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Łukasz Woźniak *, Sylwia Skąpska and Krystian Marszałek

Received: 3 July 2015 ; Accepted: 23 September 2015 ; Published: 19 November 2015
Academic Editor: Fernando Albericio

Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology,
36 Rakowiecka Street, 02-532 Warsaw, Poland; skapska@ibprs.pl (S.S.); marszalek@ibprs.pl (K.M.)
* Correspondence: lukasz.wozniak@ibprs.pl; Tel.: +48-226-063-604; Fax: +48-228-490-426

Abstract: Ursolic acid (UA) is a natural terpene compound exhibiting many pharmaceutical
properties. In this review the current state of knowledge about the health-promoting properties
of this widespread, biologically active compound, as well as information about its occurrence and
biosynthesis are presented. Particular attention has been paid to the application of ursolic acid as
an anti-cancer agent; it is worth noticing that clinical tests suggesting the possibility of practical use
of UA have already been conducted. Amongst other pharmacological properties of UA one can
mention protective effect on lungs, kidneys, liver and brain, anti-inflammatory properties, anabolic
effects on skeletal muscles and the ability to suppress bone density loss leading to osteoporosis.
Ursolic acid also exhibits anti-microbial features against numerous strains of bacteria, HIV and HCV
viruses and Plasmodium protozoa causing malaria.
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1. Introduction

Ursolic acid (3β-hydroxy-urs-12-ene-28-oic acid, UA, Figure 1) is a pentacyclic terpenoid
exhibiting a wide range of pharmaceutical properties. Ursolic acid is a secondary plant metabolite,
usually present in the stem bark, leaves or fruit peel. The health promoting activities of this compound
have been unknowingly used for centuries—as an ingredient of herb extracts employed in folk
medicine. In recent years researchers, looking for natural biologically active substances, came back to
this source of knowledge acquired over generations.
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Figure 1. Structure of ursolic acid. 
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Figure 1. Structure of ursolic acid.

This review is an attempt to describe the present state of knowledge about the pharmacological
properties of ursolic acid. Some of the biological activities of this compound have been reviewed
before, but these papers were focused on singular aspects [1–4] or rapidly became dated due to the
immense interest in the features of UA in recent years [5–7].
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2. Natural Occurrence and Biosynthesis of Ursolic Acid

Ursolic acid and related triterpene compounds like oleanolic acid, betulinic acid, uvaol or α-
and β-amyrin are widespread in plants. Their content and composition differs between various
species, due to the presence and activity of the enzymes responsible for their synthesis. Amongst
plants matrices with a high content of ursolic acid and of potentially practical significance as a
source of this compound one can mention apple (Malus domestica) fruit peel, marjoram (Origanum
majorana) leaves, oregano (Origanum vulgare) leaves, rosemary (Rosmarinus officinalis) leaves, sage
(Salvia officinalis) leaves, thyme (Thymus vulgaris) leaves, lavender (Lavandula angustifolia) leaves
and flowers, eucalyptus (Eucalyptus) leaves and bark, black elder (Sambucus nigra) leaves and bark,
hawthorn (Crataegus spp.) leaves and flowers, coffee (Coffea arabica) leaves and the wax layer of many
edible fruits [8,9].

The biosynthesis of ursolic acid and related compounds in plant tissues should be considered
as a three phase process. The first stage is the production of isopentenyl diphosphate (IPP)
which is a five-carbon building block utilized to create all terpenic compounds. For many
years it has been believed that the mevalonate pathway (MVA) is the exclusive source of this
compound. In this cytosol-carried metabolic pathway two molecules of Acetyl-CoA (created in
the citric acid cycle) are transformed to one molecule of IPP through a six stage process. Recent
investigations have discovered another route, the deoxyxylulose/methylerythritiol phosphate (DXP)
pathway. In this plastid-located process isopentyl diphosphate is synthesized from pyruvate and
glyceraldehyde-3-phosphate (Figure 2). Synthesis of triterpenes in the plastid is impossible due to the
lack of necessary enzymes, however the possibility of cross-talk between the two presented pathways
is considered [10,11].
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The second stage of UA production is synthesis of 2,3-oxidosqualene and its cyclisation
leading to formation of α-amyrin. Molecules of IPP and its isomer dimethylallyl diphosphate
(DMAPP) are used to create squalene (through the intermediates geranyl pyrophosphate and farnesyl
pyrophosphate). Then squalene epoxidase oxidizes this compound to 2,3-oxidosqalene. The group of
enzymes named oxidosqualene cyclases (OSCs) is responsible for the cyclisation and rearrangement
of the terpenoid chain leading to the formation of various scaffolds, including α-amyrin [13].

The last stage is modification of α-amyrin by group of cytochrome P450 enzymes called
α/β-amyrin 28-monooxygenases. The methyl group-containing C-28 is oxidized to a carboxyl thus
finishing the UA biosynthesis process [13].

3. Ursolic Acid as a Tool in Cancer Prevention and Therapy

3.1. General Review of Literature Data on Ursolic Acid Anti-Cancer Activities

Ursolic acid is one of the most promising substances of biological origin when it comes
to the prevention and therapy of cancer. Novel pharmacological strategies do not rely only on
the destruction of tumor cells, but also modulate their metabolism to prevent angiogenesis and
metastasis, enforce differentiation of cells and protect healthy tissues against inflammation and
oxidative stress that may lead to neoplasm formation.

UA can be described as a multi-tasking agent; it influences several cell signaling enzymes and
simultaneously protects it against carcinogenic agents. The summary of the studies describing ursolic
acid’s impact on carcinomas in vitro and in vivo is shown in Table 1. While papers reporting protective
effects (including anti-inflammatory and antioxidant properties) are listed in Table 2.

It should be noted that in the majority of mentioned works the authors were testing pure
compounds or attributed therapeutic properties to ursolic acid. There are also numerous studies
describing the effects of plant extract without assigning the activity to a particular compound; the
authors did not include them in this work.

