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Abstract

Background: Eosinophils are effector cells during parasitic infections and allergic responses. However, their contribution to
innate immunity has been only recently unravelled.

Methodology/Principal Findings: Here we show that human eosinophils express CD3 and cd T Cell Receptor (TCR) but not
ab TCR. Surface expression of cdTCR/CD3 is heterogeneous between eosinophil donors and inducible by mycobacterial
ligands. Surface immunoprecipitation revealed expression of the full cdTCR/CD3 complex. Real-time PCR amplification for
CD3, c and d TCR constant regions transcripts showed a significantly lower expression in eosinophils than in cdT cells.
Limited TCR rearrangements occur in eosinophils as shown by spectratyping analysis of CDR3 length profiles and in situ
hybridization. Release by eosinophils of Reactive Oxygen Species, granule proteins, Eosinophil Peroxidase and Eosinophil-
Derived Neurotoxin and cytokines (IFN-c and TNF-a) was observed following activation by cdTCR-specific agonists or by
mycobacteria. These effects were inhibited by anti-cdTCR blocking antibodies and antagonists. Moreover, cdTCR/CD3 was
involved in eosinophil cytotoxicity against tumor cells.

Conclusions/Significance: Our results provide evidence that human eosinophils express a functional cdTCR/CD3 with similar,
but not identical, characteristics to cdTCR from cdT cells. We propose that this receptor contributes to eosinophil innate
responses against mycobacteria and tumors and may represent an additional link between lymphoid and myeloid lineages.
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Introduction

Eosinophils are polymorphonuclear granulocytes mainly found

in increased numbers during helminth parasitic infections and

allergic reactions [1,2]. They are classically considered as

mediator-releasing cells during effector phase of adaptive immu-

nity, under the influence of T cell dependent cytokines or

chemokines and antibodies [2], whereas eosinophil-derived

chemokines have been recently shown to locally attract Th2

lymphocytes at lung inflammatory sites [3,4]. Nevertheless, their

precise function as beneficial or deleterious to the host still remains

ambiguous, since highly toxic proteins present in eosinophil

granules exert potent cytotoxic effects against non self targets such

as parasites [5,6] but also against stressed or necrotic host cells [7]

and in asthma [8]. Eosinophils are foremost present in mucosal

tissues in contact with the environment such as in gastro-intestinal

tract and skin [2] and are characterized by their wide

morphological and functional heterogeneity [9].

In addition to these effector functions, eosinophils produce

several Th1, Th2 and regulatory cytokines, such as IL-10 [10,11],

which, in contrast to T cells, are stored within granules and

promptly released upon activation [12]. Eosinophils also express

MHCII and CD86 [10,13,14] and act as antigen-presenting cells

[15]. Furthermore, eosinophils share with T cells expression of

various receptors such as CD25 [16,17], CD4 [18], CD28 [10,14]

and several members of the CD2 family, including 2B4 [19]. This

wide array of molecules endows eosinophils with the ability to

induce and regulate adaptive immunity.

However, the early appearance of eosinophils in agnathans,

predating the appearance of the classical adaptive immune system

[20] and the expression by eosinophils of several receptors

involved in innate immunity, such as formyl peptide receptor

[21], protease-activated receptors [22,23] and TLR [24] further

point toward a role for eosinophils in innate immunity. Eosinophils

contribute to TLR-mediated immunity against viruses and

mycobacteria [25,26]. Indeed, we recently showed that TLR-2-

PLoS ONE | www.plosone.org 1 June 2009 | Volume 4 | Issue 6 | e5926



dependent activation of human eosinophils induced a-defensin

and ECP release and decreased mycobacteria growth [24].

Furthermore, expulsion of mitochondrial DNA by eosinophils

has been shown to contribute to innate immune defences against

bacteria [27]. Finally, eosinophil-tumor cell interactions and IL-4-

dependent tumoricidal activity of eosinophils have been reported

[28,29]. Thus eosinophils appear functionally located at the

interface between innate and adaptive immunity.

Strikingly, cdT cells are ancestral to other lymphoid populations

such as abT cells and B cells, they participate to both innate and

adaptive immune responses, have a preferential mucosal localisa-

tion and might act as professional antigen-presenting cells [30]

recognizing non-peptide antigens found on several pathogens,

including mycobacteria, necrotic and tumor cells [31,32].

These surprising similarities between cdT cells and eosinophils

prompted us to investigate, whether, in addition to other T cell-

associated receptors, human eosinophils expressed a cdT cell

Receptor (TCR). We here report that human blood eosinophils

express low levels of surface cdTCR/CD3, inducible by

mycobacterial ligands. We show that eosinophils release granule

proteins and cytokines upon activation by cdTCR agonists,

including mycobacteria. Furthermore, we provide evidence that

cdTCR contributes to eosinophil cytotoxic potential towards

tumors.

Results

Human eosinophils express CD3 and cdTCR but not
abTCR

In order to investigate expression by human blood eosinophils

of T cell associated receptors, we purified eosinophils by negative

selection using magnetic beads. These highly purified eosinophils

(Figure S1A) expressed specific granule proteins such as eosinophil

peroxidase (EPO) and major basic protein (MBP) but not

myeloperoxidase (MPO) associated to neutrophil and monocyte/

macrophage lineages [33] (Figure S1B). Lymphocytes expressed

neither of these myeloid markers (Figure S1B).

Following permeabilization, binding of anti-CD3 but not anti-

CD8 antibodies was detected in eosinophils (Figure 1A). In T cells,

CD3 associates with either abTCR or cdTCR. We did not detect

abTCR on eosinophils but cdTCR expression was evidenced

(Figure 1A). While lymphocytes from PBMC fraction expressed

these markers at the expected frequencies (Figure 1B) and unlike a

previous report [34], we were unable to detect CD3 or abTCR

expression in neutrophils (Figure 1C). Likewise neither CD8 nor

cdTCR expression was detected in neutrophils (Figure 1C).

Surface expression of CD3 and cdTCR was detected on a

fraction of eosinophils following double staining with antibodies

against two specific eosinophil granule proteins EPO (Figure 2A)

or MBP (Figure 2B). Similarly to intracellular staining, neither

CD8 nor abTCR were detected at eosinophil surface. By contrast,

another cdT cell marker, NKG2D, was expressed in a lower

proportion of cells (Figure 2A–B). As CD3 is required for receptor

complex surface expression, CD3+cdTCR+ eosinophils were thus

identified following triple staining (Figure 2C). In human blood,

cdT cells express either Vc9/Vd2 or Vd1 variable regions. We

also evidenced that EPO+ or MBP+ eosinophils expressed Vc9,

Vd1 and Vd2 and unexpectedly co-expressed Vd1 and Vd2 at

their surface (Figure 2A–C).

Expression of cdTCR/CD3 complex was investigated in

healthy donors and patients with either reactive eosinophilia

(allergies, various skin diseases) or hypereosinophilic syndrome

(HES). A wide heterogeneity of surface expression of cdTCR/

CD3 and NKG2D was not only found among the 23 donors but

also within each group, including healthy donors, however no

correlation was observed between receptor expression levels and

either eosinophilia, or a specific pathology (Figure 3A–B).

Following in vitro activation of cdT cells, CD3, CD8, cdTCR as

well as Vc9, Vd2 and Vd1 were detected at the expected frequencies

(Figure S2A). Likewise, freshly isolated PBMC from the same

eosinophil donors, in which cdT cells represent a very minor

population, expressed CD3, abTCR or low levels of cdTCR (Figure

S2B). By contrast, monocytes did neither express CD3 nor cdTCR

(Figure S2C). Finally, neutrophils neither expressed CD3, cdTCR

nor the full abTCR complex at their surface (Figure S2D). Thus,

following overnight culture, a fraction of eosinophils, unambigu-

ously identified by the presence of specific eosinophil markers,

express the cdTCR/CD3 complex at their surface.

