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Abstract

Motivation: Although genome-wide association studies (GWAS) have identified thousands of

variants associated with common diseases and complex traits, only a handful of these variants are

validated to be causal. We consider ‘causal variants’ as variants which are responsible for the asso-

ciation signal at a locus. As opposed to association studies that benefit from linkage disequilibrium

(LD), the main challenge in identifying causal variants at associated loci lies in distinguishing

among the many closely correlated variants due to LD. This is particularly important for model or-

ganisms such as inbred mice, where LD extends much further than in human populations, resulting

in large stretches of the genome with significantly associated variants. Furthermore, these model

organisms are highly structured and require correction for population structure to remove potential

spurious associations.

Results: In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated

Regions), a novel method that is able to operate across large LD regions of the genome while also

correcting for population structure. A key feature of our approach is that it provides as output a

minimally sized set of genes that captures the genes which harbor causal variants with probability

q. Through extensive simulations, we demonstrate that our method not only speeds up computa-

tion, but also have an average of 10% higher recall rate compared with the existing approaches.

We validate our method using a real mouse high-density lipoprotein data (HDL) and show that

CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while

reducing the number of genes that need to be tested for functionality by a factor of 2.

Availability and implementation: Software is freely available for download at genetics.cs.ucla.edu/

caviar.

Contact: eeskin@cs.ucla.edu

1 Introduction

Genome-wide association studies (GWAS) have been extremely suc-

cessful in reproducibly identifying variants associated with various

complex traits and diseases (Altshuler et al., 2008; Hakonarson

et al., 2007; International Multiple Sclerosis Genetics Consortium

et al., 2013; Kottgen et al., 2013; Ripke et al., 2013). The most com-

mon type of genetic variants comes in the form of single nucleotide

polymorphisms (SNPs), which we make the focus of this study.

Because of the correlation structure in the genome, a phenomenon

referred to as linkage disequilibrium (LD) (Pritchard and Przeworski,

2001; Reich et al., 2001), each GWAS-associated variant will

typically have hundreds to thousands of other variants which are

also significantly associated with the trait. Identifying the variants

responsible for the observed effect on a trait is referred to as

fine mapping (Hormozdiari et al., 2014; Kichaev et al., 2014;

Maller et al., 2012; Yang et al., 2012). In the context of association

studies, the genetic variants which are responsible for the association

signal at a locus are referred to in the genetics literature as the ‘causal

variants’. Causal variants have biological effect on the phenotype.

Generally, variants can be categorized into three main groups. The

first group is the causal variants which have a biological effect on the

phenotype and are responsible for the association signal. The second

group is the variants which are statistically associated with the

phenotype due to LD with a causal variant. Even though association

tests for these variants may be statistically significant, under our def-

inition, they are not causal variants. The third group is the variants

which are not statistically associated with the phenotype and are not

causal. We note that this usage of the term causal has little to do
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with the concept of causal inference as described in the computer sci-

ence and statistics literatures (Pearl, 2000; Spirtes et al., 2000).

Fine-mapping methods take as input the full set of association

signals in a region and attempt to identify a minimum set of vari-

ants that explains the association signals. A common approach is

to calculate marginal association statistics for each variant and,

depending on the study budget, select the top K ranked variants

for follow-up studies. However, the local correlation structure at a

fine-mapping locus will induce similar association statistics at

neighboring, non-causals variants, thereby making this approach

suboptimal in this context. Furthermore, it fails to provide a guar-

antee that the true causal variant is selected. A recent work

(Maller et al., 2012) addressed this issue by estimating the proba-

bilities for variants to be causal under the simplifying assumption

that each fine-mapping locus contains a single causal variant.

Ranking variants based on association strength (similar to top k)

and this probabilistic approach (Maller et al., 2012) assuming a

single causal variant give identical relative rankings. However, the

probabilistic approach provides the added benefit that we can

now select enough variants to guarantee that we have captured the

true causal variants with q level of confidence. Unfortunately, the

key underlying assumption that a fine-mapping locus contains a

single causal variant is likely to be invalidated at many risk loci

(Hormozdiari et al., 2014; Kichaev et al., 2014). For regions that

putatively harbor multiple independent signals, a common strat-

egy is to use iterative conditioning to tease out secondary signals

(Yang et al., 2012). This process is analogous to forward stepwise

regression, where at each iteration, the variant with the strongest

association is selected to enter the model and then marginal statis-

tical scores are re-computed for the remaining variants condition

on the ones that have been selected. This process is repeated until

there are no remaining variants that are statistically significant.

