell locations as well as functional
annotation of essential genes of B. malayi or O. volvulus

For each gene of B. malayi and O. volvulus inferred from our pre-
diction/annotation approach, we associated the genomic location in the
General Feature Format (GFF) annotation file with the corresponding
ML-based probability of being essential. The probability of each gene
being essential (defined by ML) was mapped to the largest scaffolds
(representing the chromosomes) of each filarioid species using “chro-
moMap” for R. We assessed and compared the presence of essential
versus non-essential genes along chromosomes using density plots as
well as Kolmogorov-Smirnov tests in R. We also inferred cell types and
tissues in which the “essential gene orthologs” of B. malayi or O. volvulus
predicted were abundantly transcribed in C. elegans. For these analyses,
we used existing singe-cell RNA sequence (scRNA-seq) data available
(Cao_et_al_2017_vignette.RData file; cf. [38]). The genes predicted as
essential (probability: >0.5) were also subjected to gene ontology (GO)
and pathway enrichment analyses based on their respective orthologs in
C. elegans using g:Profiler [39] and the Reactome Pathway Database
[40].

3. Results

3.1. Identification of predictors of essential genes in B. malayi and
O. volvulus

In total, we defined 27 features for protein-coding genes in the nu-
clear genome of B. malayi and O. volvulus. These features had been
identified previously as strong predictors of gene essentiality within
each C. elegans and D. melanogaster (see [23,24]) and between these two
species (see [30]); we also selected “evolutionary conservation” among
15 divergent eukaryotic species as well as B. malayi and O. volvulus.

Prior to the prediction of essential genes, we evaluated the predictive
power of this set of 27 features for C. elegans and for D. melanogaster
using ML approaches and a subsampling strategy for training, testing
and evaluation (ROC-AUC and PR-AUC metrics). For C. elegans (Fig. 2),
the ROC-AUC value was> 0.87 for all six ML models assessed (i.e. GBM,
GLM, NN, RF, SVM and XGB), achieving ~0.93 for GBM and XGB. The
PR-AUC value was usually > 0.4, achieving close to 0.6 for the best
performers (GBM and XGB) using 90 % of the data to train the models.
For D. melanogaster (Fig. 2), the ROC-AUC value was > 0.8, achieving
~0.9 for the best performers (GBM, GLM, RF and XGB). The PR-AUC
value was variable, depending on the ML model used, and ranged
from ~0.3 to ~0.5 for the best performers (GBM, RF and XGB), using
90 % of the data in the training set. Of the 26 features employed, the
most important predictors of essential genes in both C. elegans and
D. melanogaster were: OrthoFinder_species and exon numbers (exons),
followed by two subcellular localisation predictions (nucleus and cyto-
plasm), and GC content. The relative contributions of individual features
to the prediction of essential genes for each species, using each of the six
machine learning (ML) models, are given in Table S2.

Following the prediction of essential genes in B. malayi using the
best-performing models (GBM and XGB, trained with C. elegans and
D. melanogaster features), 246 of 10,842 annotated protein-coding genes
had a probability of > 0.5 of being essential, whereas the 5991 genes
with a probability of < 0.05 were classified as non-essential (Tables S3
and S4). ForO. volvulus (Tables S3 and S4), 110 of 12,109 protein-coding
genes had a probability of > 0.5 of being essential, whereas the 7237
genes with a probability of < 0.05 were classified as non-essential. In
total, 217 (> 88.2 %) of the top 246 essential genes predicted for
B. malayi have orthologs in C. elegans, and 234 (95.1 %) were inferred to
be single-copy genes based on an analysis of orthologs using g:Profiler
(Table S5). For O. volvulus, 96 genes (~87.3 %) in the top 110 genes
inferred to be essential have orthologs in C. elegans, and 97 (~88.2 %)
were identified as single-copy (Table S5).