Besides receptor reexpression at the membrane following a

resting period, as demonstrated for NKG2A on cdT cells [35],

ligand-dependent induction or upregulation of receptor surface

expression has been widely reported, including in the case of

FceRI [9]. Thus, we investigated whether a specific cdTCR ligand

was able to induce cdTCR/CD3 surface expression on human

eosinophils. While CD3 and cdTCR were barely detected at the

surface of freshly purified eosinophils (Figure S3A), upon

incubation for 2 h with TUBag1, a natural non peptidic ligand

from Mycobacterium tuberculosis [36], about 50% of eosinophils

expressed CD3 and cdTCR at their surface (Figure S3B). By

contrast, neither CD8 nor abTCR expression was induced upon

incubation with TUBag (Figure S3B).

Finally, besides mature eosinophils present in peripheral blood,

eosinophils can be differentiated in vitro from CD34+ cord blood

progenitors. In such EPO+ eosinophils, in the absence of possible

contamination by cdT cells, cdTCR/CD3 complex was detected at

cell surface, after 3 weeks differentiation (Figure S4). As for blood

eosinophils, neither CD8 nor abTCR (not shown) could be detected.

Eosinophils express all the subunits from cdTCR/CD3
complex

To evidence the cellular distribution of cdTCR/CD3 complex

and to further exclude that results obtained by flow cytometry could

be due to contaminating cdT cells, blood eosinophils were analysed

at low magnification by immunofluorescence and at high

magnification by confocal microscopy. In full agreement with flow

cytometry data, in a preparation without contaminating cells, only a

fraction of blood eosinophils, identified by their typical binucleated

morphology, expressed the four chains of CD3 and cdTCR. No

signal was detected with anti-aTCR, anti-bTCR antibodies or

control IgG (Fig 4A). We next characterized the structure of the

cdTCR/CD3 complex expressed at the surface of eosinophils, using

surface biotinylation, followed by lysis with a mild detergent, co-

immunoprecipitation with an anti-cdTCR antibody, SDS-PAGE in

reducing conditions and detection of biotinylated proteins. Bands

corresponding to TCR, CD3d, e, c and f subunits were detected at

the expected molecular weights both on cdT cells and eosinophils

(Figure 4B). This result indicates that all the necessary chains are

present to allow for surface expression of a complete cdTCR/CD3.

However, the amount of material used for eosinophils was 10 times

higher than for cdT cells, results consistent with flow cytometry data

showing much lower surface expression in eosinophils than in cdT

cells (Figure 2 and Figure S2).

cdTCR/CD3 is less abundant and more restricted in
eosinophils than in cdT cells

Transcripts specific for the four chains (e, f, c and d) of CD3

complex, cTCR and dTCR constant regions and CD8 were

Eosinophil cdTCR Expression
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Figure 1. Expression of cdTCR/CD3 complex by human eosinophils. (A–C) CD3, CD8, abTCR and cdTCR expression on permeabilized cells
gated as described in Figure S1 (A) purified peripheral blood eosinophils (B) lymphocytes and (C) neutrophils. Staining with control isotype matched
antibodies is represented in white histograms.
doi:10.1371/journal.pone.0005926.g001
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Figure 3. Heterogeneity of surface expression of cdTCR/CD3 complex by human eosinophils. (A) Cell surface marker expression on EPO+

gated peripheral blood eosinophils from 23 individual eosinophil donors. Group average expression for the indicated markers is represented (-). (B)
Individual data and patient status.
doi:10.1371/journal.pone.0005926.g003

Figure 2. Surface expression of cdTCR/CD3 complex by human eosinophils. (A–C) CD3, cdTCR, Vc9, Vd2, Vd1, abTCR, CD8 and NKG2D
surface expression on EPO+ (A) and MBP2+ (B) purified peripheral blood eosinophils analysed after 18 h culture and gated as described in Figure S1.
Results in (A) and (B) represent to 2 distinct representative donors. Staining with control isotype antibodies is represented. (C) Presence of
CD3+cdTCR+EPO+ and Vd1+d2+EPO+ eosinophils identified by triple staining. Staining with control isotype matched antibodies as well as
corresponding double stainings is represented.
doi:10.1371/journal.pone.0005926.g002
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amplified and quantified by real-time PCR in eosinophils purified

to homogeneity (100%) and cdT lymphocyte subsets or Colo-205

colon carcinoma cells as positive and negative controls respective-

ly. Expression of the various chains was 300 to 4,000 fold lower in

eosinophil population than in cdT lymphocyte population, while

CD8 expression was absent in eosinophils but present in cdT

lymphocytes (Figure 5A). Amplification of Vd1-Jd3, Vd2-Cd and

VcI-JcP rearranged transcripts but not Vd1-Jd4 was also detected

Figure 4. Immunolocalization and Subunit composition of surface-expressed cdTCR/CD3 complex on human eosinophils. (A)
Immunofluorescence and confocal microscopy (insets) analysis of cdTCR/CD3 chains expression on cytospin eosinophil preparations after 18 h
culture. Staining with anti-aTCR, anti-bTCR antibodies and control goat IgG is represented. Arrowheads indicate some positive cells. (B) Surface of
eosinophils and cdT cells was biotin-labelled. Cells were lysed and complexes were immunoprecipitated, using anti-cdTCR or isotype control
antibodies. Immunoprecipitated proteins were resolved on a reducing 14% SDS-PAGE and transferred to PVDF membrane. Biotinylated proteins were
revealed using ABC-HRP and chemiluminescence. Positions of the TCR and CD3 subunits are marked. Material corresponding to the total and to 1/
10th of the material was loaded for eosinophils and cdT cells respectively. Dashed lines indicate that non adjacent lanes of the same gel have been
joined on the Figure.
doi:10.1371/journal.pone.0005926.g004
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in eosinophils. These rearrangements were all found in cdT

lymphocytes but neither in abT lymphocytes nor Colo-205 cells

(Figure 5B). Spectratyping analysis of CDR3 length profiles for

Vc9-Jc1/2, Vc9-JcP and Vd2-Cd evidenced a limited Vd2-Cd
diversity (2 peaks) on eosinophils compared to cdT cells

(Figure 5C), while no signal was detected on eosinophils for the

2 other rearrangements, in contrast to cdT cells (data not shown).

Furthermore, to unambiguously demonstrate that TCR rear-

rangements occur in eosinophils, at single cell level, we performed

in situ hybridization using sequences from rearranged TCR genes

as RNA probes. Hybridization with anti-sense probes correspond-

ing to Vd2-Cd and VcI-JcP rearrangements, that were detected by

RT-PCR, gave a positive signal on nuclei from eosinophils at times

clearly bilobed. In keeping with RT-PCR results, a significantly

stronger signal was detected on cd T lymphocytes, while

corresponding sense probes only gave background amplification

on both cell types (Fig. 5D). Vd1-Jd4 anti-sense probe gave positive

signal on cd T lymphocytes but not on eosinophils in which this

rearrangement was not detected by RT-PCR.

Finally, DNA sequencing of Vd1Jd3 Vd2-Cd regions from

eosinophils and cdT cells show that V and J regions were virtually

identical to the IMGT sequence, while significant differences

between eosinophils and 2 different cloned sequences of cdT cells

from the same donor were found in D regions and in junctional

regions (Figure 6). This further confirms that cdTCR/CD3

complex expressed by eosinophils is less expressed and diverse

than the corresponding receptor on cd T cells.

cdTCR/CD3-mediated eosinophil activation induces ROS
production, degranulation and cytokine release

Upon activation, eosinophils very rapidly produce Reactive

Oxygen Species (ROS) and release, by selective degranulation,

eosinophil-specific granule proteins, including highly cytotoxic

cationic proteins such as EPO and eosinophil cationic protein

(ECP) [6]. In purified blood eosinophils, cdTCR/CD3 complex

activation by immobilized antibodies to CD3, cdTCR or Vd1 led

to a similar kinetics of ROS production (Figure 7A) and to a

significant EPO and eosinophil-derived neurotoxin (EDN) release

(Figure 7D and G). Stimulation with a soluble ligand, bromohy-

drin pyrophosphate (BrHPP), a phosphoantigen agonist selective

for human c9d2+ T lymphocytes [37], induced dose-dependent

ROS production as well as EPO release (Figure 7B and E).