However, it has been shown that this approach is highly sub-

optimal (Hormozdiari et al., 2014; Kichaev et al., 2014) due to

lack of LD consideration. To address these issues, we recently pro-

posed probabilistic fine-mapping methods (Hormozdiari et al.,

2014; Kichaev et al., 2014) that build on the concept of a standard

confidence interval by providing a well-calibrated, minimally sized

confidence set of variants using principled, LD-aware modeling of

multiple causal variants. In these methods, we assign probability

to each variant to be causal and subsequently select the smallest

number of variants that achieve the desired posterior probability.

Many accurate fine-mapping methods have been designed for

human studies where there are a relatively small number of associ-

ated variants in a region. In model organism studies, however, per-

vasive LD patterns result in GWAS-associated loci that may span

several megabases and contain thousands of variants and dozens

of genes. For example, in a widely utilized design for mouse stud-

ies, the Hybrid Mouse Diversity Panel (HMDP) (Bennett et al.,

2010)—the typical associated region—is approximately 1–2 mega-

bases. Identifying which genes underlie an associated locus in

model organism studies is a major, labor-intensive process involv-

ing generating gene knockouts. Therefore, it is often the case that

identifying the causal genes at an associated locus requires a larger

effort than the initial GWAS (Flint and Eskin, 2012). In addition

to large LD blocks, fine-mapping studies in model organisms are

complicated by population structure (i.e. the complex genetic rela-

tionship between different individuals in the study; Flint and

Eskin, 2012; Kang et al., 2008; Price et al., 2006) that invalidate

commonly used association statistics that assume the individuals

in the study are independent. Model organisms such as mice have

a high level of population structure, typically larger than what is

observed in human populations; therefore, correcting for the

population structure for mouse GWAS is imperative to mitigate

the chance of false positive signals of association (Flint and Eskin,

2012; Kang et al., 2008; Price et al., 2006).

In this article, we propose CAVIAR-Gene (CAusal Variants

Identification in Associated Regions), a statistical method for fine

mapping that addresses two main limitations of existing methods.

First, as opposed to existing approaches that focus on individual

variants, we propose to search only over the space of gene combin-

ations that explain the statistical association signal, and thus drastic-

ally reduce runtime. Second, CAVIAR-Gene extends existing

framework for fine mapping to account for population structure.

The output of our approach is a minimal set of genes that will con-

tain the true casual gene at a pre-specified significance level. This

gene set together with its individual gene probability of causality

provides a natural way of prioritizing genes for functional testing

(e.g. knockout strategies) in model organisms. Through extensive

simulations, we demonstrate that CAVIAR-Gene is superior to exist-

ing methodologies, requiring the smallest set of genes to follow-up

in order to capture the true causal gene(s). To validate our approach,

we applied CAVIAR-Gene to real mouse data and found that

we can successfully recover Apoa2, a known causal gene for high-

density lipoprotein (HDL) (Flint and Eskin, 2012; van Nas et al.,

2009), for the HDL phenotype in the HMDP.

2 Methods

2.1 Overview of CAVIAR-Gene
CAVIAR-Gene takes as input the marginal statistics for each variant

at a locus, an LD matrix consisting of pairwise Pearson correlations

computed between the genotypes of a pair of genetic variants, a par-

titioning of the set of variants in a locus into genes, and the kinship

matrix which indicates the genetic similarity between each pair of

individuals. Marginal statistics are computed using methods that

correct for population structure (Kang et al., 2008; Lippert et al.,

2011; Listgarten et al., 2012; Zhou and Stephens, 2012). We con-

sider a variant to be causal when the variant is responsible for the as-

sociation signal at a locus and aim to discriminate these variants

from ones that are correlated due to LD. Our previous proposed

method CAVIAR, is a statistical framework that provides a ‘q causal

set’ that is defined as the set of variants that contain all the causal

variants with probability of at least q. The intuition is that due to

LD structure, it is impossible to identify exactly the causal variants,

but it is possible to identify a set which contains these causal vari-

ants. CAVIAR was designed to work on human GWAS where we

deal with regions that have at most 100 variants in a locus and we

consider all possible causal combinations of at most 6 causal vari-

ants to detect the q causal set. However, in model organisms, the

large stretches of LD regions result in a large number of variants

associated in each region, thus making CAVIAR computationally

infeasible.

CAVIAR-Gene mitigates this problem by associating each vari-

ant to a proximal gene, and instead, operating on the gene level,

thus reducing the computational burden by an order of magnitude

while facilitating interpreting of GWAS results. Similarly,

CAVIAR-Gene detects a ‘q causal gene set’ which is a set of genes

in the locus that will contain the actual causal genes with

probability of at least q. Note that not all the genes selected in the

q causal gene set will be causal. A trivial solution to this problem

would be to output all the genes as the q causal gene set.

However, because this provides no additional information, we are
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interested in detecting the q causal gene set which has the min-

imum number of genes. We demonstrate that CAVIAR-Gene is

well-calibrated as it fails to detect the actual causal gene 1�q frac-

tion of the time.

