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Morphological profiling is a method to classify target pathways of
antibacterials based on how bacteria respond to treatment
through changes to cellular shape and spatial organization. Here
we utilized the cell-to-cell variation in morphological features of
Mycobacterium tuberculosis bacilli to develop a rapid profiling
platform called Morphological Evaluation and Understanding of
Stress (MorphEUS). MorphEUS classified 94% of tested drugs cor-
rectly into broad categories according to modes of action previ-
ously identified in the literature. In the other 6%, MorphEUS
pointed to key off-target activities. We observed cell wall damage
induced by bedaquiline and moxifloxacin through secondary ef-
fects downstream from their main target pathways. We imple-
mented MorphEUS to correctly classify three compounds in a
blinded study and identified an off-target effect for one com-
pound that was not readily apparent in previous studies. We an-
ticipate that the ability of MorphEUS to rapidly identify pathways
of drug action and the proximal cause of cellular damage in tuber-
cle bacilli will make it applicable to other pathogens and cell types
where morphological responses are subtle and heterogeneous.
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Mycobacterium tuberculosis (Mtb), the causative agent of
tuberculosis (TB), remains a global menace, killing ∼4,000

people a day (1). Tuberculosis treatment is lengthy, lasting from
4 mo to over a year (1). The difficult regimen, rate of relapse,
and incidence of drug resistant Mtb has motivated a significant
effort to develop new antibacterial compounds that are effective
in sterilizing Mtb infection (2). Many new drug classes and de-
rivative compounds have been developed (2), but rapidly iden-
tifying the primary and secondary pathways of action is often a
protracted process due to the difficulty in generating resistant
mutants and dissecting the broad-reaching metabolic effects of
drug treatment (3). Furthermore, bacterial cells can elicit dy-
namic responses in multiple pathways both on and off target, some
of which are specific to bacterial growth environment and treat-
ment dose, thereby confounding mechanism of action studies
(3–6). A rapid method to interrogate the pathways of drug action
in Mtb could be used to increase throughput and complement
traditional molecular, genetic, and metabolic approaches to
shorten TB’s drug development timeline.
In other bacterial species such as Escherichia coli, Bacillus

subtilis, and Acinetobacter baumannii, profiling of cytological
changes in response to drug treatment has yielded a rapid and
resource-sparing procedure to determine drug mechanism (7–9).
This method, known as bacterial cytological profiling (BCP), is
based on the principle that bacteria respond to drug treatment

with morphological changes that are characteristic of the drug’s
pathway of action. BCP groups drugs with similar mechanisms of
action by clustering profiles of drug-treated bacteria using multi-
variate analyses including principal component analysis (PCA)
(7–9). BCP is efficient and rapid because cytological features can
be derived from high-throughput images of stained, fixed samples.
To accelerate the drug development pipeline for tuberculosis,

we aimed to develop a method to understand drug pathways of
action in Mtb using rapid and cost-effective tools. We hypothe-
sized that BCP could be utilized to map pathways of drug action
in Mtb. We found that the morphological shifts in drug-treated
Mtb were subtle and exhibited cell-to-cell variation that obscured
the ability of traditional BCP pipelines to classify drug profiles.
To utilize cellular heterogeneity as a distinguishing feature of
drug response and to overcome Mtb’s morphological subtleties,
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we developed an imaging and analysis pipeline. Here we describe
this tool, called Morphological Evaluation and Understanding of
Stress (MorphEUS).
Using MorphEUS in Mtb, we were able to classify the cellular

targets of 34 known antibacterials and three noncommercial
compounds in a blinded study. Antibacterial compounds may
impact multiple pathways either through off-target or secondary
effects. In some cases, these effects are thought to be major con-
tributors to bactericidal activity (10–13). These polypharmacologies
can be readily observed using MorphEUS because it captures how
cells physically deteriorate as different cellular pathways are
inhibited. Using MorphEUS, we identified secondary effects for
two clinically relevant TB drugs, moxifloxacin and bedaquiline.
We propose that MorphEUS will be useful in classifying drug
action for new compounds in Mtb and in other pathogens where
morphological responses are subtle and heterogeneous.

Results
Antibacterial Treatment Induces Drug-Specific Morphological Response
in Mycobacteria. We hypothesized BCP could be used to classify
drug pathways in Mtb as it does for other bacterial species (7–9).
Guided by these cytological profiling methods (7–9), we treated
Mtb grown in standard rich growth medium with a high drug dose
(3× the 90% inhibitory concentration [IC90]) for 17 h (∼1 dou-
bling time). We imaged fixed, membrane-stained (FM4-64FX),
and nucleoid-stained (SYTO 24) Mtb in biological triplicate to
generate a dataset of morphological features from Mtb treated
with 34 antibacterials that encompass a wide range of drug classes
according to published findings (SI Appendix, Table S1). Using
image segmentation and analysis, we quantified 25 morphological
features per treatment group (SI Appendix, Table S2). We ob-
served significant differences among treatment groups in features
such as cell shape, nucleoid shape, and staining intensity (Fig. 1A).
However, the resulting morphological profiles from drug treat-
ment did not cluster based on broad drug target categories using
either PCA or uniform manifold approximation and projection
(UMAP) (Fig. 1 B, Left and Right, respectively; SI Appendix, Figs.
S2A and S3). We conclude that unlike Mycobacterium smegmatis
(Movies S1–S3), E. coli, and B. subtilis (8, 9), Mtb does not exhibit
striking physical differences that readily distinguish drugs targeting
dissimilar cellular pathways (Fig. 1).
One explanation for the poor performance of BCP in Mtb may

be the significant cell-to-cell variation in morphological features
(Fig. 1 and SI Appendix, Fig. S1). This inherent heterogeneity is
consistent with the variable nature of Mtb, which on the single-
cell level exhibits heterogeneity through asymmetric growth and
division, differential drug susceptibility, and metabolic state
(14–18). Cell-to-cell variation is most apparent in the ability of
Mtb bacilli to take up stains. For example, only ∼10% of un-
treated bacilli are stain positive, whereas the proportion in-
creases to ∼30% when treated with cell wall-acting antibacterials
(Fig. 1A). We speculated that variation itself was an important
feature of drug response that should be captured in the profiling
of drug mechanism of action.