3.2. Cellular Signaling Pathways and Enzyme Inhibition—The Key to the Ursolic Acid Activity
against Cancer

To fully understand modus operandi of anti-cancer drugs one must take a closer look at
cell signaling. This very complex system of communication coordinates all cellular activities and
responses on extracellular signals. The schematic diagram of the main intracellular signal routes is
presented in Figure 3.
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Table 1. Ursolic acid in cancer therapy.

Carcinoma Type Model Used Mechanism of Action

bladder cancer cell lines (NTUB1 and T24)
‚ induction of apoptosis:

(i) using endoplasmic reticulum stress response to activate c-Jun N-terminal kinase signaling [14]
(ii) connected with reactive oxygen species production [15]

breast cancer

rodent model (mice) ‚ inhibition of tumor growth and induction of apoptosis by modulation of PI3K/Akt/mTOR pathway signaling [16]

cell lines (MCF-7, MCF-7/ADR
and MDA-MB-231)

‚ inhibition of growth [17]
‚ antiproliferative activity [18]
‚ suppression of migration and metastasis by modulating c-Jun N-terminal kinase (JNK), Akt and mTOR signaling [19]
‚ induction of apoptosis:

(i) via mitochondrial death pathway and extrinsic death receptor pathway [20]
(ii) by suppressing expression of FoxM1 protein [21]

‚ cytotoxicity [22]

cervical cancer cell lines (HeLa and SiHa)

‚ inhibition of proliferation [23,24]
‚ induction of apoptosis through mitochondrial intrinsic pathway and suppression of ERK1/2 MAPK pathway [25]
‚ enhancement of chemotherapeutic efficiency [26]
‚ cytotoxicity [22,27]

colorectal cancer
cell lines (Caco-2, CO115,

CT26, DLD1, HCT15, HCT116,
HT29, SW480 and SW620)

‚ inhibition of proliferation [17,18,28–30]
‚ induction of apoptosis:

(i) via downregulation of Bcl-2, Bcl-xL and survivin activity [17]
(ii) by influencing PI3K signaling pathway [28]

(iii) via p53-independent upregulation of death receptors [31,32]
(iv) by autophagy through JNK pathway [33]

‚ through cyclooxygenase 2 (COX-2) pathway [34]
‚ enhancement of ionizing radiation-induced apoptotic effect [35]
‚ cytotoxicity [36]

fibrosarcoma cell lines (HT1080) ‚ suppression of metastasis by downregulation of matrix metallopeptidase 9 (MMP-9) [37]
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Table 1. Cont.

Carcinoma Type Model Used Mechanism of Action

gastric cancer cell lines (AGS, BGC823,
SGC7901 and SNU-484)

‚ induction of apoptosis:

(i) via downregulation of Bcl-2 [38]
(ii) by activation of caspase-3, -8, and -9 and downregulation of Bcl-2 expression [39]

(iii) through inhibition of cyclooxygenase 2 [40]

‚ cytotoxicity [22,36]
‚ suppression of proliferation [24]

glioma

rodent model (rats) ‚ inhibition of metastasis through suppressing association of ZIP/p62 with PKC-ζ and downregulation of MMP-9 [41]

cell lines (1321N1, U87 and U251)
‚ inhibition of proliferation and induction of apoptosis by suppression of TGF-β1/miR-21/PDCD4 pathway [42]
‚ promotion of differentiation by inhibition of the endogenous reverse transcriptase (RT) [43]
‚ suppression of growth via reactive oxygen species accumulation [44]

hepatic cancer

rodent model (mice)
‚ suppression of AMF/PGI mediated tumorigenic activities [45]
‚ inhibition of proliferation and induction of apoptosis by downregulation of cyclooxygenase-2 (COX-2) [46]

cell lines
(H22, Hep3B, HepG2 and Huh7)

‚ antiproliferative activity [18,24,47]
‚ induction of apoptosis:

(i) by activation of caspase-3, -8, and -9 and downregulation of Bcl-2 expression [19]
(ii) through downregulation of XIAP and mitochondrial-dependent pathway [48]

(iii) via downregulation of survivin and activation of caspase-3 through PI3K/Akt/mTOR pathway [49]

‚ antiangiogenic properties [50]
‚ cytotoxicity [36]

melanoma

rodent model (mice) ‚ antiangiogenic properties by changing matrix metalloproteinases activity [51]

cell lines
(A375, B16F10 and M4Beu)

‚ induction of apoptosis:

(i) through mitochondrial intrinsic pathway and caspase-3 activation [52]
(ii) by activation of p53 and caspase-3 gene expression and suppression of NF-κB mediated activation of Bcl-2 [53]
(ii) through mitochondrial pathway [54]

‚ inhibition of proliferation and promotion of differentiation by suppression of the endogenous reverse transcriptase (RT) [43]
‚ enhancement of ionizing radiation-induced apoptotic effect [31]
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Table 1. Cont.

Carcinoma Type Model Used Mechanism of Action

leukemia
cell lines

(Jurkat, HL60, HL60/ADR, K562,
K562/ADR, THP1 and U937)

‚ induction of apoptosis:

(i) through downregulation of ezrin [55]
(ii) via upregulation of PTEN gene expression and inactivation of PI3K/Akt/mTOR pathway [56]

(iii) by inactivation of PKB as well as activation of JNK [57]

‚ involving enhanced intracellular Ca2+ signals [58]
‚ inhibition of growth [17]
‚ inhibition of proliferation [23]
‚ induction of differentiation by ERK1/2 MAPK pathway activation [59]
‚ cytotoxicity [22]

lung cancer
cell lines

(A549, ASTC-a-1, Calu-6, H640
and H3255)

‚ inhibition of proliferation [23,60]
‚ inhibition of metastasis by suppressing expression of AEG-1 and inhibition of NF-κB [61]
‚ enhancement of chemotherapeutic effect [26]
‚ induction of apoptosis by upregulation of matrix metalloproteinase and activation of caspase-3 [62]

lymphoma cell lines (Daudi) ‚ induction of apoptosis [63]

multiple myeloma cell lines
(U266, RPMI and 8226.MM1.S)

‚ suppression of proliferation and chemosensitization, inhibition of STAT3 activation pathway by expression of tyrosine
phosphatase SHP-1 protein [64]

neuroblastoma cell lines (IMR32 and SH-SY5Y) ‚ inhibition of proliferation [23,24]

ovarian cancer cell lines (CAOV and SK-OV-3)

‚ inhibition of proliferation by suppressing ERK activity and expression of ERK 1/2 [65]
‚ induction of apoptosis:

(i) by upregulation of BAX (Bcl-2-like protein 4) expression and downregulation of Bcl-2 expression [65]
(ii) by activation of caspases and phosphorylation of GSK3 beta [66]

pancreatic cancer cell lines (AsPC-1, Capan-1,
MIA, Paca-1 and PANC-2)

‚ induction of apoptosis:

(i) with upregulation of p53, p21(waf1) and Noxa proteins levels [67]
(ii) by induction of JNK pathway and suppression of PI3K/Akt/NF-κB pathway [68]
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Table 1. Cont.