2.2 Standard GWAS
Consider a GWAS on a quantitative trait where we collect pheno-

typic values for n individuals and genotype all the individuals on m

variants. Let yi indicate the phenotypic value of the ith individual

and gik 2 f0; 1; 2g indicate the minor allele count of the ith individ-

ual for the kth variant. We use Y to denote the ðn� 1Þ vector of

phenotypic values and Xk to denote the ðn� 1Þ vector of normalized

genotype values for the kth variant for all the n individuals in the

study. Without loss of generality, we assume that genotype values

for each variant have been standardized to have mean 0 and vari-

ance 1 yielding the following relationships: 1T Xk¼0 and

XT
k Xk ¼ n, where 1 denotes the ðn� 1Þ vector of ones. We assume

that the data generating model follows a linear additive model, and

for simplicity the variant c is the only variant associated (causal)

with the phenotype. Each variant is categorized into one of the three

groups. The first group is variants which are associated with the

phenotype and are considered causal. The second group is variants

which are statistically associated with the phenotype due to LD

with a causal variant—these variants are considered not causal.

The third group is variants which are not associated with the pheno-

type and are considered not causal. Standard GWAS analysis for the

cth variant is performed utilizing the following model equation:

Y ¼ l1þ bcXc þ e (1)

where l is the mean of the phenotypic values, bc is the effect size of

the cth variant, and e is the residual noise. In this model, the residual

error is the ðn� 1Þ vector of i.i.d and normally distributed error. Let

e � N 0;r2
e I

� �
, where I is the (n�n) identity matrix and re is a co-

variance scalar. The estimates of bc, which are indicated by b̂c , are

obtained by maximizing the likelihood,

b̂c ¼
XT

c Y

XT
c Xc

; b̂c � N bc;
r2

e

ðXT
c XcÞ

� �

and the statistics is computed as follows:

Sc ¼
b̂c

r̂e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXT

c XcÞ
q

� N kc; 1ð Þ:

where kc is the non-centrality parameter (NCP) and is equal to
bc

re

ffiffiffi
n
p

. We obtain the estimated value for l, e, and re as follows:

l̂ ¼ 1T Xc

n ; ê ¼ Y � 1l̂ � b̂cXc, and r̂e ¼
ffiffiffiffiffiffiffi
êT ê
n�2

q
.

2.3 The effect of LD in GWAS
In the previous section, we consider that there is only one variant (vari-

ant c), and this variant is causal. Now, we extend the previous case

and for simplicity we assume there are two variants, c and k. Similar

to the previous section, the variant c is causal and variant k is corre-

lated to c through LD but has no phenotypic effect. The correlation

between the two variants is r which is approximated by 1
n Xk

TXc.

Thus, the estimate for the effect size for the variant k is as follows:

b̂k ¼
XT

k Y

XT
k Xk

; b̂k � N rbc;
r2

e

ðXT
k XkÞ

 !

and the statistics is computed as follows:

Sk ¼
b̂k

r̂e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXT

k XkÞ
q

� N rkc; 1ð Þ:

We compute the covariance between the estimated effect size of

the two variants as follows:

Cov Sc; Sið Þ ¼ Cov
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXT

c XcÞ
p b̂c

re
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXT

i XiÞ
q b̂k

re

 !

¼ 1

r2
e

Cov
XT

c Yffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

c Xc

p ;
XT

i Yffiffiffiffiffiffiffiffiffiffiffiffi
XT

i Xi

q
0
B@

1
CA

¼ XT
i Xcffiffiffiffiffiffiffiffiffiffiffiffi

XT
i Xi

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

c Xc

p ¼ r:

Thus, the joint distribution of the marginal association statistics

for the two variants given their NCPs follows a multivariate normal

distribution (MVN),

Si

Sj

" #�����
ki

kj

" # !
� N

ki

kj

" #
;

1 rij

rij 1

" # !
;

where rij is the genotype correlation between the ith and jth variants.

In the case that both variants are not causal, we have ki ¼ kj ¼ 0. In

the case that the jth variant is causal and the ith variant is not causal,

we have ki ¼ rkj. In the case that jth variant is not causal and the ith

variant is causal, we have kj ¼ rki. This result is known from previ-

ous studies (Han et al., 2009; Hormozdiari et al., 2014; Kichaev

et al., 2014; Zaitlen et al., 2010).