Morphological Profiling of Mtb Is Improved by Explicit Incorporation
of Parameters of Cellular Variation. To capture cell-to-cell varia-
tion, we developed an analysis pipeline for Mtb that incorporates
variation as an important class of features to discriminate drug
target pathways (SI Appendix, Table S1 and S2 and Figs. S2, S4,
and S5; Fig. 2; and ref. 19). This analysis formulation also ad-
dresses the subtlety of cytological changes by taking into account
the full dimensionality of the data to produce discrete classifica-
tions. The exploitation of feature variation provided increased
resolution to distinguish drug categories. For example, when
treated with isoniazid, Mtb nucleoid stain intensity was less vari-
able than when treated with bedaquiline or meropenem (Fig. 1A).
We accounted for a fragile feature selection process (in which

several sets of features may achieve similar model accuracy) by
performing a series of classification trials (Fig. 2). The resulting
analysis was visualized using a network web or matrix describing
the frequency of drug–drug links (Fig. 3). The network (connec-
tivity) webs depict the strongest treatment (drug–drug) connec-
tions, whereas the matrix displays all of the pairwise drug
similarities. Relationships between treatments on the network
maps may appear to have lower connection strengths since we only
display treatment pairs that most frequently profile together. In
other words, a treatment that produces a morphological profile
similar to three other drugs in the same broad category will have
weaker individual connections compared to a drug that results in a
response similar to just one other treatment (Fig. 3B). We mea-
sured morphological responses in bacilli treated with both high
and low doses of drugs (SI Appendix, Fig. S5). Some drugs elicited
stronger cytological shifts at inhibitory doses rather than subin-
hibitory doses, while other treatments resulted in the opposite
behavior (such as ethionamide at high dose and rifampicin at low
dose) (SI Appendix, Fig. S5). This observation led us to hypothe-
size that combining the feature sets from both the high- and low-
dose profiles (into a joint dose profile) would generate a more
descriptive profile for classification of each drug. The cross-
validation rate for the joint dose analysis was improved (76%)
compared to low- and high-dose analysis (62 and 68%, respec-
tively; Fig. 3 and SI Appendix, Fig. S5). We therefore incorporated
joint (high- and low-dose) drug profiles as a default in our analysis
pipeline. Together, we refer to this analysis pipeline (Fig. 2)
as MorphEUS.
Using MorphEUS, drugs in the same broad categories are

generally grouped together (94% accurate categorization;
Fig. 3). Furthermore, within the broad categories, drugs sharing
target pathways were found to have stronger connections to one
another. For example, within the cell wall-acting category, strong
connections were observed between ethionamide and isoniazid
(inhibitors of the enzyme InhA); delamanid and pretomanid
(nitroimidazole drug class, which inhibits the synthesis of mycolic
acids); and meropenem, cefotaxime, and vancomycin (all pepti-
doglycan inhibitors) (Fig. 3 and SI Appendix, Table S1). We also
observed strong connectivity between inhibitors of cellular res-
piration with the ionophores CCCP, monensin, and nigericin
forming stronger connections with each other compared to clo-
fazimine and thioridazine [both shown to target NDH-2 of the
electron transport chain (20, 21)]. Strong connections among
protein synthesis inhibitors that target the 50S ribosomal subunit
were also observed among clarithromycin, chloramphenicol, and
linezolid (SI Appendix, Table S1). Finally, the fluoroquinolones
levofloxacin and ofloxacin grouped together as did rifampicin
and rifapentine (inhibitors of transcription). Ampicillin’s stron-
gest connection was with cell wall-acting pretomanid and not
peptidoglycan-targeting β-lactams. This may be due to the ex-
pression of β-lactamases by Mtb which inactivates β-lactams like
ampicillin (22, 23), coupled with the substantially greater in vitro
catalytic efficiency of ampicillin as a BlaC substrate as compared
to the other two β-lactams (24), thereby diminishing its profiling
with other peptidoglycan inhibiting drugs.

Morphological Response to Treatment Reflects Key Off-Target Effects.
Among the 34 antibacterials profiled, only cycloserine and beda-
quiline were miscategorized by general drug group (white stars in
Fig. 3A); e.g., their profiles most strongly linked to an antibacterial
from a different broad drug category. Cycloserine is a cell wall-
acting drug that inhibits the formation of peptidoglycan (25).
Cycloserine weakly profiled with the category of cell wall-acting
antibacterials, but its strongest connection to an individual anti-
bacterial was with the fluoroquinolone moxifloxacin (DNA-damaging;
white star in Fig. 3). Given that both mitomycin and moxifloxacin are
DNA-acting antibacterials (SI Appendix, Table S1), we hypothe-
sized that the connection between cycloserine and moxifloxacin
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was mediated by an off-target DNA damaging effect from cyclo-
serine treatment. To test this hypothesis, using data from previous
studies (26, 27) we compared the transcriptional profiles of cells
treated with cycloserine to the transcriptional profiles of Mtb
treated with 16 compounds (including cycloserine and moxi-
floxacin) targeting different pathways in Mtb (SI Appendix, Fig.
S6). Comparisons between expression profiles were performed
using hierarchical clustering with Pearson correlation as the dis-
tance metric (28, 29) (Materials and Methods). The Pearson dis-
tance is calculated using covariances between samples and is
equivalent to cosine correlation for high dimensional variables,
such as expression levels of multiple genes after drug treatment.
Because Pearson distances cluster based on the patterns of ex-
pression rather than absolute expression levels, it is an appropriate
clustering metric to assess trends in gene expression among sam-
ples from different studies (28, 29). We focused our analysis on
genes involved in the SOS response of mycobacteria because the
SOS response is up-regulated when DNA damage occurs in bac-
teria (30–32). We observed that cycloserine, unlike known DNA
targeting agents (mitomycin, levofloxacin, ofloxacin, and moxi-
floxacin), does not induce an SOS response suggesting that cy-
closerine treatment does not cause DNA damage in Mtb (SI
Appendix, Fig. S7).
An alternative hypothesis is that the cycloserine-to-moxi-

