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Abstract: Exosomes are becoming increasingly important therapeutic biomaterials for use in a variety
of therapeutic applications due to their unique characteristics, especially due to the ineffectiveness
and cytotoxicity of some existing therapies and synthetic therapeutic nanocarriers. They are highly
promising as carriers of drugs, genes, and other therapeutic agents that can be incorporated into their
interior or onto their surface through various modification techniques to improve their targeting
abilities. In addition, they are biocompatible, safe, and stable. The review focuses on different types
of exosomes and methods of their preparation, including the incorporation of different kinds of cargo,
especially for drug delivery purposes. In particular, their importance and effectiveness as delivery
vehicles of various therapeutic agents for a variety of therapeutic applications, including different
diseases and disorders such as cancer treatment, cardiovascular and neurodegenerative diseases, are
emphasized. Administration routes of exosomes into the body are also included. A novelty in the
article is the emphasis on global companies that are already successfully developing and testing such
therapeutic biomaterials, with a focus on the most influential ones. Moreover, a comparison of the
advantages and disadvantages of the various methods of exosome production is summarized for the
first time.

Keywords: exosomes; therapeutic biomaterials; cargo incorporation; therapeutic applications;
drug delivery

1. Introduction

Various diseases and disorders, as well as conventional drug dosage forms, have led
to the development of improved treatment pathways, one of which is drug delivery using
a variety of nanocarriers [1,2]. Drug delivery is defined as the introduction of therapeutic
drugs or active compounds into the human body through various administration routes,
thereby achieving the desired therapeutic effect, improving efficiency and safety, as well as
controlling the time and amount of drug release at the target location [2,3]. Such methods
have the ability to improve the chemical stability of active compounds and improve their
solubility. A smaller amount of drugs can be used and thus reduce any possible side effects
and toxicity that may be present when using conventional therapies [3,4]. Conventional
drug administration has some drawbacks, such as repeated drug dosing, where it is also
difficult to achieve a specific target with a predicted concentration, uncontrolled drug
release, and low bioavailability. Therefore, conventional drug administration has been used
less and less recently, and a growing number of approaches have been developed to form
different nanoparticles as nanocarriers suitable for drug delivery due to the programmed
release of drugs to specific target locations [1,4].

Drug nanocarriers must ensure maximum efficacy, and therefore they need to be
properly constructed and must have certain properties, such as biodegradability, non-
immunogenicity, stability, ease of design, and delivery of cargo only to specific target
cells or tissues [5]. They typically do not exceed a size of 100 nm and are non-toxic as
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they are made from biocompatible components. They have the ability to be selective and
deliver the drug appropriately to diseased cells and not to healthy ones. Examples of these
nanocarriers are liposomes, niosomes, micelles, dendrimers, and nanofibers [6], as well as
exosomes [7].

Exosomes have become highly important nanocarriers due to their biocompatibility
and safety [8]. In the past, scientists were convinced that exosomes were only cell debris
without any important function, and their significance has only been discovered in the
last two decades [9]. Exosomes are highly biostable, even in long-distance cell-to-cell
communication [7]. They are able to deliver their cargo to recipient cells owing to the fact
that the surface of exosomes has a specific molecular composition [10]. Additionally, they
have the ability to stay unaltered through the digestive system, including when exposed to
different digestive enzymes and other body fluids [8]. Therefore, exosomes are suitable
carriers for the delivery of different biologically active compounds and other components
that are easily degraded, as they can be incorporated into exosomes [11,12].

Exosomes are considered to be nanoparticles due to their size, ranging from 30–100 nm,
and some of their properties, which are similar to nanoparticles, such as passive targeting
and increased permeability and retention effects [13]. There are numerous types of cells
that secrete these nanovesicles. Their important function involves intercellular communi-
cation by transferring different molecules, such as proteins, lipids, nucleic acids (DNAs
and RNAs), and metabolites. The cargo of exosomes produced from different cells varies
greatly [7,14,15]. Exosomes are produced from multivesicular bodies, which are consid-
ered to be formed by the budding of the plasma membrane, and when fusion between
multivesicular bodies and the plasma membrane occurs, exosomes are secreted from the
cells into the extracellular environment [7,15–17]. Exosomes serve as delivery vehicles
of incorporated drugs and other active compounds, which can act synergistically with
naturally occurring components in exosomes [18].

Not all the components present in naturally isolated exosomes are necessary for
specific drug delivery, and therefore the use of synthetic therapeutic biomaterials, such
as modified and synthetic exosomes, may be better for efficient drug delivery, as they are
pure and precisely characterized nanocarriers [18,19].

Modified naturally isolated exosomes and synthetic exosomes that are completely arti-
ficial and produced in the laboratory are considered to be synthetic therapeutic biomaterials.
Modified exosomes can be altered before their isolation with pre-isolation modifications
or after their isolation with post-isolation modifications. Synthetic exosomes can also be
produced through two different methodologies. They can be produced through a cell-based
approach from larger substrates, which are then reduced to smaller units, and thus vesicles
can be formed, or through a lipid membrane bilayer formation approach where individual
molecules are used as substrates that assemble into complex structures [18,20].

Exosomes can be used for a variety of purposes, namely as cargo delivery vehicles,
biomarkers, and therapeutic agents for the identification of various diseases, and in the
development of new vaccines, mainly for cancer treatment [21–23].

This review article presents the growing importance of therapeutic biomaterials—
exosomes in a variety of biomedical applications, primarily for use as delivery vehicles
for drugs and other therapeutic agents. The division of exosomes and their isolation,
modification, and production techniques are briefly explained. The article also includes
a short schematic overview of the incorporation of cargo into exosomes, divided by hy-
drophobicity or hydrophilicity, which has not been presented in detail so far. In contrast, in
other review articles the division was made mainly according to the exosomes’ source or
incorporation method. For the first time, the preparation of exosomes on an industrial scale,
where commercial companies that have already successfully established various exosome
platforms and are already producing exosomes for therapeutic purposes, is presented.
The most influential companies and their exosome products are also described, with an
emphasis on their intended use. Special attention is also given to possible administration
routes of therapeutic biomaterials. A comparison of the advantages and disadvantages
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of the various methods of exosome production and preparation are also given for the
first time.

2. Exosomes

Exosomes are classified as extracellular vesicles (EVs), among which they are the small-
est. EVs also include microvesicles (50–1000 nm) and apoptotic bodies (500–2000 nm) [14],
as shown in Figure 1. They are classified according to their size, intracellular origin [24],
and biophysiological properties [25].
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Microvesicles, also known as ectosomes [27], are formed through the process of mem-
brane budding, followed by fission of the vesicle from the surface of the cell [25]. Therefore,
microvesicles contain proteins present in the plasma membrane and also cytosolic proteins,
nucleic acids, and different metabolites [27].

Vesicles released from dying cells by a process called disassembly of apoptotic cells
during apoptosis (programmed cell death) are apoptotic bodies. Apoptotic bodies are the
largest extracellular vesicles and contain the remains of dying cells, including the plasma
membrane, as well as nuclear and cytoplasmic material. They can also transmit their
content through cell-to-cell communication [25,26,28,29].

As mentioned before, exosomes are the smallest among extracellular vesicles. Zhang et al. [30]
classified exosomes based on asymmetric flow field-flow fractionation technology. They
discovered two subpopulations of exosomes and named them large exosomes (90–120 nm)
and small exosomes (60–80 nm), as well as specific non-membranous nanoparticles named
exomeres (~35 nm).

Cells can secrete specific subpopulations of exosomes with a certain size and composi-
tion of proteins and nucleic acids, which strongly affects recipient cells [31].

The composition of exosomes coincides with the composition of the cell from which
they are secreted; they also have the same regulated sorting mechanism [32]. The inte-
rior and surface of exosomes contain various bioactive compounds, including proteins,
enzymes, receptors, growth factors, transcription factors, nucleic acids (mRNA, miRNA,
DNA), lipids, and other metabolites [32–34]. The lipid composition includes cholesterol,
phosphatidylserine, sphingomyelin, and saturated fatty acids. Among proteins, they con-
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tain the cytoplasmic, plasma, intracellular proteins, and nucleoprotein [35]. On the other
hand, the membrane of exosomes normally contains ceramide, diacylglycerol, cholesterol
and various transmembrane (surface) proteins, such as tetraspanins (CD9, CD63, CD81,
CD82), fusion and transferring proteins (Rab2, Rab7, flotillin and annexin), lysosome-
associated membrane glycoproteins (LAMP1 and LAMP2), heat shock proteins (Hsc70 and
Hsc90), the tumor-sensitive gene 101 (Tsg101), cytoskeleton proteins (actin, myosin and
tubulin), integrins, transferrin receptors, and MHC class I and II molecules [16,32,36–39].

Exosomes have promising potential as drug and gene delivery vehicles, and can
be used in tissue regeneration, immunomodulation, and as disease identifiers [15,18].
They are also crucial in the coagulation process, intercellular signaling, and cell waste
management [40].