Furthermore, eosinophil activation by sec-butylamine (SBA) [38],

an inducer of endogenous phosphoantigens, yielded to a sustained

dose-dependent ROS and EPO production (Figure 7C and F),

comparable to values obtained following activation with IgA/anti-

IgA immune complexes, one potent physiological eosinophil

activator. Of note, plate-bound antibodies induced stronger

ROS release but weaker EPO release than soluble cdTCR

activators. Since eosinophils also release several immuno-regula-

tory and proinflammatory cytokines [10], we further show that

activation with anti-CD3, -cdTCR or -Vd1 antibodies efficiently

induced IFN-c and TNF-a production by eosinophils (Figure 7H

and I). Thus, cdTCR/CD3-expressing eosinophils respond to

selective agonists similarly to human cdT lymphocytes and

produce both specific eosinophil granule proteins, myeloid cell

mediators as well as cytokines.

Mycobacterium bovis induce cdTCR/CD3-dependent
eosinophil activation

Human cdT cells respond to non-peptide antigens including

mycobacterial and tumor-derived ligands. Patients with mycobac-

terial infections may exhibit blood and tissue eosinophilia and

mycobacteria-induced eosinophil-associated experimental acute

inflammation [39] as well as rapid eosinophil chemotaxis in vivo.

Mycobacteria- eosinophil interactions might thus reflect the

reactivity conferred by cdTCR/CD3 complex. Accordingly,

incubation of blood eosinophils with increasing ratios of

Mycobacterium bovis-BCG induced dose-dependent ROS production

and EPO release (Figure 8A–B), that could be inhibited, in a dose-

dependent manner, by an anti-cdTCR antibody [40] (Figure 8C–

D). Similar eosinophil activation, and inhibition by an anti-

cdTCR antibody, was also obtained following incubation with

TUBag, a natural mycobacterial component (Figure 8E–H). Thus

mycobacteria appear capable of activating eosinophils, at least

partly, in a cdTCR-dependent manner.

cdTCR/CD3-dependent eosinophil cytotoxicity toward
tumor cells

Eosinophils have been associated with many tumors in vivo.

Furthermore, both cd T cells [41] and eosinophils [19] exert

potent cytotoxic activity towards many tumor cells. Therefore, we

investigated cdTCR-mediated eosinophil cytotoxicity towards

Colo-205 carcinoma cell line. Indeed, eosinophils induced time-

dependent apoptosis of Colo-205 tumor cells in vitro, which was

significantly inhibited following addition of neutralizing anti-

cdTCR Ab (Figure 9A). This effect was more prominent at earlier

time-points suggesting that cdTCR-mediated eosinophil-tumor

interactions are important for the initiation of the cytotoxic

reaction (Figure 9B). Finally preincubation of eosinophils with

cdTCR ligands, SBA and TUBag, potentiated eosinophil

cytotoxicity towards tumor cells (Figure 9C–D). Altogether, these

data confirm the potential role of eosinophils in anti-tumor

cytotoxicity and strongly suggest the involvement of cdTCR/CD3

complex in this mechanism.

Discussion

We here provide evidence that highly purified human blood

eosinophils, as well as eosinophils differentiated in vitro from

CD34+ cord blood progenitors, gated on the basis of presence of

specific eosinophil granule proteins, express a functional cdTCR/

CD3 complex, so far almost exclusively associated to T

lymphocytes, but lack abTCR. As previously observed for other

receptors such as CD25 [42], CD4 [18], FceRI, CD89 and CD28

[10], cdTCR/CD3 surface expression on eosinophils is highly

heterogeneous between individual donors. Such an heterogeneity

in cdTCR/CD3 expression has also been observed for human

blood cdT lymphocytes [35]. As it is the case for several receptors,

including FceRI [9], surface expression of cdTCR/CD3 can be

Figure 5. cdTCR/CD3 complex expression and rearrangements in human peripheral blood eosinophils. (A) Real time PCR analysis of
expression of individual chains from cdTCR/CD3 complex in eosinophils, cd T cells and Colo-205 cells. Average expression in Colo-205 cells is chosen
as reference (samples were analysed in triplicate using primers listed in Table S1). (B) TCRc and d rearrangements in peripheral blood eosinophils
analysed by RT-PCR using primers listed in Table S2. CD8 amplification is performed to exclude lymphocyte contamination. Colo-205 are chosen as
negative control (C) Spectratyping analysis of CDR3 length profiles for Vc9-Jc1/2 ; Vc9-JcP and Vd2-Cd families in eosinophils and in cd T cells from
the same donor. (D) Expression of rearranged c and dTCR at the single cell level in peripheral blood eosinophils and cdT cells detected by in situ
hybridization using anti-sense and control sense probes specific for Vd2-Cd, VcI-JcP and for Vd1-Jd4 used as negative control.
doi:10.1371/journal.pone.0005926.g005
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induced/up-regulated, in particular upon incubation with ligands.

Our results show that cdTCR surface expression was induced

upon incubation in the presence of a natural mycobacterial ligand

as well as following overnight culture. The molecular mechanism

underlying this later finding remains unknown. Our results

indicate that CD3e expression, both at mRNA and protein levels,

was consistently lower than cdTCR. Due to the requirement of

this CD3 subunit for surface expression of the receptor complex, it

is tempting to speculate that the very low CD3e expression

probably accounts for the low surface expression of the whole

complex on eosinophils although further experiments would be

required for a formal demonstration. This low receptor expression

Figure 6. Intraindividual variability between eosinophils and cdT cells in rearranged Vd1-Jd3 and Vd2-Cd TCR sequences. (A) TCR
locus organization with positions of the PCR probes used for sequence amplification. (B–C) Sequence alignment of Vd1-Jd3 (B) and Vd2-Cd (C) regions
analyzed from IGMT database, differentiated cdT cells and peripheral blood eosinophils obtained from the same allergic donors for. The two most
frequent sequences are presented for cdT cells. Grey boxes indicate mismatch.
doi:10.1371/journal.pone.0005926.g006

Eosinophil cdTCR Expression
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as well as the fragility of eosinophils was a constraint to obtain

significant amounts of viable cdTCR+ eosinophils following cell

sorting.

Eosinophils display a rearranged cdTCR with a more restricted

repertoire compared to cdT cells, further excluding the possibility

of lymphocyte contaminants in eosinophil preparations. Besides T

lymphocytes, dTCR rearrangements have only been reported in

malignant B lymphoblasts [43], NK cells [44] and in mixed-type

leukaemia retaining both T-lymphoid and myeloid characteristics.

Furthermore, presence of double positive Vd1+Vd2+ and equal

numbers of Vd1- and Vd2-expressing eosinophils in most of

normal donors suggests incomplete allelic exclusion as found in

some instances in cdT cells [45]. Direct cdTCR activation of

eosinophils by cdTCR/CD3-specific antibodies and selective

agonists induced eosinophil-specific responses. Release of such

myeloid-associated mediators and the scarcity of circulating cd T

cells further exclude the possibility that our results obtained using

highly purified eosinophils would be due to cdTCR expression by

contaminating lymphocytes.

Thus, mature eosinophils expressing lymphoid markers might

represent hitherto unattended cdTCR-expressing myeloid cells.

Our results might be in agreement with observations that myeloid-

derived plasmacytoid DC are able to express a ‘‘lymphoid

program’’ (RAG1, rearranged IgH genes) [46]. By contrast, in

the recently proposed myeloid-based model of haematopoiesis, T-

or B-committed progenitors would each keep a myeloid-

differentiation potential [47]. For instance, genetic reprogramming

from differentiated B cells to macrophages has been reported [48].