floxacin connection is driven by unexpected off-target effects of
moxifloxacin, such as cell wall damage. Moxifloxacin’s morpho-
logical profiles are highly dose dependent, resembling the other
fluoroquinolones at low dose but not at high dose or in joint dose
profiles (SI Appendix, Fig. S5 and Fig. 3). This shift away from

other fluoroquinolones by moxifloxacin suggests that there is an
off-target or secondary effect at high dose. We evaluated the
transcriptional response of Mtb treated with moxifloxacin with
respect to cell wall damage by focusing on the iniBAC operon (SI
Appendix, Fig. S6A). The iniBAC operon was first investigated
because it is known to be up-regulated upon chemical inhibition
of cell wall synthesis and is therefore used to screen for cell wall-
acting compounds (33, 34). As expected, we observed an in-
duction in iniB, the first gene in the iniBAC operon, in Mtb cells
treated with cycloserine. Similarly, we found that moxifloxacin-
treated Mtb demonstrated a mild but significant increase in iniB
expression (SI Appendix, Fig. S6B). Further analysis of the
transcriptional response of 41 genes involved in cell wall damage
and peptidoglycan biosynthesis (33, 35, 36) revealed that the
profiles of moxifloxacin and cycloserine clustered together (SI
Appendix, Fig. S6B). Taken together, these data suggest that the
similarity between cycloserine and moxifloxacin morphological
profiles arises from an off-target cell wall-damaging effect of
moxifloxacin and inhibition of cell wall synthesis by cycloserine.
The second unexpected profile was from bedaquiline, an ATP

synthesis inhibitor, which mapped to cell wall-acting antibiotics
ethambutol and imipenem (Fig. 3A, white star, and Fig. 3B).
Components of the mycobacterial cell wall, in particular pepti-
doglycan (PG) and arabinogalactan (AG), are linked to energy
production in the cell with components of glycolysis feeding di-
rectly into the synthesis of PG and AG (37, 38). In standard lab-
oratory nutrient-replete medium, the presence of sugars allows
Mtb to generate ATP from both glycolysis and TCA cycle through
substrate-level phosphorylation and oxidative phosphorylation via

A

B

streptomycin

moxifloxacin

untreated

cell width ( m)cell length ( m) membrane stain 
positive (%)

nuc. circularity 
(unitless)

1 2 3 4 0.4 0.6 0.8 1 3 5 0.5 1.0 10 20 30

linezolid

isoniazid

meropenem
ethambutol

bedaquiline
rifampicin

protein

DNA
RNA
respiration

cell wall

control

-0.8 0.0 0.8

PC1 29.7%
-1.2

-0.8

-0.4

0

0.4

PC
2 

23
.3

%

PCA

bedaquiline

ethambutol
isoniazid

linezolid

meropenem

moxifloxacin
rifampicinstreptomycin
untreated

-2 0

-4

0

4

-2

UMAP

U
M

AP
2

UMAP1

nuc. stain 
intensity (kRFU)
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the electron transport chain (6). Treatment with bedaquiline shuts
down the ability of Mtb to carry out oxidative phosphorylation (6),
initiating an energy crisis in which Mtb becomes reliant on
substrate-level phosphorylation for ATP generation. We hypoth-
esized that bedaquiline disturbed metabolism in a manner that
prevents the synthesis of new PG and AG leading to a morpho-
logical profile that resembles cells treated with inhibitors of the
cell wall. If our hypothesis is true, we reasoned that bedaquiline
should not profile with cell wall-acting antibacterials when grown
in media containing a fatty acid as its sole carbon source. We
tested this hypothesis by comparing profiles of Mtb grown in
standard rich growth medium or a growth medium with the fatty
acid butyrate as the sole carbon source. We observed that mor-
phological profiles are highly dependent on growth environment
(SI Appendix, Fig. S8A) with bedaquiline profiles resembling those
from cell wall-acting antibacterials only when Mtb is grown in rich
medium (SI Appendix, Fig. S8B). These data support previous

observations (6) that the mechanism of action of bedaquiline is
dependent on metabolic state of Mtb.

MorphEUS Correctly Classifies Cellular Targets of Unknown Drugs.
Classification of morphological profiles using MorphEUS
shows that distinctive morphological patterns are induced in Mtb
according to the terminal stress pathway, which may be the ca-
nonical pathway of action or proximal (downstream) effector, as
in the case of moxifloxacin and bedaquiline. Because some
downstream or off-target effects may be induced at high-dose
treatments (or likewise not overshadowed by other pathways at
low dose), dose dependencies may be another indicator of
noncanonical effects. In support of this hypothesis, we observed
strong dose dependencies with morphological profiles of beda-
quiline and moxifloxacin (SI Appendix, Fig. S9).
Blinded to compound identity, we next used MorphEUS to

identify pathways of action for three noncommercial antituber-
culars with known mechanisms of action. We mapped unknown
compounds 1 and 2 as cell wall acting; compounds 1 and 2 were
nearest neighbors to ethionamide and ethambutol, respectively
(Fig. 4). We unblinded the compound identities to compare their
known mechanisms of action to those predicted by MorphEUS.
These compounds (DG167 and its derivative JSF-3285) were
validated through extensive biophysical, X-ray crystallographic,
biochemical binding, and spontaneous drug-resistant mutant
studies to be inhibitors of cell wall mycolate biosynthesis through
specific engagement of the α-ketoacyl synthase KasA (39, 40).
Taken together, our analysis of DG167 and JSF-3285 using
MorphEUS has independently validated the target pathway of
these two compounds and shown these analogs act through the
same pathway of action.
The activity of the third unknown compound was harder to