Recently, a lot of attention has been paid to artificial exosomes, which are considered
to be better potential therapeutic biomaterials than natural exosomes. Exosomes can be
classified according to their origin, and therefore divided into natural, modified, and
synthetic exosomes (Figure 2) [18].
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Figure 2. Schematic representation of exosomes classification according to their origin—natural (iso-
lated from various biological fluids), modified (natural produced and modified for specific purposes),
and synthetic exosomes (they mimic properties of natural exosomes; summarized from [16,18,20]).

2.1. Natural Exosomes

Exosomes are natural nanomaterials [41] secreted from different types of cells, in-
cluding epithelial cells, endothelial cells, mesenchymal stem cells, macrophages, dendritic
cells, tumor cells, neurons, oligodendrocytes, reticulocytes, mast cells, platelets and can-
cer cells, B and T cells, and astrocytes by exocytosis [16,37,40,42]. They are present in
most body fluids, including plasma [43], serum [44,45], urine [46,47], breast milk [48–50],
semen [51,52], saliva [53,54], nasal secretion [37], lymph [16], amniotic fluid [55,56], as-
cites [57,58], cerebrospinal fluid [59–61], etc. Exosomes are potential natural therapeutics,
due to their biocompatibility [7].

2.1.1. Exosomes Isolation Techniques

Various methods (Figure 3) have been developed to successfully isolate exosomes
from different sources. The most commonly used technique for isolating exosomes is
ultracentrifugation, which provides high amounts of isolated exosomes [11,62,63]. This
technique is based on the difference in density and particle size and is a simple and cost-
effective method [8,64]. It involves differential ultracentrifugation and density-gradient
ultracentrifugation [16]. Ultrafiltration and size-exclusion chromatography are isolation
methods based on the separation of biomolecules according to their size [11,62,64,65].
Methods based on interactions between antibodies and proteins on the surface of exosomes
for exosome isolation are immunocapture techniques [16,21,62]. Another method for
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isolation of exosomes is polymer precipitation [66], an easy and simple method [62] based
on changing their solubility [16]. Microfluidic technologies are also being used to isolate and
purify exosomes. These are improved methods with high purity and sensitivity [16,62,64].
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2.1.2. Natural Exosome-like Nanoparticles

Natural exosome-like nanoparticles can be classified into exosomes derived from
animals and exosomes derived from plants [11]. Animal exosomes are produced primarily
from immune cells (lymphocytes, red blood cells, platelets, dendritic cells, tumor cells) and
are present in various biofluids (urine, milk, plasma). The most researched exosomes of
animal origin are exosomes isolated from bovine milk [16]. Recently, increasing attention is
being paid to exosome-like nanoparticles derived from plants (plant exosomes) [8], with
a comparable structure to animal and human exosomes [11]. However, they differ from
these in the composition of proteins, lipids, and RNA [67].

Exosome-like nanoparticles isolated from a variety of plant sources have the potential
to be used as therapeutic drug delivery vehicles for the treatment of certain diseases [67,68].
Edible plant exosomes derived from ginger, lemon, grapefruit, grape, broccoli, and carrot
would be suitable for the treatment of inflammatory diseases due to their anti-inflammatory
properties [69–73]. Perut et al. [74] isolated and purified exosomes from strawberries that
had a similar morphology to mammalian exosomes. Exosomes derived from strawberry
juice have been found to prevent oxidative stress and are non-toxic.

Exosome-like nanoparticles are also naturally present in mushrooms and contain
lipids, proteins, and RNA. Liu et al. [75] successfully isolated exosomes from different
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edible mushrooms (Hypsizygus tessellatus, Agaricus bisporus, Pleurotus eryngii, Lentinula
edodes, and Pleurotus ostreatus) by sequential centrifugation. Among these, exosomes
isolated from shiitake mushroom (L. edodes) showed strong anti-inflammatory activity and
potential for the treatment of fulminant hepatic failure (FHF).

The most commonly used isolation technique for isolating animal-derived and plant-
derived exosomes is differential ultracentrifugation [8]. Other techniques used to isolate the
aforementioned exosomes are ultrafiltration, size exclusion chromatography, precipitation,
and microfluidic technologies [67]. After isolation, various biologically active components
can be incorporated into them and used as drug delivery vehicles [8].

2.2. Modified Exosomes

Naturally produced exosomes can be modified for specific therapeutic purposes [20],
including the incorporation of drugs and other therapeutic agents, as well as changing the
surface charge for faster drug uptake [18].

Exosomes produced from various natural sources, such as different fruit and vegetable
juices and mammalian biological fluids, have already been modified in numerous studies
in order to verify their potential for biomedical applications.

Exosomes can be modified in two different ways, by interior modification, where the
structure of the cargo within the exosome is modified, and surface modification, where the
structure of the outer surface of the exosome is modified.

2.2.1. Interior Modifications

Interior modifications include methods for incorporating therapeutic agents into the
interior of naturally derived exosomes. These methods can ensure different efficiency and
stability of the incorporated cargo [7]. They are further divided into pre-isolation (Figure 4)
and post-isolation modification methods (Figure 5) for incorporation of cargo, depending
on whether the modifications are performed before or after exosome isolation.
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Pre-Isolation Modification Methods

In pre-isolation modification methods, modification is performed prior to exosome
isolation from cells (Figure 4).

The parental cells are modified by the method of incubation with the desired drug,
whereby this drug is then encapsulated into the cells. From these modified cells, ex-
osomes that already contain the incorporated desired drug are then secreted and iso-
lated [7,15,16,77]. This is a relatively simple method, but it is not possible to provide
control over loading efficiency [78]. This method was performed on mesenchymal stro-
mal cells into which melatonin was incorporated. These cells then produced exosomes
containing melatonin [76]. Another method is gene editing, where genetic modification
of parental cells is used to incorporate therapeutic cargo such as RNA and proteins that
cannot be directly incorporated into exosomes [11].
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Post-Isolation Modification Methods

Drugs and therapeutic agents can be encapsulated into purified exosomes by post-
isolation modification methods directly after their isolation from cells, which provides
greater efficiency (Figure 5).

This can be achieved through active or passive incorporation [15,16,85]. The passive
incorporation methods are relatively simple and successful and preserve the morphology
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of exosomes but provide low loading efficiency. They include co-incubation of exosomes
and therapeutic agents that can diffuse into the interior of exosomes through the membrane
along the concentration gradient [14,85].

On the other hand, active incorporation methods involve different approaches for
loading therapeutic agents into exosomes [14]. These methods temporarily disrupt the
membrane, allowing the cargo to easily pass into the interior of the exosomes. After
the diffusion of the cargo, the membrane integrity of the exosomes is restored [8]. One
of the active incorporation methods is electroporation, in which pores are temporarily
formed in the phospholipid bilayer of exosomes due to the electric field in a conductive
solution, allowing the entry of cargo into exosomes [14,16,86]. Faruqu et al. [79] incor-
porated fluorescent Atto655-conjugated nonspecific siRNA into exosomes derived from
human embryonic kidney cells (HEK-293 cells) by electroporation with 10–20% efficiency.
Zhou et al. [83] also successfully encapsulated galectin-9 siRNA into exosomes derived
from bone marrow mesenchymal stem cells (BM-MSCs) with the use of a Gene Pulser
X Cell Electroporation System. In the sonication process, the membrane is deformed
using ultrasound and a homogenization probe, thus allowing the drug to diffuse into
exosomes [14,85]. Human chorionic gonadotropin was efficiently loaded (40.55% ± 4.21%)
into exosomes isolated from uterine fluid using a sonication process by Hajipour et al. [80].
While Yang et al. [84] achieved 15.52% ± 2.38% encapsulation efficiency by encapsulat-
ing the antibacterial drug lysostaphin into mannosylated exosomes by sonication and
22.15% ± 3.21% by encapsulating vancomycin. Extrusion is a method in which a mixture
of exosomes and cargo is extruded through a membrane with a pore size between 100 and
400 nm using a lipid extruder. The cargo enters inside the exosomes through a disrupted
membrane [16]. Guo et al. [82] encapsulated doxorubicin into exosomes by a magnetic
extrusion process. With the ammonium sulfate gradient loading mechanism, they achieved
much higher encapsulation efficiency (68%) than with direct encapsulation (23%). In the
freeze–thaw method, several cycles of freezing the exosome-cargo mixture at −80 ◦C or
in liquid nitrogen and re-thawing to room temperature are repeated to ensure the suc-
cessful incorporation of drugs [16,86]. Hajipour et al. [80] incorporated human chorionic
gonadotropin into exosomes from RAW264.7 cells with 14.02 ± 5.46% efficiency using the
freeze–thaw method. Another method is chemical transfection, in which exosomes and
cargo are incubated with the surfactant, causing the formation of pores in the membrane
and thus the penetration of drugs. The most frequently used surfactant is saponin, and thus
this method is also called saponin-assisted loading [14,78]. Warren et al. [81] established
that encapsulation of siRNA into bovine milk-derived exosomes by chemical transfection
was significantly more efficient than by electroporation.