Carcinoma Type Model Used Mechanism of Action

prostate cancer

rodent model (mice)
‚ suppression of metastasis by inhibition of CXCR4/CXCL12 signaling [69]
‚ suppression of growth by downregulation expression of cyclin D1 and COX-2 and upregulation of caspase-3 levels [70]

cell lines
(DU145, LNCaP and PC3)

‚ induction of apoptosis:

(i) through activation of caspases and downregulation of c-IAPs [71]
(ii) through autophagy [72]

(iii) via activation of JNK and inhibition of Akt pathways [73]
(iv) through cyclooxygenase 2 (COX-2) pathway [34]
(v) by activation of JNK-induced Bcl-2 phosphorylation and degradation [74]

(vi) by downregulation of Bcl-2 [75]

‚ enhancement of ionizing radiation-induced apoptotic effect [31]
‚ cytotoxicity [36]

thyroid cancer cell lines (ARO) ‚ inhibition of proliferation and promotion of differentiation by inhibition of the endogenous reverse transcriptase (RT) [43]
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Table 2. Ursolic acid in cancer prevention.

Preventive Effect Model Used Mechanism of Action

anti-inflammatory

mouse primary splenocytes inhibition of Th2 cytokines production [76]
activated T cells, B cells and macrophages; mice suppression of NF-κB, AP-1 and NF-AT activity [77]
rat edema tests unclear, probably connected with glucocorticoids [78]

mice reductions of Th2 cytokines and ovalbumin-specific IgE production, and eosinophil infiltration via the
Th2-GATA-3, STAT6, and IL-17-NF-κB pathways [79]

human intestinal epithelial cells and peritoneal
macrophages from mice

inhibition of production of pro-inflammatory cytokines, IκBα phosphorylation/degradation and NF-κB DNA
binding activity [80]

rat mast cells inhibition of histamine release [81]

murine peritoneal macrophages suppression of NO production and iNOS expression via downregulation of NF-κB activation; attenuation of
expression of COX-2 and the secretion of proinflammatory cytokines like TNF-α and IL-6 [82]

PC12 cells attenuation of H2O2 and MPP-induced release of IL-6 and TNF-α [83]
oedema in mice attenuation of inflammation [84]
pleurisy in mice reduction of leukocytes, interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels [85]
phagocyte cells inhibition of histamine release; inhibition of prostaglandins and leukotrienes production [86]
arthritis-induced mice alteration of Th1/Th2 cytokine production [87]
Th17 cells suppression of interleukin-17 production by antagonizing function of RORγt protein [88]
biochemical assays inhibition of cyclooxygenase-2 catalyzed prostaglandin biosynthesis [89]

anti-oxidative

PC12 cells attenuation of H2O2 and MPP-induced impairment in catalase and superoxide dismutase activity [83]
rat liver microsomes protection against lipid peroxidation [90]
RAW247 cells inhibition of NO production [91]
isolated rat heart mitochondria decrease in H2O2 production in the mitochondria [92]
human blood lymphocytes normalization of antioxidant levels; reduction of lipid peroxidation [93]
Caco-2 cells protection of DNA against oxidative damage [94]

chemical-induced cancer

mouse skin inhibition of binding benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene to DNA [95]
rats suppression of preneoplastic lesions formation by 1,2-dimethylhydrazine [96]
rats inhibition of formation of aberrant crypt foci by azoxymethane [97]
human bronchial epithelial cells and mice inhibition of tobacco smoke extract-induced cell injury [98]

radiation-induced cancer mice enhancement of hematopoietic system recovery [99]

ROS-induced cancer
murine T cells inhibition of cell activation through modulation of NF-κB signaling [100]
rats attenuation of hepatocellular carcinoma induction by diethylnitrosamine-induced reactive oxygen species [101]
keranocite cell line and mice skin cancer prevention; protection against hydrogen peroxide induced DNA damage [102]

viral-induced cancer Raji cell line and mice inhibition of Epstein-Barr virus activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) [103–105]
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The anticancer activity of ursolic acid is associated with its ability to influence the activity of
several enzymes. Therefore it is able to modulate processes occurring inside tumor cells activating
routes leading to cell death (usually by apoptosis) and suppressing ones leading to the proliferation,
growth and migration of cancer.

3.2.1. Signaling Pathways

The MAPK/ERK and PI3K/AKT/mTOR signaling cascades play critical roles in the
transmission of signals from growth factor receptors to regulate gene expression. Both these pathways
are responsible for anti-apoptotic and drug resistance effects in cells [106]. The ability to suppress
communication through these routes is one of the most important anti-cancer activities of UA. It has
been reported by numerous research teams in various tumor types.

High expectations are also surrounding UA impact on nuclear factor κB. Activity of NF-κB is
connected with reaction on such stimuli as cytokines, free radicals or antigens, and it plays crucial
role in immunologic answer against infection. Malignant cells are characterized by abnormally high
activity of this transcription factor, what leads to intense proliferation and make NF-κB one of the
main targets of modern oncotherapy [107]. Capability to lower activity of NF-κB has been noticed
not only by oncologist but also scientists dealing with bone and brain issues.