interpret. Unknown compound 3 categorized with both cell wall-
and DNA-acting antibacterials by MorphEUS with ofloxacin as
its nearest neighbor (via joint dose profiles; Fig. 4). In contrast,
MorphEUS analysis at low treatment dose mapped unknown
compound 3 to cell wall-acting antibacterials with pretomanid as
its nearest neighbor. The dose-dependent effects of unknown
compound 3 suggest that downstream off-target effects are am-
plified with increasing treatment dose. We unblinded the com-
pound to learn if our conclusions were corroborated with
previous mechanistic studies performed. Unknown compound 3
is JSF-2019, a triazine that resembles pretomanid in both its
F420-dependent production of NO• and its ability to inhibit
mycolic acid synthesis, albeit at a different step in the pathway
(41). The mechanistic similarity of JSF-2019 and pretomanid
validated the MorphEUS prediction of JSF-2019 acting like
pretomanid at low dose but did not provide insight into the
MorphEUS prediction of DNA targeting activity at high dose.
We hypothesized that the production of NO• by JSF-2019 at

high doses induces DNA damage through DNA alkylation (42)
in addition to its known cell wall-targeting activity (41). To test if
JSF-2019 perturbs DNA processing pathways, we evaluated
transcriptional profiles for ofloxacin- and JSF-2019–treated Mtb
and found enrichment of coregulated genes involved in DNA
damage (43) as well as nucleotide metabolism and biosynthesis
(SI Appendix, Fig. S10 and Dataset S2). These results indicate
that Mtb experiences DNA damage when treated with JSF-2019.
A detailed analysis of JSF-2019 resistant mutants (41) uncovered
the presence of mutations in rv2983 and rv2623 (44–46). Muta-
tions in rv2983 have previously been found to generate resistance
to fluoroquinolones (44) while overexpression of Rv2623 has
been linked to exposure of Mtb to ofloxacin or moxifloxacin (45,
46). Together these analyses are supportive that JSF-2019
treatment of Mtb results in damage to the cell wall at low doses
and additional damage to DNA at high doses (SI Appendix, Fig.
S5). This dual activity is easier to recognize in the general cat-
egorizations (rather than the drug-specific MorphEUS mapping)
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step are highlighted as boxes within each of the three groups. A detailed
description of each step is described in Materials and Methods.
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Fig. 3. MorphEUS classifies antibacterial compounds by pathway of action. (A) cKNN map of the joint dose profile displaying connections that occur in at
least 17% of the classification trials. Drugs within each broad category are represented by nodes of the same color, illustrating whether morphological
profiles were similar among drugs acting on the same pathway. Edge thickness indicates the connection frequency for a given connection between two
treatment profiles. Rectangles drawn around groups of drugs indicate clustering of drugs that share similar targets within the designated broad category.
White stars mark unexpected connections between antibacterials belonging to two different broad categories. (B) cKNN matrix of drug nearest neighbor
pairings corresponding to A by specific drugs (Left) and broad categorization (Right). The broad drug target categorizations are indicated to the left of the
drug names and on the bottom axis of the heat map on the right. A purple triangle is placed next to the broad categorization for the weakly categorized cell
wall acting drug cycloserine.
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because of the relatively strong connection of JSF-2019 to
ofloxacin compared to more modest similarities to many cell
wall-acting drugs (Fig. 4). We conclude that MorphEUS has
enabled us to efficiently focus the analysis of resistance and
transcriptomic data to define critical downstream effects that
contribute to the mechanism of JSF-2019.

Discussion
The morphological response of Mtb to drug treatment was subtle
and confounded by high levels of heterogeneity in contrast to
other bacterial species such as E. coli, B. subtilis, andM. smegmatis
(8, 9, 47). Consequently, we could not cluster drug response
profiles through a traditional cytological profiling approach (8).
We designed MorphEUS to overcome these challenges and

enable rapid characterization of drug pathways of action by cel-
lular damage as manifested in physical changes such as cell shape,
permeability, and organization. While the changes in features
were subtle, they were still drug specific and dose dependent. We
found that drugs of the same category influenced the heteroge-
neity in Mtb’s morphological response in a similar manner, pro-
viding us with a valuable set of morphological descriptors to link
cellular damage to drug action. To overcome feature subtlety,
MorphEUS utilizes the consensus of drug profile relationships
from multiple k-nearest neighbor analyses. Here we have opti-
mized the analysis pipeline for Mtb, but incorporation of feature
heterogeneity, batch normalization, and consensus profiling may
be utilized to achieve morphological profiling in other pathogens
and cell types.
In applying MorphEUS to a set of 34 known antibiotics and

three blinded, noncommercial antibacterials, we found that
MorphEUS grouped antibacterials by their pathways of action,
which may be the primary target pathway or off-target effects.
Most of the antibacterials profiled with their direct target path-
way, but we identified three antituberculars (moxifloxacin,
bedaquiline, and JSF-2019) that profiled by their off-target or
secondary effects. Bedaquiline and moxifloxacin are known as
inhibitors of respiration and DNA synthesis, respectively, yet
when MorphEUS was applied, both clustered with cell wall-
inhibiting drugs. For bedaquiline, we found that the apparent
cell wall damage was specific to metabolic state and appears to
be a downstream consequence of Mtb needing to carry out gly-
colysis for ATP production in the absence of oxidative phos-
phorylation. This clustering was not observed for cells utilizing
the fatty acid butyrate as a sole carbon source, supporting pre-
vious studies that show the susceptibility of Mtb to bedaquiline is
dependent on metabolic state (6). Understanding drug action in
the context of metabolic state is key to developing new TB drug
regimens. This is because the treatment must target Mtb within
different lesion types, which differ in available nutrients and
stressors that alter Mtb state (48–50). An understanding of how
drugs kill Mtb in the context of their microenvironment would
help us rationally design combination therapies.
There is increasing evidence that polypharmacologies signifi-