3.2. Association between essential genes and transcription profiles

To investigate the relationship between gene essentiality and tran-
scription in each B. malayi and O. volvulus, we identified UMAP gene
clusters based on their transcription (RNA-seq) in distinct samples rep-
resenting multiple developmental stages and sexes (Fig. 3). After
filtering out genes that were not transcribed in all 152 samples, 5920 of
10,842 genes (~54.6 %) remained for B. malayi. Of these genes, 221 of
246 (~89.8 %) of the high-priority essential genes were present, and
most of them clustered together (Fisher’s exact test p < 2.2 ×10− 16 for
the cluster containing most essential genes; Fig. 3). On the other hand,
following the filtering step, only 2857 of 5991 (~47.7 %) of the most
likely non-essential genes remained; most of the latter genes clustered to
the exclusion of the essential genes (Fig. 3). For O. volvulus, 8159 genes
remained following the filtering step (10 samples), such that 97 of 110
(~88.1 %) of the genes predicted as essential, and 4519 of the 7237
(~62.4 %) genes inferred to be non-essential were retained. Predicted
essential genes of O. volvulus also clustered together in the UMAP plot
(Fisher’s exact test p < 3.4 ×10− 10 for the cluster containing most
essential genes; Fig. 3).

3.3. Essential genes of B. malayi are inferred to be involved predomi-
nantly in ribosome biogenesis, translation, RNA binding/processing and
signalling.

GO enrichment analysis (Table S6) for the prioritised list of the top
essential genes for each B. malayi and O. volvulus inferred the same
molecular functions (MFs), biological processes (BPs) and cellular
components (CCs). MFs (p < 10− 5), including structural molecule ac-
tivity, structural constituent of ribosome or chromatin, protein hetero-
dimerization activity and nucleic acid binding; BPs (p < 10− 4) included
peptide biosynthetic/metabolic, amide biosynthetic/metabolic and/or
cellular nitrogen compound metabolic process; CCs (p < 10− 15)
included ribosome, nucleosome, intracellular non-membrane-bound
organelle, intracellular anatomical structure, ribonucleoprotein com-
plex and/or ribosomal subunit. Pathway enrichment analysis via Reac-
tome (Table S7) revealed that C. elegans orthologs of genes inferred to be
essential in both B. malayi and O. volvulus were significantly (p < 10− 5)
linked to functions including: (i) the assembly of the ribosome (e.g., GTP
hydrolysis, the joining of the 60 S ribosomal subunit and the formation
of free 40 S subunits); (ii) translation initiation (e.g., eukaryotic and cap-
dependent); and (iii) signalling and regulatory roles (e.g., L13a-
mediated translation silencing of ceruloplasmin expression, SRP-
dependent co-translational protein targeting to membrane, and
nonsense-mediated decay).

3.3. Linking essential genes to genome locations, and their transcription to
cell type or tissue

First, we plotted the ML-based gene essentiality probabilities along
individual B. malayi and O. volvulus chromosomes (Fig. 4). For B. malayi,
most of the high-priority essential genes predicted were linked to the sex
chromosome X (n = 61; 24.7 %; Fisher’s exact test; p = 0.39), followed
by two autosomal chromosomes I (n = 52; 21.1 %; p = 0.14) and III
(n = 49; 20 %; p = 0.035). Overall, essential genes were in “hotspots”
that were relatively evenly distributed on each of the chromosomes. For
O. volvulus, most genes inferred to be essential were located to chro-
mosome Ov1b (n = 45; 40.9 %; Fisher’s exact test; p = 0.02), followed
by chromosomes Ov2 (n = 25; 22.7 %; p = 0.03) and Ov3 (n = 24;
21.8 %; p = 0.19) (Fig. 4).