Further experiments are required to unravel by which mechanisms

eosinophils have acquired this lymphoid program. Of note,

eosinophils are found in human thymus [8]. Furthermore,

similarly to gut intraepithelial cdT cells, eosinophils are able to

undergo peripheral differentiation, for instance in allergic lungs

[49]. Investigating TCR expression by eosinophils in various

Figure 7. Specific mediator release upon CD3- or cdTCR-induced eosinophil activation. (A–C) Representative time course of ROS
production following eosinophil activation by immunobilized specific antibodies (A), BrHPP (B) or SBA stimulation (C). (A) Stimulation with
immobilized anti-CD3 (&), anti-cdTCR (X) or anti-Vd1 (m) mAbs or control IgG1 (¤). (B) Stimulation by BrHPP 200 nM (#) 100 nM (&) and 50 nM (e)
or culture medium (¤). (C) Stimulation by SBA 500 mM (%) 50 mM (m) and 5 mM (X), culture medium (¤) or IgA/anti-IgA immune complexes (N). (D–F)
EPO release by eosinophils upon CD3 or cdTCR activation by specific antibodies (D) (n = 6), BrHPP (E) (n = 3) or SBA stimulation (F) (n = 3). Results are
expressed in count per second (cps). (G) EDN release by eosinophils upon CD3 or cdTCR activation by specific antibodies (n = 6). (H–I) Cytokine
production by eosinophils upon CD3 or cdTCR activation by specific antibodies or IgA/anti-IgA immune complexes. IFN-c production (H) (n = 5–7)
and TNF-a production (I) (n = 4–8). Results presented in panels E and F were obtained on different patients. *, P,0.05; **, P,0.01.
doi:10.1371/journal.pone.0005926.g007
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organs and tissues would greatly benefit from experiments on

animal models. Unfortunately, we were unable to detect cdTCR/

CD3 on mouse blood and tissue eosinophils. This is not extremely

surprising since mouse eosinophils are strikingly different from

human eosinophils, regarding their granular content [50] and

membrane expression of various immune receptors, in particular

IgE receptors [51] and IgA receptors [52]. Furthermore, cdT cells

also display significant differences between mouse and humans.

Indeed, a high proportion of skin lymphocytes express cdTCR in

mouse but not in human [53], while only human Vc9Vd2 are

responsive to phosphoantigens [54].

Our findings indicate that eosinophils might also contribute,

through cdTCR-dependent mechanisms, to immune defences in

tissues, where 90% eosinophils are located. One might speculate

that cdTCR/CD3 expression is higher in tissue than in blood

eosinophils, as previously reported for FceRI in a model of

‘‘humanized’’ mice where human FceRI was quantified and

increasingly expressed from blood to peritoneal cavity and spleen

eosinophils [9]. Tissue eosinophils are associated to granulomatous

diseases such schistosomiasis [55], Crohn’s disease [56] and

mycobacterial infections [39]. Eosinophils can damage cell wall

and lyse Mycobacterium tuberculosis in vitro[57]. Vc9d2 and Vd1

expression, rapid response to phosphoantigen ligands, as well as

BCG-induced activation so far represented hallmarks of cdT

lymphocyte-mediated cytotoxicity towards phosphoantigen-ex-

pressing mycobacteria [58]. Since tumors produce phosphoanti-

gens and are targeted by cdT lymphocytes [58], cdTCR-mediated

activation might thus contribute to the anti-tumoral activity of

eosinophils. Indeed, while cdT lymphocytes and NK cells display

granzyme B/perforin-mediated cytotoxicity, eosinophils addition-

ally possess a unique set of cationic proteins with a strong cytotoxic

potential [50]. Furthermore, tumor-associated tissue eosinophilia

(TATE) is considered by some authors as a marker of good

prognosis, including in colon carcinoma [59]. Anti-tumoral

activity of eosinophils should be considered in the context of

current development of innovative cancer immunotherapies,

based on synthetic phosphoantigens [60]. Indeed, due to their

high cytotoxic potential and despite their low cdTCR expression

in comparison to T cells, eosinophils might thus represent very

efficient ‘‘innate’’ effector cells in defence against targets bearing

cdTCR ligands, such as tumor cells, in particular when eosinophils

surround or infiltrate solid tumors.

Our work outlines a previously unexpected link between

eosinophils and cdT lymphocytes, which not only share the

expression of the cdTCR/CD3 complex but also some major

functions in innate immunity. It might also shed light on the

Figure 9. cdTCR-dependent tumor-cell killing by human eosinophils. (A–B) Induction of Colo205 killing by eosinophils and inhibition by an
anti-cdTCR blocking antibody. Percentage of AnnexinV+ tumor cells in the presence or absence of eosinophils and blocking anti-cdTCR or isotype
control antibodies (n = 5–7) at various time-points. Panel A represents the 60 min time-point. (C–D) Potentiation of eosinophil-mediated Colo205
killing by cdTCR ligands. (C) 50 mM SBA (n = 7). (D) 20 mM TUBag (n = 4). *, P,0.05; **, P,0.01.
doi:10.1371/journal.pone.0005926.g009

Figure 8. Mycobacterium bovis-BCG-induced eosinophil activation. (A and E) Dose-dependent ROS production by BCG- (A) or TUBag (E)
activated eosinophils. BCG/eosinophil ratio: 20/1 ($), 10/1 (e), 5/1 (+) and 0/1 (2). (B and F) Dose-dependent EPO release by eosinophils activated by
different BCG/eosinophil ratios (n = 3) (B) or TUBag concentrations (F). (C and G) Inhibition of BCG- (ratio 20/1 $) (C) or TUBag- (G) induced ROS
production by an anti-cdTCR blocking antibody 5 mg/ml (x) and 10 mg/ml (#) or an isotype control antibody (D). (D and G) Inhibition of BCG- (D) or
TUBag- (G) induced EPO production by an anti-cdTCR blocking antibody (5 and 10 mg/ml) or an isotype control antibody. Results are expressed as
DEPO cps values (values from medium stimulation are subtracted from values obtained with BCG stimulation for each antibody) (n = 3). (E–F) *,
P,0.05; **, P,0.01.
doi:10.1371/journal.pone.0005926.g008
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molecular mechanisms of differentiation, diversity and function of

T-cell expressed cdTCR.

Materials and Methods

Ethics statement
Peripheral venous blood was obtained from healthy donors or

eosinophilic patients after written informed consent. Research

protocol was approved by the Comité Consultatif de Protection

des Personnes dans la Recherche Biomédicale de Lille (France).

Cell purification and culture
Eosinophils were isolated as described [61] on Percoll followed

by negative selection using anti-CD16-coated microbeads. Purity

determined after cytospin and RAL555 staining was above 98%

and 100% for RNA analyses. Purified eosinophils were cultured

overnight at 37uC in complete RPMI without phenol red.

Neutrophils were obtained by positive selection with anti-CD16

coated microbeads. Purity was 99%. For RNA extraction, abTCR

lymphocytes from PBMC from normal donors were sorted after

staining with anti-abTCR-PE using FacsAriaTM cell sorter and

DivaTM software (BD). Purity was 99%. cdTCR lymphocytes were

generated from PBMC (0.56106/ml) by culture in complete

RPMI 1640 medium with 200 nM bromohydrin pyrophosphate

BrHPP (Innate Pharma, Marseille) and 20 ng/ml rhIL-2 for

7 days. At that time, 50–70% cells were c9d2TCR+ cells. For RT-

PCR and in situ hybridization, cdTCR+ cells were further purified

using anti-cdTCR microbeads (Miltenyi).

Cord blood was obtained from the maternity unit of Lille

University Hospital. Mononuclear cells were isolated by Ficoll-

Hypaque density centrifugation. CD34+ cells were purified using

CD34+ isolation kit (Miltenyi). Purified CD34+ cells were cultured

in complete medium supplemented with 2.561025 M b-mercap-

toethanol (b-ME) at 0.56106 cells/ml. Eosinophil differentiation

was induced upon addition of 50 ng/ml SCF, 1 ng/ml each GM-

CSF, IL-3 and IL-5 (Peprotech).

Colo-205 colon carcinoma cell line was obtained from ATCC.

Cells were maintained in RPMI 1640 medium supplemented with

10% FCS, 10 mM L-Glutamine and 10 mg/ml Gentamycin.