cantly contribute to the bactericidal activity of a drug (4, 11–13).
For example, recent reports in Mycobacterium abscessus and
Mycobacterium bovis have shown that treatment with cell wall-
acting compounds lead to toxic intracellular accumulations of
ATP—a downstream effect that is independent of the cell wall
activity of the drug (11, 12). Another example of the bactericidal
activity from an off-target effect can be found in E. coli with its
production of toxic free radicals following treatment with in-
hibitors of protein, DNA, and cell wall synthesis (4). Having a
tool that can rapidly identify such polypharmacologies would be
useful in identifying off-target effects that can potentially an-
tagonize another compound when used in combination, such as
bedaquiline decreasing the bactericidal ATP burst of isoniazid
(12, 13). In the process of applying MorphEUS, we learned that
this pipeline allows for hypothesis generation that can be com-
plemented by transcriptomic and genetic approaches by focusing
the evaluation of these large systematic datasets. In particular,
MorphEUS directed the analysis of transcriptomic data to dis-
cover off-target effects of moxifloxacin and JSF-2019 that were
not readily apparent from transcriptional profiling alone. These
findings highlight the ability of MorphEUS to guide the analysis
of other profiling platforms and identify cellular damage in-
curred beyond primary drug target engagement.
MorphEUS profiling, like all cytological profiling techniques,

is data-driven and based on classification among a pool of other
profiles. MorphEUS is sensitive to both the breadth and depth of
the antibacterials used to create profiles. A limitation of the
method is that it requires multiple representative profiles from
Mtb treated with compounds known to target the same broad
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Fig. 4. MorphEUS accurately predicts pathways of action of compounds
when blinded to mechanism of action. (A) cKNN profiles of broad drug
categories and (B) individual drugs for compounds with anti-TB activities
(unk, unknown). Each column corresponds to a different compound or
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cellular target. For example, our analysis included only two drugs
that target RNA polymerase. These drug treatments performed
poorly in cross validation, likely as a result of their small class
size. We expect the accuracy and resolution of MorphEUS to
improve as the drug set is expanded. MorphEUS is also limited
in its ability to identify compounds with novel mechanisms of
action that are unlike the other profiled drugs. One way to po-
tentially overcome these issues with class representation and
identification of novel mechanisms of action would be to in-
crease the breadth of the MorphEUS training set with mor-
phological profiles from genetic knockdown (hypomorph)
libraries of Mtb (51). A recent study by de Wet and colleagues
(47) created a compendium of morphological profiles in an M.
smegmatis CRISPRi knockdown library. This study demonstrated
that a systematic morphological landscape of essential gene
function could be used to link drug treatment profiles to a target
pathway (47). Performing MorphEUS on genetic knockdown
libraries in Mtb could therefore act as a way to increase the
breadth of pathways that can be classified from morphological
profiles in a way that is not obtainable by drug treatment alone.
Similarly, morphological profiling of drug-resistant mutants of
Mtb may provide insight into the mechanisms underlying drug
activity by allowing for the separation of primary drug target and
drug response due to the agent used (proximal response). These
data would then allow for the identification of compounds that
target novel pathways in Mtb through the generation of mor-
phological signatures characteristic of genetic knockdown strains
belonging to pathways with no known drug targets.
We have shown that the MorphEUS pipeline identifies drug

pathways of action in Mtb and also reveals off-target and
downstream drug effects that are proximal to antibacterial ac-
tion. We anticipate that application of MorphEUS to new
compounds will reveal polypharmacologies and detail cellular
pathways involved from drug engagement to cell death, conse-
quently accelerating the drug development pipeline for tuber-
culosis. Furthermore, we expect that the success of MorphEUS
in profiling drug action in an organism like Mtb with significant
inherent heterogeneity and subtle cytological responsiveness in-
dicates the pipeline’s translatability to other pathogens and
cell types.

Materials and Methods
Bacterial Strains. Mtb strain used in this study was Erdman. M. smegmatis
strain used in this study was derived from mc2155. E. coli strains used in this
study were derived from DH5α.

Growth Conditions. Mtb cells were cultured in standard medium consisting of
7H9 broth (ThermoFisher; DF0713-17-9) with 0.05% Tween-80 (Thermo-
Fisher; BP338-500), 0.2% glycerol (ThermoFisher; G33-1), and 10% Mid-
dlebrook OADC (ThermoFisher; B12351). Frozen 1 mL Mtb stocks were added
to 10 mL of standard medium and grown with mild agitation in a 37 °C in-
cubator until the culture reached an OD600 of ∼0.4 to 0.7. The bacteria were
then subcultured into 10 mL of fresh medium to an OD600 of 0.05 and grown
to an OD600 of ∼0.4–0.7. At this time the cells were plated onto 96-well plates
containing drugs at the predetermined amounts (see below). Drug-treated
plates were incubated at 37 °C in humidified bags until fixation.

Mtb cells were adapted to low-pH standard medium by first growing and
subculturing the cells once in standard medium (as described above) followed
by centrifugation and resuspension in standard medium supplemented with
100 mM 2-(N-Morpholino)ethanesulfonic acid hydrate (SigmaAldrich; M2933)
HCL adjusted to pH of 5.8. Cells were subcultured once in low-pH standard
medium before plating.