2.4 Computing the likelihood of causal SNP status from

GWAS data
Given a set of m variants, the pair-wise correlations denoted by R,

we use the ðm� 1Þ vector S ¼ S1 . . . Sm½ �T to denote the mar-

ginal association statistics. We extend the joint distribution men-

tioned above for m variants. The joint distribution follows an MVN

distribution,

ðSjKÞ � N RK;Rð Þ; (2)

where K is the ðm� 1Þ vector of normalized true effect sizes and R is

a ðm�mÞ matrix of pair-wise genotype correlations between differ-

ent SNPs. Let X ¼ ½X1;X2 � � �Xm� be a n�m matrix of genotype.

We can approximate R using genotype data as follows: R ¼ 1
n XTX.

In CAVIAR (Hormozdiari et al., 2014), we introduce a new

parameter C, which is a ðm� 1Þ binary indicator vector used to

represent causal status of m SNPs in a region (i.e. cðiÞ is 1 if the ith

SNP is causal and 0 otherwise). We define a prior probability

on the vector of K for a given causal status using an MVN

distribution,

ðKjCÞ � N 0;Rcð Þ; (3)

where Rc is a diagonal (m�m) matrix. The diagonal elements of Rc

are set to r2
e or e where e is a very small constant to make sure the

matrix Rc is full rank. The ith element on the diagonal is set to r2
e if

the ith variant is causal and set to e if the ith variant is non-causal.

We know that the LD between two variants is symmetric (RT ¼ R).

We combine Equations (2) and (3) to compute the joint marginal
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association statistics of all the variants. The joint distribution fol-

lows an MVN distribution,

ðSjCÞ � N 0;Rþ RRcRð Þ: (4)

2.5 Computing the posterior probability of causal SNP

status from GWAS data
Given the observed marginal association statistics, S ¼ ½S1; � � � Sm�T ,

we can compute the posterior probability of the causal SNP status

P C�jSð Þ as,

P C�jSð Þ ¼ 1

Z
P SjC�ð ÞP C�ð Þ ¼ P SjC�ð ÞP C�ð ÞX

C2C
P SjCð ÞP Cð Þ

:
(5)

where C is the set of all possible causal SNPs. Thus, the size of

C is 2m. Furthermore, P C�ð Þ is the prior probability for a particular

causal SNP status, C�. We use Z to indicate the normalization

factor.

In CAVIAR, we use a simple prior for a causal SNP status.

We assume that the probability of an SNP to be causal is inde-

pendent from other SNPs and the probability of an SNP to be

causal is c. Thus, we compute the prior probability as

P C�ð Þ ¼
Ym

i¼1
cjci jð1� cÞ1�jci j. In our work, we set c to 0.01

(Darnell et al., 2012; Eskin, 2008; Jul and Eskin, 2011). It is worth

mentioning that although we use a simple prior for our model,

CAVIAR can incorporate external information such as functional

data or knowledge from previous studies. As a result, we can have

SNP-specific prior where ci indicates the prior probability for the ith

SNP to be causal. Thus, we can extend the prior probability to a

more general case, PðC�jc ¼ ½c1; c2; � � � c‘� ¼
Y‘

i¼1
cjci j

i ð1� ciÞ1�jci j.

To compute the posterior probability for each causal SNP status,

we need to consider all the possible causal SNP status which is the de-

nominator of Equation (5). To ease the computational burden, we as-

sume we have at most six causal SNP in each region. Assuming we

have an upper bound on the number of causal variants is a common

procedure in fine-mapping methods (Hormozdiari et al., 2014; Kichaev

et al., 2014). We show the upper bound of six causal variants have

small effect on the results (Hormozdiari et al., 2014). This assumption

reduces the size of C from 2m to m6 which is computationally feasible.

2.6 q causal SNP set
Give a set of SNPs K, we define a causal SNP configuration as all the

possible causal SNP status which excludes any SNP as causal outside

the set K. Note, our definition of causal SNP configuration includes

the causal SNP status where no SNP is considered as causal. We use

CK to denote the causal SNP configuration for the K. We compute the

posterior probability of set K capturing all the true causal genes,

P CKjSð Þ ¼
X
C2CK

P CjSð Þ:

Let q denote the value of the posterior probability, where

q ¼ P CKjSð Þ, and we refer to it as the confidence level of K capturing

the actual causal SNPs. We refer to K as the ‘q confidence set’.

Given a confidence threshold q�, there may exist many confi-

dence sets that have a confidence level greater than the threshold.

However, among all the possible q� confidence sets, the sets which

have the minimum number of SNPs are more informative or have

higher resolution to detect the actual causal SNPs. Thus, we are

interested in finding the q� confident set with the minimum size

(with minimum number of selected SNPs), P CK� jSð Þ � q�, where K�

has the minimum size.

2.7 q causal gene set
Unfortunately, the q causal SNP sets for mice can select many variants

due to the high LD. Instead, we would like to find a set of genes that

harbors causal variants. We define a q causal gene set as a set of genes

which captures all the genes which harbor the causal variants with

probability at least q. One of the benefits of detecting the q causal

gene set requires less computation than detecting the q causal SNP set.