2.2.2. Surface Modifications

The surface of exosomes is essential for their biodistribution, ability to target specific
cells, and therapeutic potential. By modifying the surface the desired characteristics of
exosomes can be achieved, thereby improving cell targeting [14,85,87]. The exosome’s
surface can be modified through acting on parental cells that will secrete exosomes or
through directly modifying isolated exosomes [16].

Genetic Engineering of Parental Cells

Modification of the exosome membrane can be obtained through genetic engineering
of parental cells [11] (Figure 6). Cells are genetically modified through viral vectors by
inserting the coding sequence of the desired ligand. These cells then secrete exosomes with
expressed peptides on their surface [14,16,88].
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Direct Modification of Isolated Exosomes

Certain methods have been developed to modify the surface of exosomes after their
isolation from cells (Figure 7) in order to achieve a more specific delivery to the target
cells [14]. Surface modification of exosomes due to covalent binding can be performed
through a crosslinking reaction called click chemistry or azide-alkyne cycloaddition. A
reaction between an alkyl and an azide chemical group occurs to form a stable triazole
bond [14,16,89]. Using this method, Tian et al. [90] modified the surface of exosomes de-
rived from mesenchymal stem cells (MSCs) with a cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide
[c(RGDyK)] in order to improve targeting abilities. For the same purpose, Xu et al. [91]
fluorescently labeled exosomes from pancreatic cells with a newly developed method
based on copper-free click chemistry. However, the surface can also be altered through
various non-covalent modification methods. The most commonly used modifications are
the receptor-ligand binding method and a multivalent electrostatic approach based on
interactions between highly cationic species and negatively charged functional groups on
the membrane [16,89].

One of the methods of surface modification is hybridization, wherein exosomes com-
bine with fusogenic liposomes due to the lipid nature of exosomes’ membrane. Moreover,
due to the exosomes’ lipid membrane, hydrophobic components can be incorporated
directly onto their surface [85].

2.3. Synthetic Exosomes

For the possibility of using modified exosomes for a wide range of therapeutic applica-
tions, it is necessary to provide standardized isolation and purification with the appropriate
clinical grade of natural exosomes, which is difficult to achieve. Further, suitable mod-
ification techniques for incorporation of drugs, genes, and other therapeutic agents, for
which not all developed approaches are fully appropriate, also have to be provided. As a
result, approaches are being developed to produce completely artificial exosomes using
biotechnology that mimic the properties of exosomes. However, there are still not many
studies covering the field of synthetic exosomes [20,92]. Two approaches (Figure 8) have
been developed for synthetic exosome production, cell-based methodology, and lipid
membrane bilayer formation methodology.
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2.3.1. Cell-Based Methodology

The cell-based methodology is based on top-down technology, which is used to fabri-
cate smaller materials from large and complex substrates. In this, cultured cells are used as
a basis for the production of synthetic biomaterials, which are broken down into smaller
membrane fragments. These fragments assemble themselves into spherical membrane
vesicles that carry the same membrane characteristics as the initial cell [9,14,18,20]. Ac-
cording to the principle of top-down methodology, exosomes can be produced by different
approaches, among which there are two most appropriate and promising methods for pro-
ducing larger amounts of therapeutic biopolymers similar to naturally isolated exosomes.
The first, simpler approach is the process of extruding cells over a series of polycarbonate
membrane filters with reduced pore size, producing vesicles of a similar size [9,14]. The
second approach involves the pressurization of living cells over microfluidic devices, which
contain a series of parallel hydrophilic microchannels, whereby the cells are broken down
into smaller fragments and then reassembled into vesicles [9,20].

2.3.2. Lipid Membrane Bilayer Formation Methodology

In contrast to cell-based methodology, lipid membrane bilayer formation is performed
according to the principle of bottom-up methodology, which is based on the production of
larger and more complex structures from small components [14,20]. For the production
of therapeutic biomaterials, special lipids required for the production of the lipid bilayer,
specific membrane proteins, and the desired therapeutic components (cargoes) are used
as molecular building blocks [18]. Exosomes are structurally and biochemically similar to
liposomes, and therefore according to the principle of bottom-up techniques, two main
approaches are suitable for the fabrication of exosomes, among various methods for the
production of liposomes [14,18]. This is the thin-film hydration method based on the
hydration of a dried film and the microemulsion and micelle assembling method [14,20,93].
Some other methods potentially suitable to produce vesicles similar to natural exosomes
are reverse-phase evaporation, a method based on ethanol and ether injection, microfluidic-
based methods, extrusion methods, and homogenization techniques [16,18]. During these
production processes, the desired cargo can also be incorporated [9].

Zhang et al. [92] used a combination of bottom-up and top-down approaches in
their study to produce artificial chimeric exosomes for anti-phagocytosis and targeted
cancer therapy. Exosomes were constructed on the principle of incorporating membrane
proteins from different cell types, including red blood cells and MCF-7 cancer cells, into
a synthetic phospholipid bilayer. With this approach they were able to closely mimick
the morphological and physiological composition of natural exosomes, as well as the
anti-tumor therapeutic effect, as shown with a study of mice with subcutaneous injection.

2.4. Advantages and Disadvantages of the Individual Exosome Preparation Method

A comparison of the previously mentioned preparation and production methods of modi-
fied and synthetic exosomes is presented below based on their advantages and disadvantages.

2.4.1. Comparison of Modification Methods of Exosome Preparation

Figure 9 summarizes the advantages (green) and disadvantages (red) of modification
methods of exosome preparation. These methods are divided into interior and surface
modifications (passive and active incorporation methods).

The simplest method for producing modified exosomes is co-incubation, which can
be used as an internal (pre-isolation and post-isolation methods) as well as a surface
modification technique. The disadvantage of this method is usually the low efficacy of
cargo incorporation. The method of incorporating therapeutic agents into the interior of
exosomes directly after their isolation from cells is more successful. Electroporation and
extrusion are also simple methods, as are almost all methods of direct modification of
isolated exosomes, i.e., covalent binding, non-covalent binding, and direct incorporation.
Among the latter, covalent binding is also a rapid and efficient method [7,11,14,16,85].
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The efficiency of cargo incorporation into the interior of exosomes is extremely high
in the case of sonication, chemical transfection, and extrusion. However, the mentioned
methods also have some disadvantages that play a crucial role in choosing a method for
cargo loading inside exosomes. In particular, they can cause deformation of the membrane
of exosomes, while chemical transfection also has possible toxicity to living cells. In
contrast, the incorporation in the freeze–thaw method is only moderately effective and low
in the co-incubation method. Although electroporation does not have a high efficiency of
cargo incorporation, it is suitable for the incorporation of large components into exosomes,
such as siRNA and miRNA, but RNA aggregation is possible. In the case of surface
modifications, non-covalent binding and hybridization are methods with high efficiency
of incorporating cargo onto the exosomes’ surface. Most of the preparation methods of
modified exosomes can lead to membrane damage or alteration of surface proteins. The
only exception is co-incubation in internal modifications as well as hybridization and direct
incorporation in surface modifications [14,16,85,89,94–96].

Some methods are only suitable for loading hydrophilic cargo, such as sonication
(incorporation of cargo into the hydrophilic interior of exosomes), while others are only
suitable for loading hydrophobic cargo, such as direct incorporation (incorporation of cargo
onto exosomes hydrophobic surface) [85,95].

Due to the possible incorporation of RNA and proteins without destroying the struc-
ture of RNA, gene editing is a highly suitable method for biomedical applications, especially
for gene delivery. However, it is a time-consuming method [11,95].
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As presented above, there is no most ideal method of exosome preparation. Each
method has certain advantages or disadvantages. Therefore, the choice of the exosome
production method itself depends on various requirements, such as the type and size
of molecules for incorporation, simplicity of the method, available equipment, loading
efficiency, etc.

2.4.2. Comparison of Methodologies for Synthetic Exosome Production

Table 1 presents the advantages and disadvantages of methodologies for synthetic
exosome production, with both cell-based and lipid membrane bilayer formation methods.

Table 1. The main advantages and disadvantages of the various methods for synthetic exosome production
[9,14,16,18,20,85,92,97,98].

Methodology Cell-Based Methodologies Lipid Membrane Bilayer Formation Methodologies

Advantages

Suitable for mass production
Production of exosomes similar to

natural exosomes
Immunotolerant, due to their origin from cells

Production of extremely pure nanoparticles with the
desired composition (high pharmaceutical

grade products)
Suitable for the study of the individual elements

Disadvantages
Time-consuming

Need for purification protocol
Hard to control the production process

Use of extremely expensive lipids with high purity
Risk of losing protein functions during production
The need for deep knowledge of the composition

of exosomes

Compared with the preparation of modified exosomes, synthetic exosome production
has some advantages. Extremely large amounts of exosomes can be obtained with cell-
based methods, while extremely pure products with a known composition can be produced
using the lipidmembrane bilayer formation methods [9,14,20,85].