Flow cytometry
Antibodies and isotype controls used for flow cytometry (origin,

clone, working dilution or concentration) are listed in Table S1.

Anti-EPO (AHE) and anti-MBP2 [62] (a kind gift from Dr. D

Plager, Mayo Clinic, Rochester) were biotinylated using biotin-

sulfosuccinimidyl ester (Molecular Probes) according to manufac-

turer’s instructions and used at a 1:100 dilution. Samples were

analysed on a FACSCaliburTM using CellQuestTM software (BD).

Multiple staining experiments are represented as color density

plots [63] with linear scales used for both forward (FSC) and side

scatter (SSC) and logarithmic scales used for fluorescence

parameters (Log density: 50%).

Intracellular staining was performed after fixation of purified

eosinophils, neutrophils or PBMC (26105) with 2% paraformal-

dehyde and permeabilization with 0.01% saponin in PBS. After

blocking of non-specific binding with 5 ml mouse serum for

10 min, cells were incubated with anti-CD3-FITC, anti-abTCR-

FITC, anti-cdTCR-FITC or anti-CD8-FITC or corresponding

isotype controls for 30 min in the presence of saponin.

Following incubation for 2 h with or without TUBag-1 [36]

(40 nM) in RMPI 1640 or after overnight culture, purified blood

eosinophils were gated prior to the analysis, on the basis of their

FSC and SSC characteristics in order to exclude dead cells

(Figure 1B). Within PBMC fraction, monocytes and lymphocytes

were gated on the basis of their FSC and SSC characteristics prior

to the analysis. Quadrants were set on samples after double

staining with FITC- or APC- and PE- or biotin-conjugated control

isotype antibodies. At least 104 events were acquired per sample.

For double and triple staining, cultured peripheral eosinophils

were preincubated with 5% human serum albumin (HSA) for

30 min at 4uC and labelled for membrane receptor with the

relevant fluorochrome-conjugated antibodies. After washing, cells

were fixed 10 min with 2% paraformaldehyde at 4uC and

permeabilized for 10 min at room temperature (RT) with 0.01%

saponin in PBS-1% BSA. Non-specific binding was blocked with

5 ml mouse serum for 10 min. Purified peripheral blood

eosinophils were further identified by incubation with biotinylated

anti-EPO or anti-MBP or isotype control for 30 min and

streptavidin-PE (Molecular Probes) (1:200) for 20 min in the

presence of saponin. Neutrophils were identified by intracellular

staining with anti-MPO-PE following an identical procedure.

Monocytes and T lymphocytes were identified by staining with

anti-CD14-PE, anti-abTCR or anti-cdTCR respectively.

Immunofluorescence and confocal microscopy
Purified eosinophils were cytocentrifuged, fixed in 4% parafor-

maldehyde, washed in 0.05 M PBS. Fixation was stopped with

0.1 M glycine for 4 min and 50 mM NH4Cl pH 7.4 for 15 min.

After each incubation step, cytospins were washed for 10 min in

PBS. Cells were incubated with PBS-3% BSA-5% HSA for

30 min and, after one PBS wash, with 10% decomplemented

donkey serum (Jackson ImmunoResearch). Cytospins were then

incubated overnight at 4uC in a humid chamber with goat

antibodies specific for CD3e, CD3f, CD3c, CD3d, aTCR,

bTCR, cTCR, dTCR (Santa Cruz) or with goat IgG (Jackson

ImmunoResearch) in PBS-BSA-HSA (40 mg/ml). After washing in

PBS-0.1% BSA, cells were incubated with biotinylated donkey

anti-goat IgG (Jackson ImmunoResearch) (1:200) in PBS-BSA-

HSA for 2 hours, followed by streptavidin-Texas Red (Molecular

Probes) (1:500) in PBS-3% BSA for 1 hour. Final washes were with

PBS-0.1% BSA- 0.02% Tween 20 for 2610 min and with PBS for

10 min. For immunofluorescence, DNA was stained with Hoechst

33342 (Invitrogen) (1:1000), immediately prior to cytospin

mounting in Fluoromount G (Southern Biotechnologies).

For conventional immunofluorescence a Leica DM-RB micro-

scope equipped for epifluorescence with a 100 W mercury lamp

was used. Filter and dichroic mirror sets were TX2 for Texas Red

and A for Hoechst 33342. Images were acquired with a 10061.32

NA oil immersion objective, a Photometrics Cool SNAPTM

camera using RSImageTM software (Roper Scientific). Samples

were analysed by confocal microscopy using a DM-IRE2 inverted

microscope with SP2-AOBS scan-head (Leica) at the Imaging

Facility of Institut Pasteur de Lille. Excitation was performed at

543 nm for Texas Red. Fluorescence emission wavelengths pass

bands were selected between 581 and 621 nm according to the

emission spectral analysis. Excitation power was between 100 and

400 mW. Acquisitions were performed using a 10061.4 NA oil

immersion objective. 3D pre-treatment, analysis and edition were

performed with Edit3D (free software, Y. Usson, GDR2588,

CNRS, France). Analysis and editing was performed on Photo-

shop (Adobe).

Surface immunoprecipitation
Surface labelling and co-immunoprecipitation was performed as

previously described for cd T cells [64]. Purified human

eosinophils or differenciated cdT cells were washed and then

resuspended in PBS (pH 8.0) at 3.107 cells/ml at room temper-

ature. Surface biotinylation was performed for 30 min at room
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temperature using 2 mM Sulfo-NHS-LC-Biotin (Pierce Biotech-

nology). Cells were washed three times with PBS containing

100 nM glycine and once in PBS.

Labelled cells were lysed in a buffer containing 20 mM Tris

(pH 7.5), 150 mM NaCl, 1 mM EDTA, protease inhibitors and

1% Brij 97 (Sigma-Aldrich). Lysates were cleared by centrifugation

for 15 min at 12,000 g and sequentially incubated at 4uC in the

presence of Protein-G Sepharose (Gamma bind Plus Sepharose,

Pharmacia), Protein G Sepharose-bound normal mouse IgG

(Jackson Immunoresearch) and Protein G Sepharose-bound anti-

cdTCR. Immunoprecipitated samples were washed three times

with lysis buffer then boiled in reducing sample buffer (30 mM

Tris, pH 6.8, 5% glycerol, 2% SDS, 2.5% b-mercaptoethanol,

0.1% bromophenol blue). Material was run on 14% polyacryl-

amide gels. Material corresponding to the total and to 1/10th of

the material was loaded for eosinophils and cdT cells respectively.

Following separation, proteins were transferred to PVDF mem-

brane (Biorad). Blots were developed using ABC-HRP (Vector

Laboratories) and the enhanced chemiluminescence (ECL) plus

Western blot detection system (Amersham).

PCR analysis
Total RNA was isolated using the RNeasy mini kit (Qiagen)

from 107 purified cells and reverse transcription was performed

using SuperScriptTMRT (MMLV 200 U/ml) (Invitrogen). cDNA

was amplified using primers (Proligo) (20 pmoles/ml) listed in

Table S2. PCR were run for 40 cycles (1 min at 95uC, 1 min

annealing and 1 min at 72uC) using Taq polymerase (Bioprobe).

Real time PCR
Total RNA was prepared from eosinophils by guanidium/CsCl

centrifugation method. Briefly, purified eosinophils were pelleted

by centrifugation and then lysed in 4 M guanidium isothiocyanate,

1 mM EDTA, 25 mM sodium acetate, 4.9% b-mercaptoethanol,

68 mM N-lauryl sarcosine. Lysate was drawn through a 20G

needle. RNA was obtained by ultracentrifugation (28000 rpm,

20 h, and 20uC) through a CsCl gradient. RNA pellet was washed

twice and dissolved in water and precipitated overnight at 220uC
with ethanol 70% and sodium acetate 0.08 M. After centrifugation

(10000 rpm, 45 minutes at 4uC), RNA was washed twice in

ethanol 70%, resuspended in water and store at 280uC until use.