For simplicity, we use genes as a way to group the SNP to detect

the causal SNPs. Thus, SNPs are partition to sets and this partition

of the SNPs is done based on the genes. As a result, when a gene is

selected in the q causal gene set, we can consider all the SNPs which

are assigned to that gene which are selected in the q causal SNP set

in the CAVIAR model. We use a simple way to assign SNPs to a

gene—we assign an SNP to the closest gene. We would like to em-

phasize that CAVAIR-Gene can incorporate more complicated SNP

to gene assignment.

Let G be a set of genes and KðGÞ indicate all the SNPs assigned to

the genes in the set G. Then, we formally define the q causal gene

set as a G� set where the total posterior probability of all the SNPs in

KðG�Þ that captures all the causal SNPs is q. Among all the q causal

gene set, we are interested in the set which has the minimum number

of genes selected.

P CKðG�ÞjS
� �

� q:

Thus, to detect the q causal gene set, we need to search over all the

possible sets of genes. Given ‘ genes in loci, we have 2‘ possible

causal gene set which is much smaller than all the possible sets of

SNP, which are 2m.

2.8 Greedy algorithm to detect the q causal gene set
We would like to emphasize that q causal gene set should capture all

the causal genes; however, not all the genes selected in the q causal

gene set are causal. Thus, even if we set an upper bound of six on

the number of causal genes, the size of the q causal gene set can be

larger than six genes. For example, if we have one causal variant

and all the variants in that region have perfect LD, just utilizing the

marginal statistics is impossible to distinguish which gene is the ac-

tual causal gene. Thus, in order to have 95% causal gene set, we

have to select all the genes in the region. This is similar to what we

observe in the variant level from previous studies (Hormozdiari

et al., 2014; Kichaev et al., 2014).

Instead of considering all the possible causal gene set to find the q
causal gene set, we propose the following greedy algorithm to ease the

computational burden. For each gene, we define a weight that indi-

cates the amount that each gene contributes toward the posterior

probability of the q causal gene set. Genes which have higher weights

will have higher probability of being selected in the q causal gene set.

Thus, we pick the top set of genes for which the summation of their

weights is at least q fraction of total weights of all genes in the region.

We use W ¼ ½w1;w2; � � �w‘� as a ð‘� 1Þ vector for the weights of

all the genes, where wi is the weight of the ith gene and we compute

the weight for the ith gene as follow:

wi ¼
X

C2C:cðiÞ¼1

P CjSð Þ ¼

X
C2C

P S jCð ÞP Cð ÞcðiÞ

X
C2C

P S jCð ÞP Cð Þ
: (6)

We compute the weight for the ith gene by summing over all the

causal gene statuses where the ith gene is selected as causal.

We show in Section 3 that the proposed greedy and the brute force

algorithm which consider all possible causal gene status tend to have

similar results.
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2.9 Handling marginal statistics corrected for

population structure
The linear model which is used in the standard GWAS assumes only

one causal SNP as shown in Equation (1). Moreover, in this linear

model, we assume that the phenotypic value of each individual is

independent from the phenotypic value of another individual. This

assumption is not true in general for GWAS, especially in model

organisms such as inbred mice. The model that accounts for this de-

pendency is as follows:

Y ¼ l1þ
Xm
i¼1

biXi þ e (7)

Unfortunately, in a typical GWAS, the number of individuals in a

study is much smaller than the number of SNPs (n << m). Thus, esti-

mating the effect size of all the SNPs is not possible. We test each SNP

one at a time, Y ¼ l1þ bcXc þ uþ e, where u ¼
P

i 6¼cbiXi models

the random effects. In this model, we assume that each SNP has an

effect and the effect of each SNP is distributed normally as

bi � Nð0; rg

mÞ. The total genetic variance is defined as r2
g and we use

r̂2
g as the estimated genetic variance. We compute the variance of the

random effect as VarðuÞ ¼ r2
gK, where K ¼ XXT=m is referred to as

the kinship matrix. The kinship matrix defines pair-wise genetic re-

latedness which is computed from the genotype data. Let V be the

total variance of phenotype Y, which is computed as V ¼ r2
e I þ r2

gK.

Let r̂e be the estimated environment and measurement error variance.

Thus, the total estimated variance is V̂ ¼ r̂2
e I þ r̂2

gK.