Given the different advantages and disadvantages of both approaches for synthetic
exosome production, it cannot be confirmed which method is optimal. The production
approach depends on how pure a product or how much of a product one wants to obtain,
what specifications are required, and the primary purpose of their use. Nevertheless, they
also have key disadvantages as they are more expensive or time-consuming methods, and
there is a great need for deep knowledge of the composition of exosomes.

2.5. Incorporation of Cargo into Therapeutic Biomaterials

Exosomes consist of a hydrophobic lipid membrane bilayer and a hydrophilic core
(Figure 10). Due to surface modification in order to improve exosome imaging and cell
targeting, various hydrophobic therapeutic components (e.g., paclitaxel and curcumin)
can be incorporated into the lipid membrane bilayer. This can improve the stability and
efficacy of the incorporated drugs. In contrast, numerous hydrophilic therapeutic cargoes,
including hydrophilic drugs and macromolecules, such as RNA, DNA, and proteins, can
be incorporated into the core of exosomes and thereby improve cell delivery [96,99–101].

Hydrophilic compounds are not able to pass naturally through the lipid bilayer;
therefore, different methods have been developed to incorporate various compounds into
exosomes. These methods create pores through which hydrophilic compounds can enter
into exosomes [102], and are briefly described in Section 2.2.1. For the incorporation of
hydrophobic compounds, the method of co-incubation of exosomes with hydrophobic
therapeutic agents alone is sufficient, as they can easily pass into the membrane [102].
However, this method is only recommended for smaller hydrophobic molecules, and
therefore other modification methods are also used for the incorporation of lipophilic
molecules [103].
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hydrophobic (e.g., curcumin, paclitaxel, doxorubicin, and aspirin) cargo into hydrophilic core and hydrophobic lipid
membrane bilayer of exosomes (summarized from [7,76,84,85,100,102,104–110]).

Various methods such as co-incubation, saponin-assisted loading, the freeze–thaw
method, sonication, and extrusion can effectively incorporate proteins, especially the
enzyme catalase, without altering the structure of the exosomes significantly. In addition,
due to the preserved enzymatic activity of catalase, such modified exosomes effectively
reduce oxidative stress and produce a strong neuroprotective effect, representing potential
use in the treatment of inflammation, stroke, and neurodegenerative diseases, particularly
Parkinson’s disease and Alzheimer’s disease, and infectious diseases, such as meningitis,
encephalitis, and neurocognitive disorders in HIV-infected individuals [111]. Exosomes
modified with therapeutic peptides and hydrophobic components such as curcumin can
successfully reduce inflammation in the lungs. Therefore, such modified exosomes could
be useful in the treatment of fatal respiratory diseases, including acute lung injury [112].
Lipophilic and water-insoluble components are more difficult to deliver to the target
site and thus ensure adequate therapeutic efficacy. Exosomes have become potential
carriers of these components due to their lipid bilayer membrane, into which hydrophobic
therapeutics can be incorporated, thereby their importance for biomedical applications
has increased. In addition, exosomes with the incorporated hydrophobic anticancer drug
may increase the cytotoxicity of the drug, which may lead to the development of safe
and improved cancer therapy [113]. Table 2 presents some examples of incorporated
hydrophobic and hydrophilic components into exosomes by different methods from recent
studies from the last three years.
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Table 2. Examples of different types of cargo incorporated into naturally derived exosomes through modification methods.

Incorporated Cargo Exosome Source Modification Method Results Ref.

Hydrophobic Cargo (Incorporated Into Membrane)

Curcumin Murine macrophage
RAW264.7 cells Co-incubation Good stability, inflammation-specific

targeting ability, antioxidant features [104]

Paclitaxel
U-87 cell

Co-incubation Toxicity effect against glioblastoma
multiforme cells

[105]
Sonication

M1-macrophages Sonication Enhanced antitumor effects [106]

Doxorubicin HEK293 cell line Electroporation Rapid uptake into recipient cells,
increased potency [107]

Aspirin Breast and colorectal
cancer cells

Modified
freeze–thawing process

Enhanced cellular uptake, improved
cytotoxicity, anti-tumor effects [108]

Hydrophilic Cargo (Incorporated Into Core)

Melatonin MSCs Co-incubation
(pre-isolation method)

Improved kidney recovery
and function [76]

Doxorubicin
hydrochloride BM-MSCs Co-incubation Cytotoxicity in osteosarcoma cells [114]

Gemcitabine Pancreatic cancer cells
(Panc-1)

Co-incubation
Sonication

Improved cellular uptake, therapeutic
efficacy against pancreatic cancer,

minimal damage to normal tissues
[109]

Linezolid Mouse RAW 264.7 cells Co-incubation Efficacious intracellular
antibiotic delivery [110]

Vancomycin and
lysostaphin RAW264.7 cells Sonication Antimicrobial efficiency [84]

Other Cargo

Imperialine Human plasma Micelle-aided loading
method Increased antitumor effects [115]

siRNA

Bovine milk Electroporation
Chemical transfection Anti-tumor efficacy [116]

Breast cancer cell Co-incubation
Suppression of postoperative
metastasis (in triple negative

breast cancer)
[117]

Human normal MRC-5
fibroblasts cells

Monkey normal Vero
epithelial cells

Co-incubation Increased cellular uptake efficiency [118]

Hollow gold
nanoparticles Murine melanoma cells

Electroporation
Diffusion

Thermal shock
Sonication

Saponin-assisted
loading

High encapsulation yield [119]

c(RGDyK) peptide
and curcumin BM-MSCs from mice Click chemistry

Suppression of the inflammatory
response and cellular apoptosis in the

lesion region
[90]

Nanovesicles produced from a variety of plant sources have similar properties to
mammalian exosomes. Therefore, just as various therapeutic agents can be incorporated
into mammalian exosomes, different therapeutic cargo, such as small molecular drugs,
siRNAs, DNA expression vectors, and proteins [70], can also be incorporated into plant
exosomes, as shown in Table 3, which includes some examples from studies from the last



Int. J. Mol. Sci. 2021, 22, 9543 16 of 37

six years. Moreover, edible plant exosomes are non-toxic and can be produced on a large
scale [120].

Table 3. Plant-based exosomes and their potential use as drug delivery vehicles.

Exosome Source Incorporated Cargo Results Ref.

Strawberry -
Strawberry-derived exosomes have been taken up by
human MSCs. There was no trace of cytotoxicity, they

even prevented oxidative stress in the human cells
[74]

Ginger

Doxorubicin Effective inhibition of tumor growth in the Colon-26
xenograph tumor model [120]

Naturally occurring components:
lipids, proteins, mRNA,

6-gingerol and 6-shogaol

Reduction in acute colitis, enhanced intestinal repair, and
prevented chronic colitis and colitis-associated cancer.
Potential for preventing inflammatory bowel disease

[121]

- Inhibition of NLRP3 inflammasome assembly
and activation [122]

Grapefruit Inflammatory chemokine receptor,
doxorubicin, or curcumin

Inhibition of tumor growth, inhibition of inflammatory
effects of dextran sulfate sodium-induced mouse colitis [123]

Broccoli Sulforaphane Prevention of DSS-induced colitis in B6 mice [124]

Turnip - Inhibition of MCF-7 cells proliferation [125]
Lemon

Apple Naturally occurring microRNA
Decreased OATP2B1 expression in human epithelial

colorectal adenocarcinoma (Caco-2) cells at the 4levels of
mRNA, protein content, and transport activity

[126]

In the next section, various promising applications of therapeutic exosomes are pre-
sented, with an emphasis on the delivery of drugs and other therapeutic agents.

3. Therapeutic Applications of Exosomes

Due to the aforementioned properties, exosomes obtained from various sources and
modified by different processes or synthetically produced can be used for a variety of
biomedical applications (Figure 11) [15]. They can be used in drug delivery, gene therapy,
vaccine development, tissue regeneration, and as biomarkers in the diagnosis and therapy
of various diseases, such as cardiovascular diseases, cancer, neurodegenerative diseases,
skin regeneration, arthritis, diabetes, and for immunological purposes [15,21,127–129].

Exosomes are stable therapeutic biomaterials, even in digestive and other biological
fluids, and are therefore highly effective for long-distance intracellular communication.
They also possess a natural targeting ability due to their unique surface composition.
However, their targeting ability to recipient cells varies according to their origin. In
order to make exosomes easier for the receiving cells to recognize, certain molecules can
be incorporated into them. Exosomes can offload their cargo into target cells through
membrane fusion or phagocytosis [8].