RNA from cd T cells and Colo205 cells was prepared using

RNeasy mini-spin columns (Qiagen, UK) according to the

manufacturer’s instructions. All samples were quantified by

absorbance measurement at 260 nm on a spectrophotometer

(Biorad), and RNA quality was checked by running samples on

1.5% agarose gel in RNA loading buffer (Sigma).

Total RNA was first submitted to DNAse I (Invitrogen)

treatment (15 min at room temperature), and cDNA was

generated using Superscript II reverse transcriptase (Invitrogen)

according to the manufacturer instructions. Samples were

analyzed by quantitative real-time PCR, performed according to

manufacturer’s protocol, using SYBR Green PCR Master Mix

(Applied Biosystems) and the ABI Prism 7000 Sequence Detection

System (Applied Biosystems). Primers were designed using the

Primer3 Website and are listed on Table S2.

Samples were run in triplicate in a reaction volume of 25 ml.

Amplification was carried out for 40 cycles, with denaturation at

95uC for 10 min during the first cycle and subsequently for

15 seconds, annealing and extension for 1 minute at 60uC. A

dissociation temperature gradient was included at the end of the

run. Gene expression was normalized according to GAPDH

expression. Relative gene expression was calculated with the

22DDCT method [65].

TCR repertoire analysis
Qualitative analysis of CDR3 length for Vc9-Jc1/2, Vc9-JcP

and Vd2-Cd families was performed in triplicate on eosinophils and

in cd T cells from the same donor (TcLand, Nantes, France) [66].

Briefly, cDNA was amplified by PCR using a Cc or Cd reverse

primer and Vc9 or Vd2-specific forward primers, respectively. The

amplifications were performed in a 384-Well GeneAmpH PCR

System 9700 (Applied Biosystems, Foster City, CA). Briefly, each

amplification product was used for an elongation reaction using a

dye-labeled Jc specific-labelled primer for the rearrangement

analysis and Cd labeled primer for the d chain analysis, then heat

denatured, loaded at least in duplicate onto a sequencing analyzer

(48-capillary 3730 DNA Analyzer - Applied Biosystems). Then,

GeneMapper software (Applied Biosystems) was used to display the

distribution profiles of CDR3 lengths, in amino acids, of the

amplified and elongated products.

cdTCR junctional sequences analysis
Vd1-Jd3 and Vd2-Cd amplification products (400 bp) were

cloned into a TA vector (pCR-TOPO, Invitrogen) using standard

protocols. For each rearrangement, sequencing was performed on

5 randomly picked clones. TCR sequences were obtained from the

IMGT website (imgt.cines.fr). Sequence alignments were per-

formed using DNAstar software. GeneBank sequence accession

numbers are: FJ890312 and FJ890313 respectively.

In situ hybridisation
PCR products, amplified from purified cdTCR lymphocyte

RNA, and corresponding to VcI-JcP, Vd2-Cd and Vd1-Jd4

rearrangements were cloned into the pCRII-TOPO vector (Invitro-

gen). Clones were isolated and sequenced on both strands. Clones

corresponding to the published sequence were used to generate

hybridization probes. Sense and anti-sense probes were synthesised

from linearised plasmids using 350 mM digoxigenin-UTP (Roche)

and SP6 or T7 polymerases as described [67]. In situ hybridisation

was performed using a Discovery automat and corresponding kits

(Ventana Medical Systems). Slides were incubated in EZprep buffer

before processing with a standard RiboMap Kit. Slides were pre-

treated 30 min with CC2 buffer, then 20 min with protease 3,

followed by 6 h hybridization with sense or anti-sense probes

(100 ng/slide). Slides were then washed twice 10 min in 26SSC at

60uC, twice 10 min in 0.16SSC at 60uC. Slides were incubated for

30 min with a mouse anti-digoxigenin antibody (Jackson Immu-

noResearch) and then for 30 min with a rabbit anti-mouse antibody

before treatment with UltraMap kit. Labelling was detected after a

150 min (Vd2-Cd), 110 min (VcI-JcP) or 90 min (Vd1-Jd4)

incubation in the presence of NBT/BCIP substrate. Slides were

counterstained for 1 h with Nuclear Fast Red and mounted in

permanent mounting medium (Vector).

ROS production and EPO release
ROS production and EPO release were measured as described

[61]. Wells were coated with 10 mg/ml anti-mouse IgG F(ab’)2
(Sigma) for 2 h at 37uC, followed by incubation with 10 mg/ml

anti-CD3, anti-cdTCR, anti-Vd1or isotype control mouse IgG1

for 2 h at 37uC. Eosinophils (26106/ml) were added in the

presence of luminol (8.3 mg/ml). Alternatively, eosinophils were

stimulated with 50–200 nM BrHPP, 5–50 mM sec-butylamine

(SBA) (Sigma) or IgA/anti-IgA immune complexes (incubation

with 7.5 mg/ml secretory IgA for 1 hr then by addition of 10 mg/

ml anti-IgA). Chemiluminescence was measured at 37uC for

5 sec/timepoint with a luminometer (Victor2TM Wallac). For EPO

release, supernatants (50 ml) were transferred into a microtiterplate
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and luminol (50 mg/ml), D-luciferin (461025M) (Roche Diagnos-

tics) and H2O2 were injected.

EDN and cytokine release
Eosinophils (26106/ml) were activated with the same stimuli as

for ROS production. After 18 h culture, supernatants were

collected. EDN levels were measured by specific ELISA (MBL).

The lower detection limit was 0.62 ng/ml. IFNc and TNFa
cytokines were measured by specific ELISA (Diaclone). Detection

limit was 5 pg/ml for IFNc and 8 pg/ml for TNFa.

Activation with Mycobacteria
Mycobacterium bovis-BCG Pasteur strain was obtained from Dr C.

Locht (Inserm U629, Institut Pasteur de Lille, France) and was

grown in Sauton medium at 37uC. Eosinophils were incubated

with various BCG numbers (Eosinophil/BCG: 20/1, 10/1 and 5/

1). ROS and EPO release were determined as described above.

For inhibition experiments, eosinophils (20/1 ratio) were incubat-

ed with a blocking anti-cdTCR mAb (10 mg/ml) or isotype control

for 30 min at 37uC, before BCG addition.

Tumor cell apoptosis
Colo 205 cells were labelled with 10 mM PKH26 (Sigma)

according to manufacturer’s instructions. Then, eosinophil-

mediated cytotoxicity against PKH-26-labelled Colo-205

(10 mM) was measured in complete medium at 1.66104 targets/

well into U-bottom plates containing eosinophils (25:1 Effector:-

Target ratio) [61]. After different time points, apoptosis was

measured by flow cytometry after annexinV-FITC staining

(Pharmingen) for 15 min at RT. For inhibition experiments,

blocking antibodies against cdTCR or isotype-matched control

(10 mg/ml) were added to eosinophils immediately prior to the

incubation in the presence of targets. In some experiments,

eosinophils were preincubated for 30 min with 50 mM SBA or

20 mM TUBAg 1 before addition to the target cells.

Statistical analysis
Individual data or mean6S.E.M values were presented. All

statistical analyses were performed using SPSS software. Normal-

ity of data samples was assessed with the Normality test of Shapiro

and Wilk. Then parametric paired-samples Student’s t-test was

used to compare variables and the one-tailed statistical significance

level was as represented on Figures.

Supporting Information

Figure S1 Gating strategy and specific identification of purified

peripheral blood eosinophils in flow cytometry analysis. (A–B)

Gating of purified peripheral blood eosinophils on forward and

side scatter parameters immediately after purification. (A)

Ellipsoids circle the analyzed population. (B). Specificity of

eosinophil identification by intracellular detection of EPO, MBP

or MPO using PE- or biotin-conjugated specific antibodies (grey

shaded histograms). Staining on purified neutrophils as well as

gated lymphocytes and monocytes from purified PBMC is shown

as control. Staining with control isotype matched antibodies is

represented in white histograms.