We assume that the collected phenotype has an MVN distribu-

tion as follows: Y � N l1þ bcXc;r2
e I þ r2

gK
� 	

. Similar to linear

regression, we compute the estimate of the effect size of the causal

SNP b̂c by maximizing the likelihood. Moreover, we can estimate

the effect size of the SNP b̂ i which is indirectly associated to the

causal SNP,

b̂c ¼
XT

c V̂
�1

Y

XT
c V̂ �1 Xc

; b̂c � N bc; ðXT
c V̂�1XcÞ�1Þ

�

and the statistics is computed as follows:

Sc ¼ b̂c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

c V̂ �1 Xc

q
� N kc;1ð Þ

We would like to emphasize all the existing methods (Kang et al.,

2008; Lippert et al., 2011; Listgarten et al., 2012; Zhou and Stephens,

2012) which correct for population structure computes the marginal

statics for each variant. However, corrected marginal statistics cannot

be used by existing fine-mapping methods (Hormozdiari et al., 2014;

Kichaev et al., 2014). As in these methods, we assume that the correl-

ation between the computed marginal statistics is equal to the correl-

ation between the two corresponding variants. As shown in our

experiment below, the correlation between the marginal statistics

which are corrected for population structure is not equal to the correl-

ation of genotypes corresponding to the two variants.

We compute the covariance between the observed statistics for a

causal SNP (variant) and an SNP (variant) which is indirectly associ-

ated with the causal SNP as follows:

Cov Si; Scð Þ ¼ Cov

 
XT

i V̂
�1

Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

i V̂ �1 Xi

q ;
XT

c V̂
�1

Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

c V̂ �1 Xc

q
!

¼ XT
i V̂

�1
Xcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XT
i V̂ �1 Xi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

c V̂ �1 Xc

q

Let matrix L be the Cholesky decomposition of matrix

V̂
�1
; V̂

�1 ¼ LTL. Let X0c ¼ LXc and X0i ¼ LXi. We assume that

LXc; LXi, and LY are normalized to mean 0 and variance 1. Thus,

we can re-write the covariance between the computed statistics for

two SNPs as follow:

Cov Si; Scð Þ ¼ CovðXi0 ;Xc0 Þ ¼ CovðLXi;LXcÞ

This indicates that the covariance between the two marginal

statistics corrected for population structure follows an MVN

where the correlation between the two statistics is the correlation

between the transformed genotype for both SNPs. Thus, we re-

write Equation (2) for the case the marginal statistics is corrected

for population structure as follows: ðSjKÞ � N R0K;R0ð Þ, where R0

is the pair-wise correlation matrix which is computed by trans-

forming the genotyped data and then computing the pair-wise cor-

relation of transformed genotypes. In principle, this result could

also be applied to other problems such as imputing the missing

variants that utilize the summary statistics (Lee et al., 2013;

Pasaniuc et al., 2014).

3 Results

3.1 CAVIAR-Gene is computationally efficient
CAVIAR and CAVIAR-Gene at high level can consider all possible

causal combinations for variants and genes, respectively. However,

considering all possible causal combinations is intractable. In

CAVIAR, we make an assumption that in each locus we have at

most six causal variants. However, in CAVIAR, in order to detect

the q causal variants, we consider all possible causal sets which

can be very slow depending on the number of variants selected in

the q causal variant set. In the worst case, the running time of

CAVIAR can be Oð2mÞ, where m is the total number of variants in a

region. In CAVIAR-Gene, we use the proposed greedy method

which is mentioned in Section 2.8. This greedy algorithm reduces

the complexity of CAVIAR from Oð2mÞ to Oðm6Þ. Applying

CAVIAR on loci with 100 of variants will take around 30 h.

However, it will take 2 h for CAVIAR-Gene to finish on the same

loci and 3 h for CAVIAR-Gene to finish on loci with 200 variants.

Figure 1 indicates the running time compression between CAVIAR

and CAVIAR-Gene for different number of variants in a region.

3.2 CAVIAR-Gene-estimated causal gene sets are well-

calibrated
To assess the performance of our method, we conducted a series of

simulations. To make our simulations more realistic, we utilize real

genotypes from three different datasets: outbred dataset (Zhang

et al., 2012), F2 dataset (van Nas et al., 2009), and HMDP dataset

(Bennett et al., 2010). After obtaining the real genotype for each
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dataset, we partition the genome into segments containing 200

genes. For each segment, we implant one, two, or three causal genes

in the region where a gene is considered causal if it harbors at least

one causal variant. We then generate simulated phenotypes for each

segment using a linear mixed model as in the previous studies (Han

et al., 2009; Zaitlen et al., 2010).

We extend the existing methods, which are designed to detect

the causal variants, to detect the causal genes. For these methods,

we consider a gene to be causal if any of the variants in that gene are

selected as causal. We run TopK-Gene, conditional method

(CM-Gene) (Yang et al., 2012), 1Post-Gene (Maller et al., 2012),

and CAVIAR-Gene. Among these methods, CAVIAR-Gene is the

only method that is well-calibrated to detect causal genes as shown

in Table 1. We consider a method to be well-calibrated if it accur-

ately captures the causal genes in q fraction of the time. It is worth

mentioning that 1Post-Gene is well-calibrated when we only have

one true causal gene; however, 1Post-Gene is mis-calibrated when

there are more than one causal gene in the locus as shown in Table1.