Mtb cells grown with butyrate or cholesterol as their sole carbon source
were cultured in base medium (7H9 broth with 0.05% Tyloxapol, 0.5 g/L Fatty
Acid-free BSA, 100 mM NaCl, 100 mM Mops buffer [SigmaAldrich; M3183],
and HCL adjusted to pH 7.0) supplemented with either 10 mM sodium bu-
tyrate (SigmaAldrich; 303410) or 0.2 mM cholesterol (SigmaAldrich; C8667).
Sodium butyrate was added directly to the base medium while cholesterol
was dissolved in a 50/50 (vol/vol) mixture of tyloxapol and ethanol to obtain
a 100 mM stock solution as previously described (52). Bacteria grown in

butyrate medium were grown and subcultured once in standard medium
before centrifugation and resuspension in butyrate medium. The cells were
subcultured once using fresh butyrate medium before they were aliquoted
into tubes (1 mL each) which were stored at −80 °C until use. Frozen stocks
were started and subcultured in butyrate medium before plating. Bacteria
grown in cholesterol medium were grown and subcultured once in standard
medium before centrifugation and resuspension in cholesterol medium to
an OD600 of ∼0.2. The bacteria were plated upon reaching an OD600 of ∼0.4.

M. smegmatis cells were cultured in standard medium supplemented with
Middlebrook ADC (ThermoFisher; B12352); 100 μL frozen stocks were added
to 10 mL of standard ADC medium and subcultured once before use. E. coli
cells harboring plasmids used in this study were grown in LB broth containing
appropriate antibiotics (50 μg/mL hygromycin or 25 μg/mL kanamycin).

Drug Treatments. For time-dose–response profiling, drugs were loaded into
96-well plates with the HP D300e digital drug dispenser. Each drug used in
the study was reconstituted, depending on drug solubility, in water, DMSO,
1 N NaOH, or methanol solubility at a concentration between 2.5 and
100 mg/mL (SI Appendix, Table S1). Reconstituted drugs were then aliquoted
in single-use sterile tubes and stored at −20 °C until use. The percentage of
DMSO for all drug treatments was between 0.00045 and 0.75% except for
ampicillin, tetracycline, chloramphenicol, and thioridazine high-dose treat-
ments, where DMSO percentage did not exceed 1.5%. Even at 1.5% DMSO,
profiles of untreated cells and DMSO-treated cells were indistinguishable. To
determine whether solvents elicited morphological changes that would
impact the profiling, we tested whether cells treated with each control
condition (DMSO at different concentrations, and the highest levels used in
the other solvents: 0.3% 1 N NaOH, 0.1% methanol, or 3% water) profiles
with each other and untreated samples, which would suggest that the sol-
vents were not drivers of morphological changes. We selected a feature set
based on the high-dose MorphEUS analysis, keeping features that were used
in over half of the classification trials, resulting in a set of 28 features. Using
the untreated profiles from the high-dose analysis, we performed typical
variation normalization (TVN) on the range of DMSO treatments followed
by PCA. We searched for the first nearest neighbor for each individual
treatment to see if the same treatment groups were nearest neighbors with
each other. We found no likeness (e.g., 100% confusion) between the same
treatment groups (e.g., that the controls were not identifiable into similar
treatment groups), suggesting that solvents alone did not induce strong
morphological effects.

IC90 Determination.Mtb andM. smegmatis cultures were grown from frozen
aliquots and subcultured once as described above. Once grown to an OD600

of ∼0.4 to 0.7, the cells were diluted to an OD600 of 0.05 and added to
96-well plates containing drugs in a twofold dilution series for nine con-
centrations. Each treatment series contained an untreated well as a control.
All IC90 determinations were performed in biological triplicate. To avoid
plate effects, wells around the perimeter of the plate were not used. An
initial OD600 plate read was performed immediately for each M. smegmatis
plate, while for Mtb cultures this was performed after allowing the bacterial
cells to settle overnight. A second plate read was performed for M. smeg-
matis after 24 h and Mtb after 5 d of incubation. Growth inhibition curves
were generated by subtracting the initial reads from the final reads and
then normalizing the data to untreated controls. The IC90 was defined as
the drug concentration that inhibited at least 90% of all bacterial growth.

Fixation of Antibiotic-Treated Mtb-Bacilli. After the designated treatment
times (overnight unless otherwise noted), Mtb cultures were fixed in para-
formaldehyde (Alfa Aesar; 43368) at a final concentration of 4% and
transferred to clean 96-well plates. The plate was surface decontaminated
with vesphene IISE (Fisher Scientific; 1441511) and sealed withMicroseal F foil
seals (Biorad; MSF1001). The duration of fixation was 1 h total. After fixation,
the cells were washed twice with 100 μL of PBS (ThermoFisher; 20012-027) +
0.2% Tween-80 (PBST), then resuspended in 100 μL of PBST, sealed (Ther-
moFisher optically clear plate seals, AB1170) and stored at 4 °C until staining
and imaging.

Staining and Fluorescent Imaging of Mtb Cells. All staining was performed in
96-well plates with 50 μL of fixed Mtb cells diluted in 50 μL of PBST. Staining
was performed with 0.6 μg of FM4-64FX (ThermoFisher; F34653) and 15 μL of
a 0.1 μM SYTO 24 (ThermoFisher; S7559) stock in each well containing PBST
and fixed bacilli. The plate was then incubated at room temperature in the
dark for 30 min. Once stained, the cells were washed once with an equal
volume of PBST and resuspended in 30 μL of PBST. Stained Mtb were spotted
onto agar pads (1% wt/vol agarose; SigmaAldrich; A3643-25G). Images were
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captured with a widefield DeltaVision PersonalDV (Applied Precisions) mi-
croscope. Bacteria were illuminated using an InsightSSI Solid State Illumi-
nation system with transmitted light for phase contrast microscopy. SYTO 24
was imaged using Ex. 475 nm and Em. 525 nm. FM4-64FX was imaged with
Ex. 475 nm and Em. 679 nm. Montage images were generated using a cus-
tom macro that captures 25 individual fields of view per image. Two tech-
nical replicate images were taken from each sample for a total of 50 images
per biological replicate. Three biological replicates were generated for each
drug treatment. Images were recorded with a DV Elite CMOS camera for all
three channels.