Found at: doi:10.1371/journal.pone.0005926.s001 (6.41 MB TIF)

Figure S2 Surface expression of CD3, cdTCR, Vgamma9,

Vdelta2,Vdelta1, abTCR, CD8 and NKG2D detected by flow

cytometry in double staining on immune cell populations. (A) In

vitro-generated BrHPP-induced gamma9 delta2 TCR+ lympho-

cytes. (B) Scatter-gated lymphocytes from PBMC. (C) Scatter-gated

monocytes from PBMC. (D) CD16+-purified blood neutrophils.

Staining with control isotype matched antibodies is represented.

Found at: doi:10.1371/journal.pone.0005926.s002 (4.23 MB TIF)

Figure S3 Surface expression of cdTCR/CD3 complex by

human eosinophils following induction by a mycobacterial cdTCR

ligand. (A–B) CD3, cdTCR, abTCR and CD8 surface expression

on EPO+-purified peripheral blood eosinophils incubated with

culture medium (A) or with 40 nM TubAg for 2 h (B). Staining

with control isotype matched antibodies is represented.

Found at: doi:10.1371/journal.pone.0005926.s003 (3.02 MB TIF)

Figure S4 Surface expression of CD3, cdTCR and CD8 on

cord blood-derived eosinophils. Eosinophils derived from CD34+

cord blood cells (day 21) were analysed for CD3, cdTCR and CD8

cell surface expression after gating on EPO+ cells. Staining with

control isotype antibodies is represented.

Found at: doi:10.1371/journal.pone.0005926.s004 (1.28 MB TIF)

Table S1 List, and characteristics of antibody used in this

manuscript. Mb: Membrane staining. IC: Intracellular staining

Found at: doi:10.1371/journal.pone.0005926.s005 (0.06 MB

DOC)

Table S2 Gene-specific primer sequences

Found at: doi:10.1371/journal.pone.0005926.s006 (0.04 MB

DOC)

Acknowledgments

The authors wish to thank M. Bonneville (Inserm, Nantes, France), J.

Khalife (Inserm, Lille) for helpful advices. They are grateful to L. Prin

(CHRU, Lille France) and the National Network on Hypereosinophilia for

access to eosinophilic patients, C. Rouanet and C. Locht (Inserm, Lille,

France) for providing BCG and technical suggestions and Dr D. Plager

(Mayo Clinic, Rochester) for anti-MBP2 antibody. The authors also with to

thank M. Delbecke and J. Bertout for their technical assistance.

Author Contributions

Conceived and designed the experiments: FL VD GW FS DDD MC.

Performed the experiments: FL VD GW SL EH LH VM FS. Analyzed the

data: FL VD GW SL JJF MLG DDD MC. Contributed reagents/

materials/analysis tools: JJF. Wrote the paper: DDD MC.

References

1. Giembycz MA, Lindsay MA (1999) Pharmacology of the eosinophil. Pharmacol

Rev 51: 213–340.

2. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:

147–174.

3. Jacobsen EA, Ochkur SI, Pero RS, Taranova AG, Protheroe CA, et al. (2008)

Allergic pulmonary inflammation in mice is dependent on eosinophil-induced

recruitment of effector T cells. J Exp Med 205: 699–710.

4. Walsh ER, Sahu N, Kearley J, Benjamin E, Kang BH, et al. (2008) Strain-

specific requirement for eosinophils in the recruitment of T cells to the lung

during the development of allergic asthma. J Exp Med 205: 1285–1292.

5. Young JD, Peterson CG, Venge P, Cohn ZA (1986) Mechanism of membrane

damage mediated by human eosinophil cationic protein. Nature 321: 613–616.

6. Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, et al. (1994)

High-affinity IgE receptor on eosinophils is involved in defence against parasites.

Nature 367: 183–186.

7. Stenfeldt AL, Wenneras C (2004) Danger signals derived from stressed and

necrotic epithelial cells activate human eosinophils. Immunology 112: 605–614.

8. Jacobsen EA, Taranova AG, Lee NA, Lee JJ (2007) Eosinophils: singularly

destructive effector cells or purveyors of immunoregulation? J Allergy Clin

Immunol 119: 1313–1320.

9. Kayaba H, Dombrowicz D, Woerly G, Papin JP, Loiseau S, et al. (2001) Human

eosinophils and human high affinity IgE receptor transgenic mouse eosinophils

express low levels of high affinity IgE receptor, but release IL-10 upon receptor

activation. J Immunol 167: 995–1003.

Eosinophil cdTCR Expression

PLoS ONE | www.plosone.org 15 June 2009 | Volume 4 | Issue 6 | e5926



10. Woerly G, Roger N, Loiseau S, Dombrowicz D, Capron A, et al. (1999)

Expression of CD28 and CD86 by human eosinophils and role in the secretion
of type 1 cytokines (interleukin 2 and interferon gamma): inhibition by

Immunoglobulin A complexes. J Exp Med 190: 487–495.

11. Woerly G, Lacy P, Younes AB, Roger N, Loiseau S, et al. (2002) Human
eosinophils express and release IL-13 following CD28-dependent activation.

J Leukoc Biol 72: 769–779.
12. Melo RC, Spencer LA, Dvorak AM, Weller PF (2008) Mechanisms of eosinophil

secretion: large vesiculotubular carriers mediate transport and release of granule-

derived cytokines and other proteins. J Leukoc Biol 83: 229–236.
13. Lucey DR, Nicholson-Weller A, Weller PF (1989) Mature human eosinophils

have the capacity to express HLA-DR. Proc Natl Acad Sci U S A 86: 1348–1351.
14. Seton K, Hakansson L, Carlson M, Stalenheim G, Venge P (2003) Apoptotic

eosinophils express IL-2R chains alpha and beta and co-stimulatory molecules
CD28 and CD86. Respir Med 97: 893–902.

15. Shi HZ, Humbles A, Gerard C, Jin Z, Weller PF (2000) Lymph node trafficking and

antigen presentation by endobronchial eosinophils. J Clin Invest 105: 945–953.
16. Plumas J, Gruart V, Aldebert D, Truong MJ, Capron M, et al. (1991) Human

eosinophils from hypereosinophilic patients spontaneously express the p55 but
not the p75 interleukin 2 receptor subunit. Eur J Immunol 21: 1265–1270.

17. Simon HU, Plotz S, Simon D, Seitzer U, Braathen LR, et al. (2003) Interleukin-

2 primes eosinophil degranulation in hypereosinophilia and Wells’ syndrome.
Eur J Immunol 33: 834–839.

18. Lucey DR, Dorsky DI, Nicholson-Weller A, Weller PF (1989) Human
eosinophils express CD4 protein and bind human immunodeficiency virus 1

gp120. J Exp Med 169: 327–332.
19. Munitz A, Bachelet I, Fraenkel S, Katz G, Mandelboim O, et al. (2005) 2B4

(CD244) is expressed and functional on human eosinophils. J Immunol 174:

110–118.
20. Rowley AF, Page M (1985) Ultrastructural, cytochemical and functional studies

on the eosinophilic granulocytes of larval lampreys. Cell Tissue Res 240:
705–709.

21. Svensson L, Redvall E, Bjorn C, Karlsson J, Bergin AM, et al. (2007) House dust

mite allergen activates human eosinophils via formyl peptide receptor and
formyl peptide receptor-like 1. Eur J Immunol 37: 1966–1977.

22. Miike S, McWilliam AS, Kita H (2001) Trypsin induces activation and
inflammatory mediator release from human eosinophils through protease-

activated receptor-2. J Immunol 167: 6615–6622.
23. Bolton SJ, McNulty CA, Thomas RJ, Hewitt CR, Wardlaw AJ (2003)

Expression of and functional responses to protease-activated receptors on

human eosinophils. J Leukoc Biol 74: 60–68.
24. Driss V, Legrand F, Hermann E, Loiseau S, Guerardel Y, et al. (2008) TLR2-

dependent eosinophil interactions with mycobacteria : role of alpha-defensins.
Blood in press.

25. Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, et al. (2003)

Expression and function of Toll-like receptors in eosinophils: activation by Toll-
like receptor 7 ligand. J Immunol 171: 3977–3982.