3.3 CAVIAR-Gene provides better ranking of the causal

genes
To compare the performance of each method, we compare the recall

rate and the number of causal genes selected by each method. We

calculate the recall rate as a percentage of the total simulations

where all the true causal variants are detected. Unfortunately, each

method selects a different number of genes as causal. Thus, to make

the comparison fair, we compute the recall rate for each method as a

function of the number of genes each method selects.

The results for all the methods across all three datasets are

shown in Figure 2. In this figure, the X-axis is the number of genes

selected by each method and the Y-axis is the recall rate for each

method. Figure 2c and e indicates the recall rate for Outbred, F2,

and HMDP datasets where we have implanted one causal gene.

Although the difference between the TopK-Gene and CAVIAR-

Gene in the case of one causal gene is negligible, we observe a 10%

higher recall rate when there are multiple causal genes in a region

(Fig. 2b, d, and f).

Although in Figure 2 we only compare recall rate of different

methods as we vary the number of causal genes selected by each

method, these figures are similar to receiver operating characteristic

(ROC) curves which are used as a measure to compare results for

different methods in statistics and machine learning. In ROC curves,

the y-axis is the true positive rate which is equivalent to the recall

rate in our result, and the x-axis is the false positive rate which indi-

cates the fraction of simulations where the non-causal genes are se-

lected as causal. Because of the fact that all methods are forced to

pick the same number of causal genes, the false positive rate is the

same for all the methods. Moreover, similar to ROC curves in our

results, as we increase the false positive rate, the recall rate increases

and as we reach false positive rate of 1, which means if we select all

the genes as causal, we have a recall rate of 1.

3.4 Greedy algorithm and brute force algorithm have

similar results
We proposed a greedy algorithm in Section 2.8 to detect the q causal

gene set in order to speed up the process. In this section, we show

that the results obtained from the greedy algorithm and the brute

force algorithm are very close. The brute force algorithm considers

all the possible 2‘ different causal gene sets in order to compute the

q causal gene set. We consider a region with 20 genes and then we

simulated data similar to the previous sections. We implant one,

two, or three causal genes in the region. We ran both methods and

computed the recall rate as well as the size of the q causal gene set

selected by each method. Table 2 shows the results. We calculate the

Table 1. CAVIAR-Gene estimated causal gene-sets are well-

calibrated

Causal gene Recall rate (%) Causal gene size

1Post-

Gene

CM-

Gene

CAVIAR-

Gene

1Post-

Gene

CM-

Gene

CAVIAR-

Gene

1 0.995 0.941 0.990 2.59 1.16 2.10

2 0.790 0.526 0.964 3.93 2.28 3.17

3 0.760 0.610 0.951 3.23 3.28 6.65a

Note: We implanted one, two, or three causal genes in a region. 1Post-

Gene is well-calibrated to detect the causal genes in regions where we have

only one true causal gene. CAVIAR-Gene is well-calibrated in all our experi-

ments. We consider a method to be well-calibrated when the recall rate is at

least 95%. We compute the recall rate of a method as a percentage of the total

simulations where all the true causal variants are detected.
aAlthough we allow for only six causal genes in a region, we can have more

than six causal genes in the q causal gene set (see Section 2.8).
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Fig. 2. CAVIAR-Gene provides better ranking of the causal genes for Outbred,

F2, and HMDP datasets. Panels a and b illustrate the results for Outbred geno-

types for case where we have one causal and two causal genes, respectively.

Panels c and d illustrate the results for F2 genotypes for case where we have

one causal and two causal genes, respectively. Panels e and f illustrate the re-

sults for Outbred genotypes for case where we have one causal and two

causal genes, respectively
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recall rate as a percentage of the total simulations where all the true

causal variants are detected.

3.5 CAVIAR-Gene adjusts for population structure
It is known that in the case where there exists no population struc-

ture, the correlation between the marginal statistics of two variants

is the same as the correlation between the genotypes from which the

statistics were computed. CAVIAR utilizes this fact to compute the

likelihood for each possible causal combination. However, when

population structure is present and corrected for, this may not hold.

We demonstrate in our experiments that the correlation between the

marginal statistics for any two variants which are corrected for

population structure is the same as the correlation of a transformed

version of genotype for the same two variants. We provide the de-

scription of this transformation in Section 2. CAVIAR-Gene utilizes

this transformation to adjust for the population structure to com-

pute the correct likelihood.