3.1. Biomarkers

Biomarkers are important for the early detection of disease and effective therapy.
They must be specific, noninvasive, and have high stability. As there is currently a lack of
such biomarkers, more attention is being paid to exosomes and their content as promising
biomarkers [130–133]. Exosomes can be isolated from various body fluids and contain
components of the cell from which they are secreted, and therefore are easily accessible
for diagnosis and studying complex diseases, as they act as a fingerprint of parental
cells [134] and reflect their pathological status [135]. Exosomes are already being used
as biomarkers, most commonly for the diagnosis of cancer, as well as for cardiovascular
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diseases, central nervous system disorders, and infectious diseases [11,127,136], and are
sensitive and reliable [137].
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Jia et al. [138] determined in their study that exosome proteins derived from neu-
rons (GAP43, neurogranin, SNAP25, and synaptotagmin 1) have diagnostic potential for
Alzheimer’s disease and amnestic mild cognitive impairment. In addition, a combination of
exosomal synaptic proteins can predict Alzheimer’s disease approximately 5–7 years before
cognitive impairment. Among others, exosomes play a significant role in the regulation of
skin homeostasis, as well as in skin regeneration and as therapeutics and biomarkers in
various dermatological diseases, including melanoma, Merkel cell carcinoma, cutaneous
pigmentation, and psoriasis [29].

3.2. Vaccine Development

Exosomes have many potential applications for biomedical purposes and, among
others, can also be used as vaccination vectors. Recently, much attention has been paid
to the possibility of their use as cell-free vaccines against cancer and in immune ther-
apy [139–143]. On the other hand, exosomes also play an important role in the design
of vaccines against various infectious diseases, as they can modulate immune responses.
They could especially be used in combatting bacterial infections, as they could potentially
identify and kill pathogens [144]. They also have the potential to provide an effective
approach for the development of virus-free vaccines due to their ability to deliver antigens
to target cells. Based on this and on various properties such as anti-inflammatory, proan-
giogenic, and immunomodulatory activity of exosomes, much attention is currently being
paid to exploring the potential for immunomodulatory treatment in patients infected with
SARS-CoV-2, especially exosomes derived from MSCs [145,146].

3.3. Gene Therapy

Gene therapy does not use a therapeutic approach to alleviate symptoms as in con-
ventional treatment therapy, but this therapy is aimed at the complete cure or elimination
of the disease. It is especially important in individuals with congenital genetic disorders.
Because bio-vectors currently used in gene therapy can have several adverse side effects in
individuals, and because they must be non-toxic while providing a high level of efficiency,
exosomes as bio-vectors have become increasingly important in this field as well [147,148].
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Stem cell exosomes have many advantages over other vectors in gene therapy in the treat-
ment of cardiovascular diseases. The most important advantage is that their membrane can
effectively protect the cargo (RNA/gene) from digestion during delivery, and that target
cells can take them up quickly and efficiently. Therefore, exosomes can be highly efficient
carriers in gene delivery [149]. Li et al. [150] demonstrated that exosomes are adequate
vectors in the treatment of familial hypercholesterolemia, which may lead to atheroscle-
rosis and cardiovascular diseases. The incorporated mRNA in exosomes was stable and
successfully translated into functional proteins in target cells, resulting in reduced lipid
deposition in the liver and reduced serum LDL-cholesterol levels. Vakhsiteh et al. [151]
used XMIRXpress-34a lentivectors to genetically modify dental pulp MSCs (DPSCs) with
tumor suppressor miR-34a, from which exosomes with incorporated miR-34a were then
isolated, which showed anticancer effects on breast cancer cells in vitro.

3.4. Tissue Regeneration

It has been shown that various complications can occur in traditional tissue engineer-
ing, and the efficiency of regeneration itself can be relatively low. Therefore, due to their
good characteristics, minimal side effects, and potentially good efficacy, exosomes have
also begun to be used in this field [152–154].

In tissue engineering, MSCs are primarily used to fabricate and induce the complete
replacement of damaged functional tissues or organs. Various studies have shown that
exosomes secreted from MSCs are important in the regeneration of bones, muscles, blood
vessels and nerves, cartilage, dentin, as well as in oral and craniofacial regeneration. By
modifying exosomes, nanoparticles with adequate characteristics for successful tissue
regeneration can be created [155]. Li et al. [156] constructed a cell-free tissue-engineered
system by combining exosomes derived from adipose-derived stem cells (hASCs) with
poly(lactic-co-glycolic acid) scaffolds with a polydopamine coating (PLGA/pDA). These
scaffolds have successfully accelerated bone regeneration in critical-sized calvarial bone
defects in mice.

3.5. Delivery of Drugs and Therapeutic Agents

Due to their specific characteristics, exosomes could be efficiently used as vehicles for
the delivery of drugs and other therapeutic agents, particularly exosomes secreted from
MSCs and tumor cells, due to their therapeutic potential, and from immune cells, from
which exosomes can be economically obtained on a large scale [9,157]. Many studies have
already confirmed the use of exosomes as potentially effective nanocarriers for drugs and
therapeutic agents [66,127,158–160].

Exosomes with encapsulated curcumin have been shown to increase the solubility,
stability, and bioavailability of curcumin, as compared with free curcumin, as well as in-
creased drug penetration through the blood–brain barrier, which is difficult to achieve with
conventional drugs. In addition, curcumin-encapsulated exosomes have great potential
in the treatment of Alzheimer’s disease, as a study on mice showed improved cognitive
functions [161]. Similarly, exosomes incorporated with chemotherapeutic agent Paclitaxel
show greater cytotoxicity to glioblastoma multiforme cells than Paclitaxel alone [105].
Exosomes isolated from MSCs with incorporated melatonin compared with exosomes
without incorporated melatonin showed better therapeutic and protective properties in
renal damage caused by renal ischemia-reperfusion injury [76].

These therapeutic nanocarriers are promising in the treatment of breast cancer as
they improve the effectiveness of therapeutic agents [162,163]. They are being devel-
oped as important drug suppliers, primarily for the treatment of chemotherapy-resistant
patients [164]. Macrophage-derived exosomes can carry miRNA, thereby regulating re-
sistance to chemotherapy. Li et al. [165] achieved highly effective targeted chemotherapy
of triple-negative breast cancer using macrophage-derived exosomes with incorporated
poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with doxorubicin and with an
additional modified surface with a peptide for improved tumor targeting efficiency. This
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also enhanced the cellular uptake and antitumoral efficacy of the loaded drug, as well as
increased growth inhibition and cell death of tumor cells. Exosomes with an encapsulated
adequate antibiotic or other therapeutic agent may help treat intracellular infections caused
by pathogenic microorganisms, as they represent a safe, successful, and cost-effective
method. Yang et al. [110] formulated nanovesicles to overcome methicillin-resistant Staphy-
lococcus aureus (MRSA)-induced infection. The synthetic antibiotic linezolid was incorpo-
rated into exosomes produced from mouse RAW264.7 macrophages. The use of exosomes
with incorporated linezolid has been shown to be a more effective therapeutic method
in the treatment of MRSA infections, both in vivo and in vitro, in comparison with the
administration of free linezolid. It was also determined that the prepared therapeutic
biomaterials did not cause cytotoxicity in macrophages.

Exosomes with or without modification are particularly ideal in the delivery of drugs
and other therapeutic agents, which can be introduced into the body through different
administration routes.

Figure 12 shows the pathway of the production of exosomes for use as drug carriers.
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4. Drug Delivery of Therapeutic Biomaterials through Different
Administration Routes

Compared with the conventional administration of drugs in free form, drug delivery
via nanocarriers is becoming an increasingly important system as it improves treatment
efficacy. The use of conventional therapies can also damage healthy cells [166].

For successful drug delivery, drug delivery vehicles must meet certain criteria. It is
necessary that an adequate amount of the drug can be incorporated into drug carriers and
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at the same time ensure the specific delivery of drugs and appropriate therapeutic effect.
They must be non-toxic or with extremely low toxicity and biocompatible with the response
of the immune system to prevent their degradation before they reach their targets. Many
exosomes have these characteristics. In addition, they are small, have extremely low toxicity,
and can cause a low rate of long-term accumulation in organs and tissues [66,127,167].
They can also cross various biological fluids and pass through plasma membranes, thus
delivering therapeutic compounds into the cytoplasm of target cells [147]. Therefore,
exosomes have high potential as delivery vehicles of therapeutic agents, particularly
because they can also cross the blood–brain barrier [168,169]. Compared with other drug
carriers, due to the abovementioned properties, they have a greater potential to be used
for biomedical purposes, especially in the treatment of more difficult to treat diseases,
including cancer, neurodegenerative diseases, and cardiovascular diseases [139]. One
of the advantages is also that exosomes can be utilized for the development of cell-free
therapeutics that are safer than cell therapy [170,171]. For effective delivery of therapeutic
agents, they need to be successfully incorporated into exosomes [172].