3.2.2. FOXM1 Transcription Factor

Forkhead box (FOX) proteins are family of transcription factors playing crucial role in regulating
expression of genes involved in cell growth. FOXM1 has been recognized as exceptional important
as its aberrant upregulation might be inducing genomic instability and leading to malignant
transformation [108]. FOXM1 has been already used as biomarker of early stages of cancer. This
protein has been also shown to possess ability to cross-talk with other molecules playing role in cancer
development (like: NF-κB, COX-2, ERK and MMPs) [109]. Inhibition of Forkhead box M1 expression
by UA has been reported by Wang et al. [21] in their study on MCF-7 human breast cancer cells.

3.2.3. Apoptosis Regulating Proteins

Apoptosis is the process of programmed cell death occurring as a result of activation of the
specific cellular pathways. In contrast to necrosis, this process is highly regulated and leads to
chromosomal DNA fragmentation. The induction of apoptosis by various agents is an important part
of modern cancer therapies. Unfortunately apoptosis in cancer cells is often blocked by the activity of
mutated genes regulating the cell cycle. Therefore different steps of the apoptotic process should be
targeted to bypass such blocks [1].

Apoptosis induction is the uppermost anti-cancer activity of ursolic acid. It has been reported
in dozens of papers, as regards several cancer types, both in vitro and in vivo. This aptitude is often
connected with the Bcl-2 apoptosis regulators activity. This group of evolutionarily related proteins
consist of both pro- and anti-apoptotic agents and is regarded as crucial in regulation of cell death
through intrinsic apoptotic pathway [110]. Ursolic acid is able to change activity of three amongst 25
members of this family: anti-apoptotic proteins Bcl-2 and Bcl-xL are suppressed, while pro-apoptotic
BAX activity is enhanced [17,19,38,39,65].

Caspases are family of cysteine proteases playing essential role in apoptosis. They are final step
of cell death pathways and are responsible for e.g., DNA fragmentation, cleavage of nuclear proteins
and as a result blebbing and cell death [111]. Inhibitors of apoptosis proteins (IAPs) are a family
of functionally and structurally related proteins which are able to bind caspases and consequently
prevent apoptosis of cell. Overexpression of these compounds can be responsible for drug resistance
of neoplasm cells and its inhibition became one of the therapeutic targets in cancer treatment [112].
Ursolic acid exhibits ability to reduce expression of proteins from IAP family. Amongst influenced
molecules researchers mentioned XIAP [48], c-IAPs [71] and survivin [17,49].
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3.2.4. Endogenous Reverse Transcriptase

Sequencing of the human genome shown that retrotransposable elements make up about 45%
of the human DNA. Almost all of these elements contain genes responsible for reverse transcriptase
(RT) coding. In most tissues expression of RT-coding genes is very low, however high expression is
distinctive for undifferentiated cells like embryos, germ cells or tumor cells. Sciamanna et al. [113]
revealed that RT inhibitors had been able to reduce cell proliferation and induce morphological
differentiation in four carcinoma lines. They also connected RT activity with control of proliferation
and differentiation in neoplastic cells.

Role of ursolic endogenous reverse transcriptase as a mediator of ursolic acid properties was
reported by Bonaccorsi et al. [43]. Their work confirmed ability of UA to suppress growth and induce
differentiation in cancer cells; it also shown that ursolic acid exhibited RT inhibiting activity and
connected it with anti-tumor activities.

3.2.5. Factors Involved in Metastasis and Angiogenesis

Angiogenesis is the formation of new blood vessels from other pre-existent ones during
development, growth, wound repair or the female reproductive cycle. Angiogenesis is one of cancer’s
hallmarks since it is required for both tumor progression and dispersal of metastatic cells. This
resulted in the fact that the inhibition of angiogenesis has become an alternative therapeutic approach
to cancer therapy. The angiogenic process is activated by intracellular signals that activate resting
endothelial cells, which are stimulated to release degrading enzymes allowing endothelial cells to
migrate, proliferate, and finally differentiate to form new vessels. Any of these steps might be a
potential target for pharmacological compounds [114].

Anti-angiogenic properties of ursolic acid are usually attributed to inhibition of the
downregulation of matrix metalloproteinases activity. Metalloproteinases are group of the enzymes
involved in degradation of extracellular matrix. Their activity in tumor tissues is elevated due
to increased demand for oxygen and glucose of neoplasm. UA inhibiting activity against MMP-9
has been confirmed by several research teams, however activity against MMP-2 remains subject
of discussion: Huang et al. [62] reported that UA is able to suppress MMP-2 expression while
Cha et al. [37] did not observe such an effect in their study.

3.2.6. Cyclooxygenase-2 (COX-2)

The connection between inflammation and cancer had been suggested as early as in 1863
by Rudolf Virchow. Currently chronic inflammation, with concomitant activity of cytokines and
increased production of reactive oxygen species, is recognized as a cancerogenesis-promoting
condition [115]. The cyclooxygenases are enzymes responsible for conversion of arachidonic acid to
prostaglandin H2, which is precursor of other prostanoids. Their inhibitors (e.g., acetylsalicylic acid,
ibuprofen, naproxen) are often used as anti-inflammatory drugs and painkillers [116]. Ursolic acid
proved to be efficient COX-2 inhibitor able to suppress inflammation progress [80,86]. Additionally
lowering activity of this cyclooxygenase has been correlated with caspase-3 activity and affected
apoptosis rate in cancer cells [40,46].

3.3. Protection against Tumor-Inducing Agents

Several tests of the anti-carcinogenic activity of ursolic acid against different induction sources
have been conducted. These test included chemical agents (such as benzo(a)pyrene, azoxymethane
and tobacco smoke extract) [95–98], reactive oxygen species producers (such as hydrogen
peroxide) [100–102], ionizing radiation [99] and viral pathogens (Epstein-Barr virus) [103–105].
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3.4. Ursolic Acid as a Drug—Clinical Trials

The ultimate goal of every cancer research is the implementation of the compound to clinical
use. Currently ursolic acid is undergoing phase I trials to evaluate its safety and adverse effects in
patients. Due to poor water solubility and low bioavailability ursolic acid had been administered as a
liposomes. So far results of only three such studies have been published [117–119]—all of them were
performed in The People’s Republic of China. Ursolic acid liposomes showed tolerable toxicity and
adverse effects—only one of 108 patients reported third grade adverse activity. The most frequent
complaints were nausea, diarrhea and skin problems. The common conclusion of all studies was the
necessity of the continuation of research during phase II tests.