Generation of RpoB-EGFP Strain. A strain of rpoB-egfp in the M. smegmatis
mc2155 background was generated using the ORBIT recombineering system
developed by Murphy et al. (53). Briefly, a frozen aliquot of M. smegmatis
was grown and subcultured once as described above. Upon reaching midlog
phase, the cells were washed twice with 10% glycerol (Fisher Scientific; G33-
1) and electroporated with pKM444. The plasmid pKM444 allows for ATC
inducible expression of Che9c RecT and Bxb1 integrase phage proteins and
harbors a kanamycin resistance cassette. Transformants were selected for on
Middlebrook 7H10 plates (ThermoFisher; BD 2627) with ADC containing
25 μg/mL of kanamycin (VWR; 0408-10G). A control without plasmid was also
plated to ensure proper kanamycin selection. The pKM444 harboring strain
of M. smegmatis was then grown to an OD600 of 0.5 in standard ADC me-
dium containing 25 μg/mL of kanamycin. Once the desired OD600 was
reached, anhydrotetracycline (ATC; Fisher Scientific; 13803-65-1) was added,
and the cells were incubated with gentle agitation until an OD600 of 0.8 was
reached. The cells were then washed with glycerol as described above and
electroporated with 1 μg of a rpoB targeting oligo harboring an attP se-
quence (see below) and 0.2 μg of the nonreplicating egfp harboring plasmid
pKM468-EGFP. pKM468-EGFP contains an attB recombination downstream
of the egfp gene for C-terminal translational fusions, lacks a mycobacterial
origin of replication, and harbors a hygromycin resistance cassette. -Oligo+plasmid
and -oligo-plasmid controls were also performed as negative controls. Transfor-
mations were recovered in 1 mL of standard ADC medium, incubated for 3 h
then plated on 7H10-ADC plates containing hygromycin B at 50 μg/mL The
presence of the C-terminal EGFP translational fusion to RpoB was validated
by fluorescence microscopy using the FITC (Ex. 475 nm Em. 525 nm) channel
as described above. The rpoB targeting oligo sequence was 5′-GCACGTAAC
TCCCTTTCCCCTTGCGGGTGTTGAAACTTGACTACTGAGGCGGTCTTCGGACGA
GGCTCTAGGTTTGTACCGTACACCACTGAGACCGCGGTGGTTGACCAGACA
AACCCGCGAGATCCTCGACGGACGCGGATTCGTTGCGCGACAGGTTGATTC
CCAGGTTCGCGGCAGCGCGCTCC-3′.

Live-Cell Microscopy. M. smegmatis cells expressing RpoB-GFP were grown
overnight from frozen 100 μL aliquots in 10 mL of fresh standard ADC me-
dium. The bacteria were subcultured once and allowed to reach midlog
phase (OD600 ∼0.5 to 0.7). The culture was then filtered to remove aggre-
gates of bacteria and loaded into a custom polydimethylsiloxane (PDMS)
microfluidic device as previously described (54). Fresh mediumwas delivered to
cells using a microfluidic syringe pump. The microfluidics device was attached
to a custom PDMS mixing device for delivery of drug for the duration of time
described below and then placed on an automated microscope stage inside an
environmental chamber that was maintained at 37 °C. The bacteria were
imaged for a total of 26 h using a widefield DeltaVision PersonalDV (Applied
Precision, Inc.) with a hardware-based autofocus. Antibacterial compounds
were introduced to the M. smegmatis after a 10-h growth phase. Drug
treatment lasted for 6 h and was followed by a 10-h recovery phase.

Transcriptional Profile Analysis. The transcriptional profiles of JSF-2019,
bedaquiline, and moxifloxacin were obtained from GSE126718 (41),
GSE43749 (6), and GSE71200 (26), respectively. The transcriptional profiles of
other compounds were extracted from GSE1642 (27). Genes involved in the
Mtb SOS response were defined as genes of the lexA and recA regulons
(30–32). Genes involved in cell wall damage and repair were defined as the 3
genes of the iniBAC operon involved in addition to the 38 genes within
peptidoglycan biosynthesis (33, 35, 36). The 166 genes which were signifi-
cantly coup-regulated and codown-regulated by both JSF-2019 and oflox-
acin (judged by fold change >1.5 and FDR P < 0.01) were selected from the
transcriptional profile (Dataset S2). rv0560c, which encodes a benzoquinone
methyltransferase involved in xenobiotics metabolic detoxification (55, 56),
was removed from the list due to its extremely high induction fold in JSF-2019
rather than in other compound treatments. A hierarchical clustering analysis
was applied to the 165 genes according to Pearson correlation via the R
packages pheatmap and ggplot. The function and pathway enrichment

analysis of the 155 genes were performed via a gene ontology resource
(geneontology.org/).

UMAP. To implement the UMAP dimensionality reduction algorithm (47, 57),
we used the umap package in R (https://cran.r-project.org/web/packages/
umap/index.html). We used the umap function contained in this package
and exported the results to a CSV file to be plotted in MATLAB.