Drug delivery through therapeutic biomaterials, such as exosomes, is generally consid-
ered as a safe method. However, after dosing, immune responses are possible to occur since
exosomes produced from human cells are mainly used, and this can lead to immunogenic-
ity and toxicity, as well as increased clearance of exosomes from the body. On the other
hand, exosomes are still safer compared with other synthetic drug nanocarriers. However,
the choice of cells used to isolate the desired exosomes is highly important. [102].

The route of drug administration into the body and dosage are also significant in
drug delivery. There are various routes of administration of therapeutic biomaterials, such
as intravenous injection, subcutaneous injection, intraperitoneal injection, intratumoral
injection, intranasal administration, oral administration, and intradermal administration.
The route of administration of therapeutic biomaterials affects their distribution in tissues.
Among all the mentioned routes, the intravenous route of therapeutics administration
is the most commonly used and researched [2,11,102,147,173]. A brief description of the
abovementioned administration routes of therapeutic biomaterials into the body through
drug delivery (Figure 13), based on various studies performed in animal models, is pre-
sented below.

4.1. Drug Delivery through Intravenous Injection

Intravenous injection, administration of drugs into the vein, is the most common route
of administration, although it can lead to the accumulation of exosomes in the liver, spleen,
and lung, and they can also be cleared from the circulation extremely quickly [173].

Qu et al. [174] determined that exosomes produced from mouse blood reticulocytes
and loaded with dopamine have better therapeutic abilities in the treatment of Parkinson’s
disease than compared with free dopamine. Dopamine-incorporated exosomes showed
the ability to cross the blood–brain barrier, as well as lower systemic toxicity when admin-
istrated intravenously to mice. Intravenous or subcutaneous injection of exosomes from
human adipose MSCs into mice resulted in improvement in atopic dermatitis [175].

4.2. Drug Delivery through Oral Administration

Therapeutic biomaterials do not accumulate in the liver to the same extent as compared
with intravenous injection with oral administration. In addition, exosomes remain stable
throughout the gastrointestinal tract due to their specific characteristics [176]. Exosomes
derived from bovine milk and with incorporated Paclitaxel showed remarkable inhibitory
properties on tumor growth in a mouse study compared with the same dose of Paclitaxel
administrated intraperitoneally. In addition, they showed significantly lower systemic and
immunogenic toxicity compared with intravenous injection [177,178].
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4.3. Drug Delivery through Intranasal Administration

For the delivery of drugs to the central nervous system, the most effective way is
through intranasal administration, that is, into the nose, as this avoids delivery through
the blood–brain barrier [176]. Perets et al. [179] demonstrated that symptoms of autism
spectrum disorders (ASD) were reduced in mice with intranasal administration of exosomes
secreted from human BM-MSCs. There was an improvement in mutual interaction and a
reduction in repetitive behavior, and no adverse effects were observed. Thus, exosomes
may be used to treat ASD symptoms. Exosomes from MSCs have a neuroprotective effect,
as they prevented perinatal brain injury through intranasal administration in mice [180].

4.4. Drug Delivery through Subcutaneous Injection

Subcutaneous injection, administrated beneath the skin, is effective in cutaneous
malignancies and wound healing [173]. To treat MRSA infection, Yang et al. [110] used
subcutaneous injection to deliver exosomes with an incorporated synthetic antibiotic to in-
fected cells, and this proved to be an effective administration route. Gyeonghui et al. [181]
injected exosomes obtained from different sources (RAW264.7 macrophage cell line, hu-
man serum, and fetal bovine serum) through subcutaneous administration into mice.
Serum-derived exosomes incorporated with immune-stimulating biomolecules, such as
CpG oligodeoxynucleotides (CpG ODN) and monophosphoryl lipid A (MPLA), have
been shown to have exceptional properties as drug and immune stimulator carriers to
the lymph nodes. After subcutaneous administration of exosomes with incorporated
MLPA, activation and differentiation of T cells occurred, thereby increasing the cytokine
IFN-γ and TNF-α induction for CD3+T cells. Therefore, MLPA-incorporated exosomes are
significantly influential in achieving the desired immune responses.
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4.5. Drug Delivery through Intratumoral Injection

In intratumoral administration, exosomes with incorporated drugs or therapeutic
agents are injected directly into tumors. This causes degenerative changes in the tumor cells,
thereby effectively reducing the size of the tumor [147]. By intratumoral administration
of exosomes containing natural hyaluronidase PH20 and incorporated chemotherapeutic
doxorubicin in mice with prostate cancer, effective inhibition of tumor growth due to
increased exosome penetration and drug diffusion was achieved [182].

4.6. Drug Delivery through Intradermal Administration

Another one of the routes of exosome administration into the body is intradermal
injection, which is achieved by injecting exosomes into the dermis. Morishita et al. [183]
isolated exosomes from genetically engineered murine melanoma B16BL6 tumor cells that
express the fusion protein streptavidin and lactadherin. They were then further modified
with biotinylated immunostimulatory CpG DNA by streptavidin-biotin interaction. The
exosomes prepared in this way were injected intradermally into mice, and the results
showed successful antitumor effects.

4.7. Drug Delivery through Intraperitoneal Injection

Different routes of administration result in a different distribution of therapeutic
biomaterials. Therefore, for optimal delivery of drugs to different organs, the appropriate
choice of administration route is important. For example, exosomes were successfully
delivered to the liver, spleen, and lungs by intravenous injection. In contrast, exosomes
were more dispersedly distributed by intraperitoneal injection and, in addition to the liver,
spleen, and lungs, effectively reached visceral adipose tissue. As a result, the administration
of exosomes through intraperitoneal injection, administrated within the peritoneal cavity,
has the potential to be used in the treatment of obesity [184].

Different administration routes of therapeutic biomaterials, including their therapeutic
effects, are shown in Table 4.

Table 4. Drug delivery through different administration routes for various therapeutic purposes.

Source of
Therapeutic
Biomaterial

Incorporated
Therapeutic
Compound

Target Administration
Route Disease/Condition Therapeutic Effect Ref.

BM-MSCs

- Brain cells Intranasal Autism spectrum
disorders (ASD) Reduced symptoms of ASD [179]

Galectin-9 siRNA
and oxaliplatin PANC-02 cells Intravenous

Pancreatic ductal
adenocarcinoma

(PDAC)
Antitumor efficacy [83]

BM-MSCs from
mice

c(RGDyK)
peptide and

curcumin

Lesion region of
the ischemic

brain—microglia,
neurons, and

astrocytes

Intravenous Cerebral ischemia
Suppression of the

inflammatory response and
cellular apoptosis

[90]

Human adipose
tissue-derived

MSCs
- Skin lesions Intravenous

Subcutaneous
Atopic dermatitis

(AD)
Reduced pathological

symptoms [175]

Adipose-derived
stem cells (ASC) - Glial cells Intravenous

Intranasal

Amyotrophic
lateral sclerosis

(ALS)

Improvement of motor
performance; protective effect

on lumbar motoneurons,
neuromuscular junction and

muscle, reduction in glial
cells activation

[185]

Genetically
modified dental

pulp MSCs
(DPSCs)

Tumor suppressor
miR-34a

Breast carcinoma
cells In Vitro Breast cancer Anticancer effects [151]
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Table 4. Cont.

Source of
Therapeutic
Biomaterial

Incorporated
Therapeutic
Compound

Target Administration
Route Disease/Condition Therapeutic Effect Ref.

Bovine milk

siRNA Lung cancer cells Oral Lung cancer Antitumor efficacy [116]

hsa-miR148a-

Hepatic (HepG2)
and intestinal

(Caco-2) human
cell lines

In Vitro RNA-based
therapy

Cost-effective source of
exosome as nanocarriers [186]

Paclitaxel Lung cancer cells Oral Lung cancer Tumor growth inhibition [177]

Curcumin Cervical cancer
cells Oral Human cervical

cancer Antitumor activity [187]

Bovine serum α-d-mannose Lymph nodes Intradermal Immunotherapy Efficient delivery of immune
stimulators and antigens [188]

Human
cardiac-resident
mesenchymal

progenitor cells
(CPCs)

- Cardiomyocytes Intravenous Cardiac toxicity

Inhibition of oxidative stress,
prevention of myocardial

fibrosis, inhibition of
cell death

[189]

Human
Wharton’s jelly

MSC
Infrared-label Corpus callosum,

external capsule Intranasal Perinatal brain
injury (PBI) Neuroprotective effects [180]

Macrophage

PLGA
nanoparticles,
loaded with
doxorubicin

Tumor cells Intravenous
Triple-negative
breast cancer

(TNBC)

Improvement of the cellular
uptake efficiency and the

antitumor efficacy, remarkable
tumor-targeting efficacy,

increased inhibition of tumor
growth and induced intense

tumor apoptosis

[165]

Mouse RAW264.7
macrophages Linezolid MRSA WHO-2-

infected cells Subcutaneous MRSA infection Efficacious intracellular
antibiotic delivery [110]

RAW264.7
macrophage cell

line, mouse
serums, human

serums, and fetal
bovine serums

CpG
oligodeoxynu-
cleotides (CpG

ODN), ovalbumin
(OVA),

monophosphoryl
lipid A (MPLA)

Macrophages in
lymph nodes Subcutaneous Immune

stimulation

Increased intracellular
delivery, potential immune

stimulation
[181]

RAW264.7 cells Vancomycin and
lysostaphin

MRSA
WHO-2-infected

cells
Intravenous MRSA infection Efficient antibiotic delivery,

antibacterial efficiency [84]

Mouse blood
reticulocytes Dopamine bEnd.3 cells Intravenous Parkinson’s

disease
Strong therapeutic efficacy,
reduced systemic toxicity [174]

HEK293T cell Doxorubicin PC3 prostate
cancer cells Intratumoral Prostate cancer Efficient tumor

growth inhibition [182]

Membrane
protein from red
blood cells and

MCF-7
cancer cells

Doxorubicin MCF-7 cells Subcutaneous Cancer Anti-tumor therapeutic effect [92]

Based on the properties of exosomes and the many studies already conducted both
in vitro and in vivo, exosomes have shown the increasing potential for the development
of new therapeutics. Many companies are already developing these, as shown in the
following section.