4. Impact of Ursolic Acid on Condition and Functioning of Body Organs

4.1. The Liver

The liver is one of the most important organs of the body. It is responsible for a wide range of
metabolic functions, including detoxification of xenobiotics, production of hormones and digestive
enzymes, glycoside and fat-soluble vitamins storage and the decomposition of red blood cells. Due to
its strategic location and multidimensional functions the liver is prone to many diseases, like hepatitis,
hepatic steatosis, cirrhosis, cholelithiasis and drug-induced liver damage. Fortunately liver is the only
internal organ capable to regenerate—as little as 25% of the original mass can reconstruct its full size.

Ursolic acid showed good protective activity against a wide range of liver-threatening
substances. Saraswat et al. [120] were testing UA isolated from Eucalyptus tereticornis extract against
ethanol toxicity in isolated rat hepatocytes. They found that this triterpene was able to decrease
the loss of hepatocyte viability by as much as 76%. A similar problem has been studied by
Saravanan et al. [121], this time however in vivo using alcohol-administered rats. They reported
that UA increased the level of circulatory antioxidants and serum protein and decreased the total
bilirubin level and lipid peroxidation markers. Histopathological observations were in correlation
with biochemical parameters. Paracetamol and tetrachloride were other liver-intoxicating agents
tested by Shukla et al. [122] and Martin-Aragón et al. [123], respectively. Both these papers revealed
increase of hepatocytes viability and improvement of serum markers in UA treated samples.

The impact of UA on metabolic disorders in high fat diet-fed mice and rats was surveyed in
research conducted by Sundaresan et al. [124] and Li et al. [125]. The first group focused on hepatic
lipid accumulation and noticed that the combined treatment of UA and rosiglitazone (an antidiabetic
drug in the thiazolidinedione class) significantly reduced the hepatic marker enzyme activities and
decreased the lipid accumulation in the liver. Furthermore, combination treatment downregulated
lipogenic genes and upregulated fatty acid oxidative genes. The latter team discovered that UA
effectively ameliorated high fat diet-induced hepatic steatosis through a PPAR-α involved pathway,
via improving key enzymes controlling lipid metabolism.

Wang et al. [126] were looking for a possibility to improve hepatic fibrosis patients by UA
administration. They performed tests on hepatic stellate cells (HSCs) isolated from rats and found
that UA induces apoptosis of these cells, leading to partial amelioration of fibrosis.

Interesting results were acquired by Jin et al. [127]. They discovered that ursolic acid was able
to enhance liver regeneration after partial hepactomy in mice. A significant increase in liver to body
weight ratio has been observed (compared to control group), along with the stimulation of expression
of cyclins and C/EBP proteins.

4.2. The Heart

Cardiovascular diseases are the major causes of mortality and morbidity in industrialized
countries. They are responsible for about 30% of all deaths worldwide. Amongst the most
common disorders of the cardiovascular system one can mention myocardial infraction (commonly
known as heart attack), stroke, atherosclerosis, hypertension and varicose veins. Although not all
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cardiovascular diseases are life threatening, all of them significantly decrease life quality and generate
enormous social and financial costs [128].

The first study which reported the impact of UA on the cardiovascular system was conducted
by Somova et al. [129]. It revealed that the administration of UA has been able to lower the heart rate
of genetically hypertensive rats by 32%.

Further research has been carried out in various directions. Vasorelaxant properties of ursolic
acid were investigated by Aguirre-Crespo et al. [130], Rios et al. [131] and Shimada and Inagaki [132].
The first two teams connected the activity of UA with the production and release of nitric oxide (NO)
in isolated thoracic aorta and in vivo on Wistar rats, respectively. Shimada and Inagaki focused on
the inhibitory effect on angiotensin I-converting enzyme (ACE), which plays an important role in the
regulation of blood pressure.

Ursolic acid has been also used as a compound with a potent protective effect in artificially
induced (by isoproterenol administration) myocardial infarction. Senthil et al. [133] were testing the
level of cardiac markers, lipid peroxidation products, lipid profiles and membrane-bound proteins
in the serum of Wistar rats treated with isoproterenol. They found that UA was able to prevent
alterations and restore enzyme activity to normal levels indicating cardioprotective activities. These
results were confirmed and expanded in two works by Radhiga et al. [134,135]. It was reported that
UA had been able to stabilize the level of numerous markers and blood constituents. In addition
the anti-apoptotic effect on cardiac muscle cells has been shown. Heart-protective features of UA
were also presented in work by Saravanan and Pugalendi [136]. They investigated oxidative stress
induced in ethanol-administered rats. Like in the abovementioned papers ursolic acid lowered levels
of lipid peroxidation products and increased the activities of free radical scavenging enzymes and
antioxidant levels in heart tissue.

Administration with ursolic acid also prevents injuries to blood vessels. Pozo et al. [137] revealed
that UA in daily doses of 6 mg/kg body weight was able to inhibit neointima formation in rats’ carotid
artery. In the paper by Lv et al. [138] the authors describe the protective effect of UA on the human
umbilical vein endothelial cells (HUVECs) damaged by C-reactive protein. They reported that UA
inhibited the harmful effect in a dose-dependent manner.

The impact of ursolic acid on atherosclerosis is the subject of dispute amongst scientists since
some studies show potentially beneficial effects while others show potentially negative effects [139].
For example Ullevig et al. [140] reported the inhibition of monocyte dysfunction and the slowing
down of accelerated atherosclerosis in diabetic mice, while Messner et al. [141] described the
stimulation of atherosclerotic plaque formation in mice administered with UA.

The potentially harmful effect of UA intake has been presented by Kim et al. [142]. They
discovered that this triterpene is capable to make platelets more susceptible to aggregation, and they
should be used with caution by people with a predisposition to cardiovascular events.

4.3. The Brain

Excitotoxicity and oxidative stress are two phenomena that have been repeatedly described as
being implicated in a wide range of disorders of the nervous system. Such ailments include several
common idiopathic neurological diseases, traumatic brain injury, and the consequences of exposure
to certain neurotoxic agents. Both excitoxicity and oxidative stress result from the failure of normal
compensatory mechanisms to maintain cellular homeostasis and may lead to permanent damaging
of the brain and decrease of cognitive functions [143].