26. Phipps S, Lam CE, Mahalingam S, Newhouse M, Ramirez R, et al. (2007)
Eosinophils contribute to innate antiviral immunity and promote clearance of

respiratory syncytial virus. Blood 110: 1578–1586.
27. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, et al. (2008) Catapult-like

release of mitochondrial DNA by eosinophils contributes to antibacterial

defense. Nat Med 14: 949–953.
28. Tepper RI, Coffman RL, Leder P (1992) An eosinophil-dependent mechanism

for the antitumor effect of interleukin-4. Science 257: 548–551.
29. Tepper RI (1994) The eosinophil-mediated antitumor activity of interleukin-4.

J Allergy Clin Immunol 94: 1225–1231.

30. Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation
function by human gammadelta T Cells. Science 309: 264–268.

31. Hayday AC (2000) Gamma delta cells: a right time and a right place for a
conserved third way of protection. Annu Rev Immunol 18: 975–1026.

32. Carding SR, Egan PJ (2002) Gamma delta T cells: functional plasticity and

heterogeneity. Nat Rev Immunol 2: 336–345.
33. Metso T, Venge P, Haahtela T, Peterson CG, Seveus L (2002) Cell specific markers

for eosinophils and neutrophils in sputum and bronchoalveolar lavage fluid of
patients with respiratory conditions and healthy subjects. Thorax 57: 449–451.

34. Puellmann K, Kaminski WE, Vogel M, Nebe CT, Schroeder J, et al. (2006) A
variable immunoreceptor in a subpopulation of human neutrophils. Proc Natl

Acad Sci U S A 103: 14441–14446.

35. Boullier S, Poquet Y, Halary F, Bonneville M, Fournie JJ, et al. (1998)
Phosphoantigen activation induces surface translocation of intracellular CD94/

NKG2A class I receptor on CD94- peripheral Vgamma9 Vdelta2 T cells but not
on CD94- thymic or mature gammadelta T cell clones. Eur J Immunol 28:

3399–3410.

36. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, et al. (1994)
Stimulation of human gamma delta T cells by nonpeptidic mycobacterial

ligands. Science 264: 267–270.
37. Espinosa E, Belmant C, Pont F, Luciani B, Poupot R, et al. (2001) Chemical

synthesis and biological activity of bromohydrin pyrophosphate, a potent
stimulator of human gamma delta T cells. J Biol Chem 276: 18337–18344.

38. Thompson K, Rojas-Navea J, Rogers MJ (2006) Alkylamines cause Vgam-

ma9Vdelta2 T-cell activation and proliferation by inhibiting the mevalonate
pathway. Blood 107: 651–654.

39. Lasco TM, Turner OC, Cassone L, Sugawara I, Yamada H, et al. (2004) Rapid

accumulation of eosinophils in lung lesions in guinea pigs infected with

Mycobacterium tuberculosis. Infect Immun 72: 1147–1149.

40. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC

molecules by intestinal epithelial gammadelta T cells. Science 279: 1737–1740.

41. Hayday A, Tigelaar R (2003) Immunoregulation in the tissues by gammadelta T

cells. Nat Rev Immunol 3: 233–242.

42. Rand TH, Silberstein DS, Kornfeld H, Weller PF (1991) Human eosinophils

express functional interleukin 2 receptors. J Clin Invest 88: 825–832.

43. Krejci O, Prouzova Z, Horvath O, Trka J, Hrusak O (2003) Cutting edge: TCR

delta gene is frequently rearranged in adult B lymphocytes. J Immunol 171:

524–527.

44. Fronkova E, Krejci O, Kalina T, Horvath O, Trka J, et al. (2005) Lymphoid

Differentiation Pathways Can Be Traced by TCR {delta} Rearrangements.

J Immunol 175: 2495–2500.

45. Couedel C, Lippert E, Bernardeau K, Bonneville M, Davodeau F (2004) Allelic

exclusion at the TCR delta locus and commitment to gamma delta lineage:

different modalities apply to distinct human gamma delta subsets. J Immunol

172: 5544–5552.

46. Shigematsu H, Reizis B, Iwasaki H, Mizuno S, Hu D, et al. (2004) Plasmacytoid

dendritic cells activate lymphoid-specific genetic programs irrespective of their

cellular origin. Immunity 21: 43–53.

47. Kawamoto H (2006) A close developmental relationship between the lymphoid

and myeloid lineages. Trends Immunol 27: 169–175.

48. Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into

macrophages. Cell 117: 663–676.

49. Sehmi R, Denburg JA (2000) Differentiation of human eosinophils. Role in

allergic inflammation. Chem Immunol 76: 29–44.

50. Lee JJ, Lee NA (2005) Eosinophil degranulation: an evolutionary vestige or a

universally destructive effector function? Clin Exp Allergy 35: 986–994.

51. de Andres B, Rakasz E, Hagen M, McCormik ML, Mueller AL, et al. (1997)

Lack of Fc-epsilon receptors on murine eosinophils: implications for the

functional significance of elevated IgE and eosinophils in parasitic infections.

Blood 89: 3826–3836.

52. Decot V, Woerly G, Loyens M, Loiseau S, Quatannens B, et al. (2005)

Heterogeneity of expression of IgA receptors by human, mouse, and rat

eosinophils. J Immunol 174: 628–635.

53. Jameson J, Havran WL (2007) Skin gammadelta T-cell functions in homeostasis

and wound healing. Immunol Rev 215: 114–122.

54. O’Brien RL, Roark CL, Jin N, Aydintug MK, French JD, et al. (2007)

Gammadelta T-cell receptors: functional correlations. Immunol Rev 215:

77–88.

55. Hsu SY, Hsu HF, Mitros FA, Helms CM, Solomon RI (1980) Eosinophils as

effector cells in the destruction of Schistosoma mansoni eggs in granulomas. Ann

Trop Med Parasitol 74: 179–183.

56. Choy MY, Walker-Smith JA, Williams CB, MacDonald TT (1990) Activated

eosinophils in chronic inflammatory bowel disease. Lancet 336: 126–127.

57. Borelli V, Vita F, Shankar S, Soranzo MR, Banfi E, et al. (2003) Human

eosinophil peroxidase induces surface alteration, killing, and lysis of Mycobac-

terium tuberculosis. Infect Immun 71: 605–613.

58. Thedrez A, Sabourin C, Gertner J, Devilder MC, Allain-Maillet S, et al. (2007)

Self/non-self discrimination by human gammadelta T cells: simple solutions for

a complex issue? Immunol Rev 215: 123–135.

59. Fernandez-Acenero MJ, Galindo-Gallego M, Sanz J, Aljama A (2000)

Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal

carcinoma. Cancer 88: 1544–1548.

60. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, et al. (2008) Phase-I

study of Innacell gammadeltatrade mark, an autologous cell-therapy product

highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in

patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57:

1599–1609.

61. Legrand F, Woerly G, Driss V, Capron M (2007) Innate immune functions of

eosinophils. From antiparasite to antitumor cells. In: Ewbank J, Vivier E, eds.

Methods in molecular Biology. Totowa NJ: Humana Press. pp 215–240.

62. Plager DA, Loegering DA, Checkel JL, Tang J, Kephart GM, et al. (2006) Major

basic protein homolog (MBP2): a specific human eosinophil marker. J Immunol

177: 7340–7345.

63. Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006)

Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7:

681–685.

64. Hayes SM, Love PE (2002) Distinct structure and signaling potential of the

gamma delta TCR complex. Immunity 16: 827–838.

65. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:

402–408.

66. Douillard P, Josien R, Pannetier C, Bonneville M, Soulillou JP, et al. (1998)

Selection of T cell clones with restricted TCR-CDR3 lengths during in vitro and

in vivo alloresponses. Int Immunol 10: 71–83.

67. Wilkinson DG, Nieto MA (1993) Detection of messenger RNA by in situ

hybridization to tissue sections and whole mounts. Methods Enzymol 225:

361–373.

Eosinophil cdTCR Expression

PLoS ONE | www.plosone.org 16 June 2009 | Volume 4 | Issue 6 | e5926