5. Commercial Therapeutic Biomaterials

Various studies on exosomes have shown that they are non-toxic, even after repeated
injections [190–192]. Therefore, exosomes are promising nanocarriers in the development
of new therapeutic approaches to drug delivery and other therapeutic agents, due to their
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unique characteristics. Consequently, scientists from around the world are increasingly
researching this field, and many commercial companies have successfully established
various exosome platforms and produced therapeutic exosomes that are in pre-clinical
studies, some of them already in Phase 1. These companies are listed in Table 5.

Table 5. Commercial companies using exosomes.

Company Name Commercial
Exosome/Technology Therapeutic Application Exosome Source and

Incorporated Cargo Ref.

Aegle Therapeutics AGLE-102 Serious dermatologic disorders Allogeneic BM-MSCs [193]

Aethlon Medical, Inc. Hemopurifier® Infectious disease and cancer - [194]

Anjarium Biosciences Hybridosome® platform Cancer and genetic diseases - [195]

Aruna Bio Neuronal exosome
platform: product AB126 Neurological diseases Neural stem cells [196]

Capricor Therapeutics See Table 6. Severe and rare disorders (i.e., DMD) - [197]

Carmine Therapeutics REGENT® Gene therapy Red blood cells

Ciloa
Vaccine candidates against
Chikungunya virus (FUI

granted) and Zika
Antibodies, vaccines, therapeutic vectors Recombinant exosomes [198]

Clara Biotech ExoRelease™ Exosome Isolation Platform - [199]

Codiak Biosciences engEx™ platform
(Products: see Table 7.)

Cancer, neurological diseases,
vaccine development - [200]

Direct Biologics ExoFloTM Providing signaling proteins that modulate
inflammation Human BM-MSCs [201]

Evox Therapeutics DeliverEXTM platform
(Products: see Table 8.)

Severe rare genetic disorders Drug-loaded exosomes [202]

EV Therapeutics Inc. mTEV platform (EV101,
EV102, EV103)

Gastrointestinal cancer, organ
transplant rejection - [203]

Exocel Bio EXOVEX Regenerative medicine - [204]

ExoCoBio
ExoSCRTTM

Isolation and purification technology,
technology for mass production of highly

efficient exosomes Stem cells [205]

Therapeutic and cosmetic
products ASCE

Regenerate or activate/de-activate various
tissues or cells

Exopharm Pty Ltd.

Exopharm’s LEAP
Technology

Isolating and purifying exosomes from adult
stem cells Stem cells

[206]Engineering exosomes
(See Table 9.) Antiviral, neurodegeneration, cancer

Cargos: such as RNA,
enzymes and/or
small molecules

Natural exosomes
(See Table 9.) Wound healing, osteoarthritis Adult stem cells

and platelets

Exosome Diagnostics ExoDx™ Prostate test Diagnosis and assessment of the risk of
prostate cancer - [207]

Exosome Sciences TauSome™ biomarker
Diagnosis and monitoring of Alzheimer’s

disease, chronic traumatic encephalopathy, and
other neurological disorders

- [208]

Exosomics Siena SpA Exosome-based
liquid biopsy Exosome-based cancer screening and diagnosis - [209]

Exogenus Therapeutics Exo-101
Regenerative medicine and inflammatory
disorders (inflammatory skin conditions,

inflammatory lung disorders, chronic wounds)

Umbilical cord blood
mononuclear cells [210]

Ilias Biologics Inc.

EXPLOR™ platform
technology

Loading of specific proteins into exosomes in a
controllable way -

[211]
Exo-Target® Inflammatory and metabolic diseases, cancers Therapeutic exosomes

loaded with API molecule

Kimera Labs XoGlo® Wound healing and skin
rejuvenation/regeneration MSCs [212]
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Table 5. Cont.

Company Name Commercial
Exosome/Technology Therapeutic Application Exosome Source and

Incorporated Cargo Ref.

OmniSpirant Inhaled exosome
technology platform

Currently incurable respiratory diseases,
cystic fibrosis Bioengineered stem cells [213]

Paracrine Therapeutics Exosome Technology
Platform Regenerative medicine Stem cells

ReNeuron ExoPr0 Neurodegenerative diseases, cancer,
development of vaccines CTX neural stem cells [214]

Stem Cell Medicine Ltd. Exosome-based
technology

Neurodegenerative and neuropsychiatric
indications: autism spectrum disorder (ASD) Adult stem cells [215]

TAVEC Pharmaceuticals miRNA-loaded exosomes Anti-cancer gene therapy - [216]

XOStem Inc.
XO-Regen® Articular damage, respiratory

failure, neuroinflammation Bone marrow and
umbilical cord
derived MSCs

[217]

XO-Cutis® Hair regeneration, skin rejuvenation,
wound healing

Table 6. Promising therapeutic candidates from Capricor Therapeutics [197].

Therapeutic Candidate Purpose Development Phase

Exosome mRNA Vaccine
(Tripartite mRNA design) SARS-CoV-2 Preclinical

Exosome VLP Display Vaccine
(4-part antigen design) SARS-CoV-2 Preclinical

CDC-Exosomes
(allogenic cardiosphere-derived cells (CDC)-exosomes) DMD Phase 1

Engineered Exosomes
(RNA delivery) Evaluating Discovery

ASTEX-Exosomes
(engineered fibroblast-derived exosomes) Evaluating Discovery

Table 7. Exploring engEx therapeutic candidates from Codiak Biosciences [200].

Field Therapeutic Candidate Purpose Administration
Route

Development
Phase

Oncology

exoIL-12™

Cutaneous T-cell lymphoma (CTCL),
Melanoma,

Triple-negative breast cancer (TNBC),
Merkel cell carcinoma (MCC),

Kaposi’s sarcoma,
Glioblastoma multiforme (GBM)

Intratumoral Phase 1

exoSTING™

Solid tumors, i.e.,:
Head and neck squamous cell Carcinoma (HNSCC),

TNBC,
Anaplastic thyroid cancer (ATC),

Cutaneous squamous cell carcinoma (cSCC)

Intratumoral Phase 1

exoSTING™ GMB,
Leptomeningeal cancer (LMD)

Intratumoral,
intratheca Preclinical

exoASO™-STAT6

Myeloid rich cancers, i.e.,:
Hepatocellular carcinoma (HCC),

Pancreatic ductal adenocarcinoma (PDAC),
Colorectal cancer (CRC)

Ovarian cancer

Intratumoral Preclinical

exoASO™-STAT3 Hematologic/hepatic cancers TBD Preclinical

exoASO™-NRAS Hematologic cancers/solid tumors TBD Discovery

Oncogene Targets Hematologic cancers/solid tumors TBD Discovery

Neurology
exoASO-NLRP3 Neuroinflammation Intrathecal Discovery

exoASO™-NLRP3 Neuropathy Intrathecal Discovery

Gene Targets Neuromuscular diseases TBD Discovery

Vaccines exoVACC™ Cancers, neurodegenerative diseases, viral diseases TBD Discovery
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Table 8. Exosome-based therapeutics from Evox Therapeutics [202].

Field Therapeutic Product Purpose Cargo Development Phase

Urea cycle disorders
EVX-102 ASA Protein exosomes Pre-clinical

EVX-103 Citrullinemia type I Protein exosomes Discovery

Rare metabolic - PKU Undisclosed modality Discovery

Table 9. Therapeutic products from Exopharm Pty Ltd. [206].