Second, we studied the distribution densities of the top essential and
non-essential genes on the chromosomes for each species (Fig. 5). For
B. malayi, slight differences in densities between essential and non-
essential genes were detected – being skewed to the right arm on
chromosomes I, III, and X, and to the left arm on chromosome IV, but
clustering of essential genes was only significant for the X chromosome
(Kolmogorov-Smirnov test; p = 0.003). For O. volvulus, there was no
apparent clustering of predicted essential genes on chromosomes Ov1b

T.L. Campos et al.
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Fig. 3. Establishing the relationship between transcription profiles and essential genes using uniform manifold approximation and projection (UMAP: x- and y-axes).
A. A selection of 5920 Brugia malayi genes was UMAP-clustered based on the level of transcription in 152 samples (RNA-seq; only the genes being transcribed in all
samples included). B. UMAP plot with 221 of 246 essential (black) and 2857 of 5991 non-essential (orange) genes of B. malayi overlayed. C. Similarly, a selection of
8159 Onchocerca volvulus genes was clustered based on the level of transcription in 10 RNA-seq samples using UMAP and presented in a plot. D. UMAP plot with 97 of
110 essential (black) and 4519 of 7237 non-essential (orange) genes of O. volvulus overlayed.

T.L. Campos et al.
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or Ov4, whereas the density of some of such genes was higher on the left
arm of chromosome Ov3 or both arms of chromosome Ov2 (Fig. 5).
However, Kolmogorov-Smirnov testing indicated that the distribution
densities of essential versus non-essential were not significantly
different (p > 0.05) in these chromosomes.

Third, using information available for C. elegans (see Cao et al.,
2017), we inferred cell types or tissues in which essential genes were

highly transcribed. To achieve this, we mapped the transcription of
C. elegans orthologs of the predicted/prioritised essential genes of
B. malayi and O. volvulus to known cell and tissue types in C. elegans. For
genes predicted to be essential in B. malayi, C. elegans orthologs were
highly transcribed in the germline (118 genes), somatic gonad pre-
cursors (89) or sex myoblasts (80); considering nerve cells only, 99 genes
were inferred to be highly transcribed in amphid neurons with finger-

Fig. 4. The probabilities of all individual genes in Brugia malayi or Onchocerca volvulus being essential – as defined by machine learning (ML) – mapped to their
respective genomic coordinates in chromosomes (largest segments for O. volvulus). The ordinate (y-axis) indicates ML-based prediction value for essential (red dots;
probability > 0.5); non-essential or undefined (blue dots; probability < 0.5). The abscissa (x-axis) is chromosome location in megabase pairs (Mbp). The heatmap
under each chromosome shows the density of genes; dark blue indicates a high density of genes; and black indicates the absence of genes in a particular region.

Fig. 5. The distribution densities of the ‘top’ inferred/prioritised essential genes (red) and non-essential genes (blue) in Brugia malayi (red: n = 246; blue: n = 5991)
and in Onchocerca volvulus (red: n = 110; blue: n = 7237) – as inferred by machine learning (ML).

T.L. Campos et al.
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like ciliated endings (AFD), 83 in asymmetric sensory neurons ASE/L
and 67 in ASE/R chemosensory neurons. For tissues, 241 genes were
abundantly transcribed in the gonad, 135 in the hypodermis, followed
by 134 in the body wall muscle and/or glia. For genes predicted to be
essential in O. volvulus, C. elegans orthologs were highly transcribed in
the germline (n = 65 genes), followed by Am/PH sheath cells (60), and
body wall muscles (45). Considering nerve cells alone, 94 genes were
transcribed in AFD, 80 in ASE/L and 63 in ASE/R chemosensory neu-
rons. For tissues, 132 genes transcribed in the gonad, 102 in the glia,
followed by 81 in the hypodermis and 78 in body wall muscle.

4. Discussion

Extending on previous work on the gene essentiality, particularly in
the model ecdysozoans C. elegans and D. melanogaster (see [31]), this
study provides the first comprehensive, large-scale prediction and
investigation of essential genes in the parasitic nematodes B. malayi and
O. volvulus using ML, and includes relevant, complementary analyses.
We provide evidence of a relationship between essential genes and
transcription and define a feature set that should be a useful resource for
identifying essential genes in related filarioid nematodes.