We use an HMDP dataset (Bennett et al., 2010) which we deter-

mine to have population structure. We generate phenotypes with

population structure and compute the marginal statistics for each

variant both corrected and not corrected for population structure.

We then compute the correlation between each pair of marginal

statistics and the correlation between each pair of variants for the

original genotype and the transformed genotype. We calculate the

difference between the correlation computed from the marginal

statistics for each pair of variants and the correlation of the genotype

of the same variants. The boxplot of these differences are shown in

Figure 3.

As expected, the difference between the correlation of the mar-

ginal statistics and the correlation of the transformed genotype is

close to zero and their variance is much smaller than other cases.

Thus, the correlation between the marginal statistics when popula-

tion structure is corrected is closer to the correlation between the

genotype which is transformed using the right transformation

matrix.

3.6 CAVIAR-Gene identifies Apoa2 as causal gene

in HDL
To illustrate an application of our method in real data, we use an

HDL dataset which was collected for three different mouse strains:

outbred dataset (Zhang et al., 2012), F2 dataset (van Nas et al.,

2009), and HMDP dataset (Bennett et al., 2010). We ran CAVIAR-

Gene on a region �80 megabases in length containing 595 genes

(chr1: 120,000,000–197,195,432). This region harbors Apoa2, a

gene previously established to influence HDL levels (Flint and Eskin,

2012; van Nas et al., 2009). We applied CAVIAR-Gene on the

HMDP dataset considering all the genes in this region which yielded

a 95% q causal set of 130 genes. Next, we conducted a more refined

experiment, using domain-specific knowledge of the phenotype, to

create a list of 53 potential candidate genes. CAVIAR-Gene selected

a 23 gene subset of this list as the q causal gene set. Running

CAVIAR-Gene on the Outbred dataset for all 595 genes resulted in

a 95% gene set of only 13 genes. Because of the fact that the

Outbred mice have a smaller degree of population structure than the

HDMP, it is expected that the gene set resolution should be greater

in this data. Most importantly, across all the datasets, CAVIAR-

Gene includes Apoa2 in the gene set. Figure 4 illustrates the genes

which are selected by CAVIAR-Gene for each datasets. The five

genes which are common between all the datasets are Nr1i3,

Tomm40l, Apoa2, Fcer1g, andNdufs2. All these genes are known to

be highly associated with the HDL. This suggests that CAVIAR-

Gene not only recovers the actual causal gene, but simultaneously

reduced the number of genes that need to undergo functional

validation.

Table 2. Greedy algorithm and brute force algorithm have similar

results

Causal gene Recall rate (%) Causal gene size

Greedy Brute force Greedy Brute force

1 0.999 0.999 1.72 1.67

2 0.983 0.990 3.84 3.30

3 0.956 0.976 4.82 4.73

Note: We implanted one, two, or three causal genes in a region. We run

both the greedy and brute force algorithm on the simulated data sets. This re-

sult indicates that the differences between these two methods are negligible.
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Fig. 3. CAVIAR-Gene adjusts for population structure. Panel a illustrates the case where the data have population structure and the statistics is not corrected for

the population structure. Panels b and c illustrate the cases where we have corrected the statistics for the population structure. However, in Panel b, we compute

the correlation between the original genotypes and in Panel c the correlation is computed from the transformed genotypes. Then, we calculate the difference be-

tween the correlation computed from the marginal statistics for each pair of variants and the correlation of the genotype of the same variants. The difference be-

tween the correlation of the marginal statistics and the correlation of the transformed genotype shown in Panel c is close to zero and their variance is much

smaller than other cases as shown in Panels a and b. To compare the results, we plot the residual difference between �0.4 and 0.4, as a result some points for

Panel b are not shown
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4 Discussion

In this article, we propose a novel method, CAVIAR-Gene, for per-

forming fine mapping on the gene level. CAVIAR-Gene computes the

probability of each set of genes capturing the true causal genes. Then,

CAVIAR-Gene selects the set which has the minimum number of

genes selected as causal and the probability of the set capturing the

true causal gene is higher than a user-defined threshold (e.g. typically

95% or higher). We note that the usage of the term causal has little to

do with the concept of causal inference as described in the computer

science and statistics literature (Pearl, 2000; Spirtes et al., 2000). In the

context of association studies, we consider a variant to be causal if the

variant is responsible for the association signal in the locus. CAVIAR-

Gene can incorporate marginal statistics which is corrected for popula-

tion structure. This property makes CAVIAR-Gene suitable for

performing fine mapping on the model organism such as inbred mice.

We show using simulated data that CAVIAR-Gene has higher recall

rate compared with the existing methods for fine mapping on the vari-

ants level, while the size of the causal set selected by CAVIAR-Gene is

smaller than these methods. CAVIAR-Gene incorporates external in-

formation such as functional data as a prior to improve the results.
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