The first research focusing on the protective effect of ursolic acid on neurons has been conducted
by Shih et al. [144]. Neuronal cultures from rats’ hippocampi were treated with kainic acid with
and without pretreatment of 5–15 µM ursolic acid. It was observed that UA significantly decreased
damage and suppressed free radical generation.

Lu et al. [145] were investigating the protective effect of UA against galactose-induced damage
on mice brains. They reported an increase of antioxidant enzymes activity (catalase, superoxide
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dismutases, glutathione peroxidase and glutathione reductase) and linked it with triterpene activity.
Furthermore, they found that UA significantly increased the level of the growth-associated protein
GAP43. The next paper of this team [146] reported that ursolic acid administration significantly
improved the behavioral performance of D-gal-treated mice in the step-through test and the Morris
water maze task. The results also showed that UA significantly reduced the number of activated
microglia cells and astrocytes, downregulated the expression of NOS and COX-2, and decreased
the interleukin and tumor necrosis factor. Moreover, UA significantly inhibited NF-κB nuclear
translocation in the prefrontal cortex of galactosis-treated mice.

Suppressing NF-κB by ursolic acid as a method to attenuate cognitive deficits and avoid
brain damage has been reported by Wang et al. [147] and Li et al. [148]. Their models were
lipo-polysaccharide-damaged mouse brains and mice after cerebral ischemia, respectively.

Wu et al. [149] described another intracellular signaling pathway involved in UA neuroprotective
activity. They discovered that UA can activate PI3K/Akt signaling and suppress Forkhead box protein
O1 (FoxO1) activity in domoic acid-induced mice. Moreover, UA attenuated the mitochondrial
dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear
exclusion in the hippocampus.

The impact of UA on the brain is not limited to the cellular level. Machado et al. [150], encouraged
by results acquired during a test utilizing rosemary extract, surveyed the influence of UA on mice
behavior. They performed two predictive tests of antidepressant properties: the tail suspension
test (TST) and the forced swimming test (FST). The compound increased immobility time in both
tests. Further investigation showed that activity of UA was likely mediated by interaction with the
dopaminergic system.

Research conducted by Colla et al. [151] confirmed these results using TST and open-field
test. Interactions with other neuromodulators showed an involvement of the serotonergic and
noradrenergic systems, but not the glutamatergic or opioid systems, in the antidepressant-like effect
of UA. Later work by the same team [152] revealed that ursolic acid exhibited some anxiolytic-like
activities. Mice administered with UA performed open field test, elevated plus maze test, light/dark
box test and marble burying test. The results show that ursolic acid (10 mg/kg) elicited an anxiolytic
effect in the first and second test.

4.4. Skeletal Muscles

Skeletal muscles contraction powers the human body’s movements and is essential for
maintaining stability. Muscle tissue accounts for almost half of the human body mass and, in addition
to its power-generating role, is a crucial factor in maintaining homeostasis. Given its central role in
human mobility and metabolic function, any deterioration in the contractile, material, and metabolic
properties of skeletal muscle has an extremely important effect on human health.

The term sarcopenia originates from the Greek words sarx (flesh) and penia (loss) and is
used to describe the degenerative loss of muscle mass (atrophy) and its quality associated with
aging. This expression is used to describe both: cellular processes (denervation, mitochondrial
dysfunction, inflammatory and hormonal changes) and their outcomes such as decreased muscle
strength, decreased mobility and function, increased fatigue and reduced energy needs. In addition,
reduction of muscle mass in aged individuals has been associated with decreased survival rates
following critical illnesses. It is estimated that sarcopenia affects more than 50% of people aged 80
and older [153].

To develop potential therapy against skeletal muscle atrophy Kunkel et al. [154] identified
mRNA sequences regulated by fasting in human and mice muscles. These expression signatures
were analyzed with Connectivity Map database and ursolic acid has been selected from over 1300
bioactive molecules as the one with the biggest anti-atrophic potential. Subsequent in vivo test on
mice confirmed these capacities. Orally administered UA induced muscle hypertrophy, reduced
denervation-induced muscle atrophy and changed the gene expression in muscles. Researchers
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connected triterpene activity with enhancing insulin/IGF-1 (insulin-like growth factor) signaling. A
later paper by the same team [155] reports that UA increased Akt activity, as well as downstreamed
mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and
autocrine/paracrine IGF-I signaling. As a result, skeletal muscle mass, fast and slow muscle fiber
size, grip strength and exercise capacity were increased.

Bakhtiari et al. [156] were investigating if ursolic acid was able to rejuvenate skeletal muscles
in vitro and in vivo. They found that UA elevated the expression of anti-aging genes SIRT1 (ca. 35
folds) and PGC-1a (ca. 175 folds). In vivo tests on a mice model revealed a decreased level of cellular
energy charges (such as ATP and ADP) and increased proliferation and neomyogenesis in muscle
cells. The authors draw the conclusion that UA can be considered as a potential candidate for the
treatment of pathological conditions associated with muscular atrophy and dysfunction, such as
skeletal muscle atrophy, amyotrophic lateral sclerosis (ALS) and sarcopenia.

The direct impact of UA on muscle strength was surveyed by a Korean team led by Bang [157].
Sixteen healthy male participants were divided into two groups (UA/placebo) and were performing
resistance training for 8 weeks. Their characteristics, blood parameters and muscle strength were
measured pre- and post-experiment. A significant increase in all muscle strength parameters was
observed in the UA group, as well as a decrease of body fat and growth of IGF-1 and irisin in blood.
The parameters of the placebo group remained unchanged.