To predict essential genes in B. malayi and O. volvulus, we used 26
features that had been shown to be strong predictors of essential genes
within and between the model organisms C. elegans and D. melanogaster
[30], and we defined and assessed one additional feature linked to
sequence conservation which was inferred to be informative. Collec-
tively, these 27 features were reliable predictors of essentiality in each
and both model organisms, and were thus employed to predict essential
genes in the two parasitic worms. Our analyses yielded some genomic
sequence, annotation (exons), conservation and subcellular localisation
characteristics that appear to be key for gene essentiality predictions,
corroborating some previous studies [30,31,41–44].

Some features that link to essential genes of C. elegans and
D. melanogaster, such as histone modification markers (e.g., H3K4me3
and H3K27me3; [23,24]), and have been shown to be important pre-
dictors of essentiality could not be assessed herein, as comparable data
were not available for B. malayi or O. volvulus at the time of this study.
Nonetheless, we inferred subsets of high-priority “essential genes”
(Table S5) that appear to be exclusive to B. malayi or O. volvulus, which
underpins the proposal that these genes or gene products represent
novel intervention targets. The next step needs to test this hypothesis by
experimentally verifying the essential function of these genes and their
gene products using gene knockout and/or knockdown tools (cf. [45,
46]).

We propose a strong relationship between essentiality and tran-
scription profile. We showed that selections of essential genes clustered
according to transcription profiles and that “essential genes” usually
grouped together to the exclusion of “non-essential” genes predicted for
each B. malayi and O. volvulus (Fig. 3). Through comparative analysis of
scRNA-seq data for essential genes of C. elegans, we observed that
> 50 % of the gene orthologs in B. malayi or O. volvulus were highly
transcribed in tissues and cells of the reproductive tract (germline and
associated tissues and cells). These findings pave the way for future
studies of the functions, structures and/or interactions of essential
proteins encoded in key cell types as a starting point for anthelmintic
target validation.

For O. volvulus, the proportion of essential genes was higher
(p < 0.05) on autosomes Ov1b and Ov2. For B. malayi, essential genes
were more likely found on chromosome X than other chromosomes, but
this association was not significant (p > 0.05). These findings contrast
with those for the free-living nematode C. elegans, in which essential
genes were less likely to be found on the sex chromosome X [23]. The
relatively even distribution of essential genes on individual chromo-
somes of these filarioids was also distinct from that seen in C. elegans (in
or near the centre of chromosomes; ref. [23]) or D. melanogaster (away
from the centre/centromeres; ref. [24]). The distinction between

B. malayi/O. volvulus and C. elegansmight relate to the different genome
and/or centromere organisation and/or gene regulatory mechanisms
(genetic versus epigenetic) [47] and, obviously, their distinct biology.
Using GO and pathway analyses, we inferred that many essential genes
of B. malayi and O. volvulus are involved in transcriptional regulation
and particularly in RNA-binding, ribosome formation and/or translation
initiation functions, which supports previous findings for C. elegans and
D. melanogaster (see [31]). Ribosome formation and translation initia-
tion are biologically crucial and very energy-demanding [48–50], sug-
gesting that the disruption or interruption of these processes and
associated pathways in B. malayi or O. volvulus would lead to serious
detrimental effects on this species.

In conclusion, the first genome-wide ML-based prediction of essen-
tial genes in B. malayi and O. volvulus provides hypotheses and a foun-
dation to undertake functional investigations to assess the validity of
these essentiality predictions, with the potential of determining the
complement of genes that sustains life in these parasites. There is a
prospect for the functional assessment of the genes predicted and pri-
oritised here as essential using CRISPR-Cas9 [51] and potentially other
functional genomic or chemical knockdown tools (e.g., [52]). Given the
challenges associated with the treatment and control of filariases, it is
particularly important to harness ‘omic data sets for filarial worms, and
to identify drug or vaccine targets using artificial intelligence (AI)
methods. To this end, ML and other AI-based approaches are likely to
contribute to accelerating fundamental and applied investigations of
essential genes and to evaluating their suitability as drug targets, thus
enabling the future design of novel and effective treatments. We are
confident that the approach employed here can be extended to explore
gene essentiality in other ecdysozoan parasites for which high-quality
genomes and transcriptomic data sets are available.
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