Exosome Type Therapeutic Product Purpose Development Phase

Natural exosomes
Plexaris Wound healing Phase 1

Cevaris Osteoarthritis Pre-clinical

Engineering exosomes
Fortrexo Antiviral Pre-clinical

Cognevo Neurodegeneration Discovery

PlexoDOX Cancer Discovery

A detailed description of some of the most important companies mentioned above is
given below.

5.1. Aegle Therapeutics

Aegle Therapeutics is a biotechnological company from Miami, Florida, USA, and
is the first for which human clinical testing for an exosome product has been approved
by the U.S. Food and Drug Administration (FDA) for AGLE-102. Exosomes isolated
from allogeneic BM-MSCs are used to treat dystrophic epidermolysis bullosa (DEB), i.e.,
a rare genetic pediatric connective tissue disorder, as well other serious dermatological
disorders such as severe burns and wounds. Therapy can be performed by local injection
or topically [193].

5.2. Capricor Therapeutics

Capricor Therapeutics is a clinical-stage biotechnology company from Beverly Hills,
California, USA, and is one of the leading companies researching the field of exosomes.
Researchers at Capricor Therapeutics are focused on developing and researching exosome-
based therapeutics (Table 6) to treat and prevent severe and rare diseases and disorders,
particularly Duchenne muscular dystrophy (DMD). They are also involved in the develop-
ment of vaccines and the treatment of inherited diseases. One of them is already in Phase 1
development [197].

5.3. Codiak Biosciences

Codiak Biosciences from Cambridge, United Kingdom, has developed the engEx
platform, which enables the production of exosomes with different properties, loaded
with various therapeutic agents, and the ability to reach the desired target cells. They are
developing various promising therapeutic exosomes based on engEx for the treatment of
different types of cancer, neurological diseases and for vaccine development, as shown in
Table 7. Two of these (exoIL-12™ and exoSTING™) are already in Phase 1 development,
which began in September 2020 [200].

5.4. Evox Therapeutics

Evox Therapeutics is a company from Oxford, United Kingdom, that has developed
the DeliverEXTM platform, designed for the development of exosome-based therapeutics
for the treatment of rare, life-threatening diseases. They appropriately modify exosomes,
incorporated with drugs, to deliver these drugs to target organs to treat severe rare genetic
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disorders, including argininosuccinic aciduria (ASA), Citrullinemia type I, and phenylke-
tonuria (PKU) [202]. They have already developed a few products, as shown in Table 8.

5.5. Exogenus Therapeutics

Exogenus Therapeutics is a Portuguese company and a pioneer in the development of
exosome-based therapeutics. For their leading candidate, Exo-101, they have demonstrated
in vitro and in vivo regenerative, anti-inflammatory, and immunomodulatory properties.
Additional research is focused on the potential treatment of inflammatory skin diseases,
such as psoriasis, and helping patients with inflammatory lung diseases, including COVID-
19 patients with respiratory complications, and it has already been shown to accelerate
the healing of chronic wounds. Exo-101 are isolated by an optimized process combining
ultracentrifugation and size-exclusion pooling chromatography from umbilical cord blood
mononuclear cells. They have also developed ExoWound, a combination of Exo-101 with a
slow-release hydrogel that has potential for treating chronic wounds as it hardens at body
temperature [210].

5.6. Anjarium Biosciences

Anjarium Biosciences is a company from Switzerland. They developed the Hybridosome®

platform for engineering exosome-based therapeutics production for the effective treatment
and prevention of cancer and genetic diseases. In the development of engineering exosomes,
they focus on both cargo incorporation and surface modifications to treat diseases for which
current approaches are ineffective. Their focus is mainly on therapeutic RNA as the cargo.
The product AB126 is both a therapeutic agent and a delivery vehicle to the central nervous
system (CNS) to treat a variety of neurodegenerative diseases, such as Parkinson’s disease
and multiple sclerosis, as well as for stroke, for which it is already in the preclinical
phase [195].

5.7. Aruna Bio

Aruna Bio is a Greek company which in the past focused on the production of neural
stem cells, but today mainly focuses on cell-free biological therapeutics, i.e., neuronal
exosomes isolated from neuronal stem cells. They are developing a completely new
platform—a neuronal exosome platform to deliver drugs as a new and effective way of
treating neurodegenerative diseases. Their neuronal exosomes successfully target cells in
the CNS, and in preclinical studies they have successfully achieved their crossing of the
blood–brain barrier [196].

5.8. ReNeuron

ReNeuron is a company from the United Kingdom and is a leader in the field of
clinical-stage stem cells. In addition to developing new stem cell therapies, they have also
developed a new product, i.e., a therapeutic candidate, called ExoPr0, produced from CTX
neural stem cells, which is a successful delivery vehicle as already proven in preclinical
studies. It was developed for the treatment of neurodegenerative diseases, cancer, and for
the development of vaccines such as COVID-19 [214].

5.9. Exopharm Pty Ltd.

Exopharm is an Australian clinical-stage company that develops exosome-based
therapeutics. They are developing engineering exosomes for drug delivery in the treatment
of infectious diseases, neurological diseases, and cancer, and natural exosomes, produced
from stem cells and platelets, suitable for the treatment of osteoarthritis, chronic and acute
injuries. Several products have already been developed (Table 9), some are in preclinical
studies, and PlexarisTM is already in Phase 1 [206].
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5.10. ExoCoBio

ExoCoBio is a company from Seul, South Korea, and is one of the world’s leading
companies in the production of exosome-based biomedical and regenerative therapeu-
tics. They have patented technology for isolating and purifying exosomes from stem
cells, technology for mass-production of highly efficient exosomes suitable for biomedi-
cal purposes, as well as optimized technology for regenerative medicine (ExoSCRTTM).
Their focus is on the development of therapeutics for the treatment of atopic dermati-
tis, inflammatory bowel disease, acute kidney injury, and alopecia (hair loss), as well as
for immuno-oncology treatment. They have also developed their line of exosome-based
cosmetics Advanced Skincare Complex for Everyone (ASCE), and a cosmetic ingredient,
hybrid exosome VexosomeTM [205].

6. Conclusions and Future Perspectives

Exosomes have received a lot of attention over the last two decades, due to their
unique characteristics, biocompatibility and safety, remaining stable through digestive
and other biological fluids, and able to cross the blood–brain barrier. They are secreted
by many different cells, and researchers have mainly focused on human, animal, and
plant-derived exosomes. They are promising for use as biomarkers and in gene therapy,
tissue regeneration, and vaccine development, and especially as delivery vehicles of drugs
and other therapeutic agents. Extremely successful therapeutic effects of exosomes isolated
from a variety of cells have been demonstrated in various studies in animal models.

By modifying naturally isolated exosomes, the most suitable nanocarriers can be
prepared for the specific purpose of treatment and delivery of the desired therapeutic
agents. The surface of exosomes can be modified to reach the recipient cells successfully and
to enable an easy uptake into the cells. The desired components with therapeutic properties
can be encapsulated into exosomes, which would not reach the target cells in such a high
concentration without appropriate nanocarriers. However, it is also important to emphasize
that these approaches must ensure that the structure and functions of isolated exosomes
do not change significantly. Different methods can be used for exosome preparation.
Knowing the advantages and disadvantages of individual methods of exosome production
and preparation, which are also presented in detail in this review article, can greatly
contribute to the selection of the most appropriate method for the synthesis of the desired
exosomes. Further, new approaches have been developed for fully synthetic exosome
production that mimics the characteristics of natural exosomes and could have more
specific target properties, although these have not yet been explored to such an extent as
modified exosomes.

Current drugs and treatments for cancer can cause side effects, cytotoxicity, and long-
term complications, and can also quickly lead to drug resistance in treated patients. As a
result, exosomes are of great importance in the development of treatments for various types
of cancer, as anti-tumor therapeutic efficacy has been successfully demonstrated in various
in vitro and in vivo studies in animal models. They have also shown great potential as
drug carriers for the possible treatment of various neurodegenerative and cardiovascular
diseases and are effective in delivering antibiotics to pathogen-infected cells and thus have
antibacterial activity.

Therapeutic biomaterials have recently played a particularly important role in the de-
velopment of vaccines, especially for cell-free vaccines, which can be successfully achieved
with the use of exosomes. A few global commercial companies (Aethlon Medical, Inc.,
Capricor Therapeutics, and ReNeuron), on which a detailed review was done for the
first time in this work, are already developing vaccines that have potential for treating
SARS-CoV-2 infections, but these are still only in the development phase.

Despite many successful studies, there are still many challenges to be overcome before
exosome-based therapeutics can be used, as more clinical studies are needed. However,
many companies have already developed appropriate exosome platforms and exosome
products that are approaching clinical trial approvals or are already in Phase 1. Therefore,



Int. J. Mol. Sci. 2021, 22, 9543 29 of 37

extremely successful drug delivery and effective treatment of various serious disease
conditions can be achieved through the use of therapeutic biomaterials, i.e., exosomes, with
these being highly promising approaches thar are likely to be increasingly important in
the future.
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