4.5. Bones

Bone is a dynamic tissue that undergoes continual adaptation during life to attain and preserve
skeletal size, shape and structural integrity. It consists of highly specialized cells, mineralized and
unmineralized connective tissue matrix, and spaces that include the bone marrow cavity, vascular
canals, canaliculi, and lacunae. When the skeleton reaches maturity, its development continues in
the form of a periodic replacement of old bone with new at the same location. This process is called
remodeling and is responsible for the complete regeneration of the adult skeleton every 10 years.
The purpose of remodeling in the adult skeleton is not entirely clear, although in bones that are load
bearing, this process most likely serves to repair fatigue damage and to prevent excessive aging and
its consequences. Several types of cells are involved in the remodeling process, but the two most
important are osteoblasts (bone-forming cells) and osteoclasts (cells able to remove mineralized bone
matrix) [158].

The activity of osteoblasts and osteoclasts is crucial for maintaining proper bone structure
and is regulated by differentiation from mesenchymal precursor cells and apoptosis. Several
factors (e.g., sex steroid deficiency, senescence and glucocorticoid excess) can cause an imbalance
between excessive osteoclastogenesis and inadequate osteoblastogenesis. The result is bone loss
leading to osteopenia and osteoporosis [159]. Pharmacological treatment includes two categories:
anti-resorptive agents (e.g., calcitonin or hormone replacement therapy) and anabolic agents (e.g.,
parathyroid analogues) [160].

Lee et al. [160] were the first to study the impact of ursolic acid on bone formation. They found
that UA induces the expression of osteoblast-specific genes with the activation of mitogen-activated
protein kinases, nuclear factor NF-κB and activator protein-1. Another important outcome of their
research was proving ursolic acids’ bone-forming activity in vivo, in a mouse calvarial bone.

Tan et al. [161] found that triterpenic fraction from loquat (Eriobotrya japonica) was able
to significantly decrease bone mineral density in oviarectomized mice by inhibiting osteoclast
production. Dose-depended inhibitory effect of the extract on the differentiation of osteoclasts
without any cytotoxicity was observed. A later paper by this research team [162] presents the results
of an investigation of the structure-activity relationship of loquat extracts. It shows that, amongst 18
triterpenoids, ursolic and pomolic acid showed particularly strong inhibitory activity.

The possible mechanism of osteoclastogenesis inhibition by UA was evaluated by
Jiang et al. [163]. The results indicated that UA can effectively suppress mRNA and protein expression
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by inhibiting NF-κB signaling and partially c-Jun N-terminal kinase signaling. Likewise, UA induced
dose dependent attenuation of titanium particle-induced mouse calvarial bone loss. In conclusion,
these results demonstrate that UA protects against wear particle-induced osteolysis by suppressing
osteoclast formation and function.

Yu et al. [164] were investigating the impact of UA on the bone deleterious effect in
streptozotocin-induced diabetic mice. Their results confirmed earlier observations: the enhancement
of osteogenesis and the suppression on osteoclast differentiation. Research conducted by Fu et al. [165]
was also carried out on diabetic-induced mice, however in this instance the aim was inhibiting
tryptophan hydroxylase 1 (TPH1), one of the enzymes responsible for bone loss. Researchers
synthesized several UA derivatives and investigated their inhibitive properties, obtaining molecules
with improved features.

4.6. Other Organs

So far the influence of ursolic acid on other organs has been described only in a limited number
of papers. The impact on skin has been investigated by two teams. One led by Both [166] has
been testing liposome-encapsulated UA activity towards restoring and maintaining ceramide and
collagen content in skin. Results showed that UA has been able to increase both the ceramide content
of cultured normal human epidermal keratinocytes and the collagen content of cultured normal
human dermal fibroblasts. In addition, UA liposomes increased the ceramide content of the skin
of human subjects, with the increase occurring after only 3 days of treatment. On the other hand
results of a study by Wójciak-Kosior et al. [167] present UA as a potent endangerment to skin. Ursolic
and oleanolic acid activity against human skin fibroblasts (HSF) has been compared, showing that
UA had exhibited much higher cytotoxic activity towards HSFs and thus it should not be used in
dermal products.

Ding et al. [168] and Pai et al. [169] conducted research on the nephroprotective activity of UA.
The teams were using aristolochic acid intoxicated zebrafish and gentamycin administrated rats,
respectively. Both studies confirmed UA’s ability to decrease chemically-induced damage to kidneys.

The protective effect of ursolic acid has been also tested by Chen et al. [170] in
lipopolysaccharide-induced acute lung injury in a mouse model. UA markedly reduced lethality,
improved survival time and decreased lung pathological changes. The results suggested that UA is
capable of improving survival times in LPS-induced acute lung injury.

5. Anti-Microbial Properties of Ursolic Acid

5.1. Anti-Bacterial Activity

The fight against bacterial infections is one of the most important tasks of medicine. The
development of antibiotics in the 1940s gave physicians a powerful tool against infections and
has saved the lives of millions of people. However, because of the widespread and sometimes
inappropriate use of these substances, strains of antibiotic-resistant bacteria have begun to
emerge. These newer, stronger bacteria pose a significant threat to human health and a challenge
to drug researchers. Therefore, there is a continuous search for new, safe antimicrobial agents,
including those from natural sources. A number of researches has been performed to evaluate the
anti-bacterial properties of ursolic acid and related compounds (Table 3). Some of them concerned
in vitro determination of minimal inhibition concentration (MIC) of UA and other triterpenes against
different strains of bacteria [171–174]. Others, like the work of Kurek et al. [175] focused on the specific
effects of UA on bacterial metabolism (in this case the impact on peptidoglycan metabolism).
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Table 3. Anti-microbial and anti-parasitic activity of ursolic acid.

Species References

Bacteria

Aeromonas caveae [171]
Bacillus cereus [171,172]

Bacillus sphaericus [173]
Bacillus subtilis [173,176]

Enterococcus faecalis [177]
Escherichia coli [171,176,177]

Klebisiella pneumoniae [171]
Listeria monocytogenes [171,175,178]

Mycobacterium tuberculosis [179–181]
Pseudomonas aeruginosa [171,177]
Pseudomonas syrinagae [173]
Ralstonia solanacearum [175]

Shigella flexneri [171]
Staphylococcus aureus [171,176,177,182–184]

Staphylococcus epidermis [175]
Streptococcus mutans [185–187]

Streptococcus pneumoniae [178,183]
Streptococcus sobrinus [186]
Streptomyces scabies [176]

Vibrio cholerae [171]

Viruses

Human immunodefiency virus [188–192]
Hepatitis C virus [189,193,194]

Herpes simplex virus [195]

Protozoa

Leishmania amazonensis [196]
Plasmodium falciparum [197–200]

Trypanosoma brucei rhodesiense [197]
Trypanosoma cruzi [201]

Fungi

11 species [202]

Nematodes (Roundworms)

Brugia malayi [203]
Wuchereria bancrofti [203]

Ursolic acid activity against tuberculosis-causing Mycobacterium tuberculosis has been
investigated by Woldemichael et al. [179] and Jiménez et al. [180]. They proved the activity of
triterpenes (including UA) extracted from plants of known pharmaceutical activity—Calceolaria
pinnifolia and Chamaedora tepejilote. Further research by Jiménez-Arellanes et al. [181] confirmed that
UA can be used against drug-resistant strains of these bacteria.

The ability to overcome bacterial resistance against antibiotics was also tested by
Horiuchi et al. [182] who focused their work on vancomycin-resistant Enterococci and Kim et al. [183]
who used methicillin-resistant Staphylococcus aureus. Both studies showed that UA can be used
simultaneously with antibiotics to enhance their activity.

Hu et al. [174] conducted research on sepsis induced by cecal ligation and puncture. They
found that injections of UA were able to significantly improve survival and attenuate lung injury
of infected rats.

The impact of orally delivered ursolic acid on intestinal microbiota was studied by
Feng et al. [204]. Their results showed that it decreased the microbial diversity in the proximal intestine
while having an opposite effect in the distal intestine. UA also inhibited colonization by energy
harvest-related microbes and might be able to enhance intestinal health by inhibiting colonization
by Proteobacteria.
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5.2. Anti-Viral Properties

The human immunodeficiency virus (HIV) and human hepatitis C virus (HCV) infections are
chronic and wide-spread illnesses that represent serious public health problems. According to
a 2012 UNAIDS report on the global AIDS epidemic, about 34 million people were living with
HIV, 2.5 million had acquired new HIV infections and 1.7 million had died of HIV-related causes
worldwide during 2011.

HIV-1 protease is a retroviral aspartyl protease that is essential for the life-cycle of HIV. It cleaves
newly synthesized polyproteins at the appropriate places to create the mature protein components
of an infectious HIV virion. Due to its importance in metabolism this enzyme became the prime
target for drug therapy. In 1996 Quere et al. [192] found that ursolic acid can act as an inhibitor of
this protease, with IC50 near 1 µM. The expected mechanism of action was dimerization inhibition.
Kashiwada et al. [190] confirmed these results and compared the activity of various triterpenes.
Subsequent works focused mainly on inhibiting HIV-1 protease using plant extracts rather than pure
compounds, due to its lower price and easier access [188,189,191].

It is also estimated that about 3% of the global population is infected with the hepatitis
C virus. Chronic hepatitis C infection is the leading cause of cirrhosis, hepatocellular carcinoma
and liver transplantations in developed countries [189]. Anti-HCV properties of UA were discovered
recently. Kong et al. [193] reported that triterpenes are responsible for the anti-viral activity of the
Chinese herb Ligustrum lucidum. Virus spreading was inhibited, at least partly, by suppressing
NS5B RNA-dependent RNA polymerase. Garcia-Risco et al. [194] investigated extracts of heather
(Calluna vulgaris) and they confirmed UA activity against human hepatitis virus C.

Research conducted by Bag et al. [195] showed that UA is an active agent responsible for the
anti-herpes activity of Mallotus peltatus extract. Investigators claimed that UA was probably inhibiting
the early stage of multiplication and can be used as an anti-HSV agent.

5.3. Activity against other Microbes and Parasites

Malaria is the parasitic disease with the greatest impact—it affects around 40% of the world’s
population, spanning across more than 100 countries. Its etiological agent is a protozoa belonging to
the genus Plasmodium.

In 2006 two independent research teams led by van Baren [197] and Cimanga [200] discovered
that triterpenes (including UA) were responsible for the anti-malarial activity of extracts from
Satureja parvifolia and Morinda lucida. Innocente et al. [198] and Della-Veccia et al. [199] developed
UA derivatives and evaluated them by their anti-Plasmodium activity. Despite using different
modification methods both teams acquired compounds with very high anti-malarial properties.

Yamamoto et al. [196] investigated the impact of UA on mice infected with Leishmania
amazonensis. The curative effect of triterpene-rich fraction was similar to amphotericin B (often used in
clinical therapy), however the dose required to eliminate microbes was smaller. Moreover, triterpenic
fraction did not cause microscopic alterations in the liver, spleen, heart, lung, and kidney of the
experimental groups.

The influence of UA on the treatment of Trypanosoma cruzi infections was reported by de Silva
Pereirra et al. [201] They found that oral administration of UA can significantly reduce the parasitic
peak during the acute phase of infection.

Ursolic acid, betulinic acid and six of their derivatives were tested against eleven mucocutaneous
and cutaneous mycotic agents [202]. The MIC values of the piperazinyl derivatives against pathogenic
yeast were in the range of 16–32 µg/mL.

The activity of UA was also examined against parasites. Saini et al. [203] evaluated the activity
of UA extracted from Nycanthes arbor-tristis against Brugia malayi and Wuchereria bancrofti—tropical
filariae responsible for elephantiasis. They discovered that UA was able to induce apoptosis of these
nematodes by downregulating and altering the level of some key antioxidants.
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6. Conclusions

Ursolic acid is a widespread compound of plant origin exhibiting wide range of the
pharmacological activities. The biggest attention amongst scientists has been captured by the role
that UA can play in treatment and prevention of cancer. Amongst other intriguing features of this
triterpene anti-microbial properties and protective effect on internal organs against chemical-damage
should be mentioned. However some studies point out negative effects of administration of this
compound, suggesting that impact of UA on human’s health in some cases can be compared to
the double-edged sword. Analysis of literature indicates that various effects can be linked to one
phenomenon. The example might be inhibition of NF-κB activity, which leads to cancer cells
apoptosis, anti-inflammatory effects and bone-forming activity.

Conflicts of Interest: The authors declare no conflict of interest.
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