MorphEUS Analysis Pipeline.Overview ofMtbmorphological profiling analysis
(MorphEUS). The MorphEUS analysis pipeline (Fig. 2) is as follows.
Feature quantification. 1) Single-cell measurements extracted from MicrobeJ
are imported to MATLAB to 2) undergo quality control before bulk analysis.
3) Variables describing the cell-to-cell variation within each feature are
calculated prior to feature selection and profile classification.
Classification trial. 4) Nonredundant features are iteratively selected. 5) Nor-
malization is performed across replicates to decrease experimental noise
(TVN). 6) PCA is performed on the batch-normalized, reduced feature dataset
and followed by 7) k-nearest neighbors (KNN) analysis on the PCA scores
matrix. KNN analysis classifies drugs (e.g., treatment groups) by identifying
the nearest neighbors (most similar profiles). These nearest neighbors are
represented as a matrix or a network diagram (graph).
Classification consensus (consensus KNN). To overcome the fragility of feature
selection, we generate a consensus of multiple (70) classification trials,
wherein each trial utilizes a different, stochastically selected set of 80 un-
treated samples for feature selection and batch normalization. The resulting
consensus KNN (cKNN) may be visualized using a network diagram where
edges between drugs are color-coded according to how often their profiles
were nearest neighbors (% of total trials) or a matrix that describes the
frequency of drug–drug links among trials (Fig. 3). The most similar drug
profiles are linked in a large number of the trials. The connectivity maps and
corresponding summary heat maps are used to make informed predictions
about the target pathway of an antibiotic.

Image Segmentation and Feature Extraction. Before image segmentation, we
used the ImageJ plugin BaSiC to ensure an even distribution of illumination in
all channels across the image (58). Image segmentation was performed using
the ImageJ plugin MicrobeJ [v 5.13l (1)], extracting seven features from
phase contrast and nine from each fluorescent channel using custom set-
tings, resulting in a total of 25 features (SI Appendix, Table S2) (59). The
image segmentation in MicrobeJ is computationally demanding and there-
fore was run on a high-performance computing cluster.

Blur Thresholding. All data were organized and analyzed using custom scripts
in MATLAB 2019a. Out-of-focus bacilli were identified from the transverse
phase-contrast profile of each bacterium and discarded. The profile of an in-
focus, well-segmented bacillus has a Gaussian distribution with high inten-
sity around the edge of the bacterium, followed by a steep drop after the
edge. Blurry cells were filtered out with the following criteria: goodness of fit
to a Gaussian distribution, if the minimum point was off center, unexpected
local maxima, difference in intensity between minimum and maximum values,
difference in intensity between edges, and slope of the edges. With exception
to the fluorescent foci counts, the median, first quartile, third quartile, and
interquartile range were calculated for each feature to account for the pop-
ulation distribution, resulting in 94 features total. Distribution features were
not calculated for foci count features because these measurements are dis-
crete, not continuous, features. Features were then normalized, dividing by
the largest value for the feature across all treatments.

Typical Variance Normalization. TVN aligns the covariance matrices produced
by PCA of untreated control data from each experimental plate, or batch, and
applies this transformation batch by batch to allow for less biased comparison
of the drug-treated cells across plates and replicates (60). An abbreviated
version of TVN was applied to reduce batch effects from imaging. First PCA is
performed on the untreated controls. Each axis is scaled to have a mean of
zero with variance of 1. This transformation is then applied to the entire
dataset, including treated and untreated samples (SI Appendix, Fig. S4). To
perform TVN, we dedicated 25% of our samples in every experiment and
imaging session to be untreated controls. Each classification trial begins with
stochastically selecting 80 untreated controls; thus, feature sets were re-
stricted to a maximum of 79 features since a PCA transform with n samples
can only have n − 1 features.

PCA. PCA was performed on the normalized data (feature selected or not, as
indicated) using the built-in MATLAB function. In the BCP pipeline, PCA
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reduces the dimensionality of the data, allowing variance across all of the
features to be visualized in three or fewer dimensions. After accounting for
heterogeneity with batch normalization and including features of variation
into the profiles, some drug clustering was observed, especially among cell
wall-acting antibacterials (SI Appendix, Fig. S2 A, Lower). By PCA, bedaqui-
line clustered with cell wall-acting drugs in standard, rich growth medium (SI
Appendix, Figs. S2 A, Lower, and S8 B, Left) but not in fatty acid-rich growth
medium (SI Appendix, Fig. S8 B, Right).

KNN. KNN analysis was implemented using the cosine distance metric and the
knnsearch MATLAB function. K was set to 1; thus, only the first nearest
neighbor was identified. For our setup, we took the median PCA score from
the three replicates for each drug as inputs for the KNN analysis. The KNN
algorithm finds the k-nearest neighboring points where the cosine distance
between PCA scores is shortest. MATLAB defines the cosine distance as
1 minus the cosine of the included angle between points. We observed that
feature selection was dependent on which untreated samples were included
in the TVN batch-to-batch normalization process (80 from 117), suggesting
there are many good solutions or feature sets that can lead to similar pro-
filing of the drug target. To ensure our classification was not overfitting the
data depending on which untreated samples were included in the analysis,
we took a stochastic approach. We define the application of PCA and then
KNN analysis on a particular set of reduced features as a classification trial.
The MorphEUS pipeline steps 4 to 7 were repeated for 70 classification trials,
each including a different randomly selected set of 80 untreated controls
(classifications converged by 70 trials; SI Appendix, Fig. S9).

Iterative Feature Selection. To reduce overfitting and noise in our 94-variable
feature set, we utilized the minimum redundancy maximum relevance
(mRMR) feature selection algorithm (61). Here we customized previously
published MATLAB code to perform mRMR feature selection using the
mutual information difference scheme (61). Because the algorithm rank
orders variables and does not automate the selection of the optimal number
of features, we implemented an iterative feature selection method that
rewards runs that result in more drug–drug connections with same target
pathways (SI Appendix, Table S1). Since we begin with 94 features but are
limited to 79 variables by our TVN analysis, mRMR was used to rank order
the top 79 features. Starting with the 79 rank-ordered features, we removed
each feature individually and performed TVN, PCA, and KNN analysis on the
remaining feature set. Success of the feature set was quantified by accuracy
of the KNN in linking drugs belonging to the same broad category assigned
by literature review (SI Appendix, Table S1). The feature set that resulted in
greatest model accuracy was selected, and the variable removal process was
repeated until maximal prediction performance was reached. On average,
these iteratively determined feature sets contained 38 variables.

cKNN. The cKNN results compiled from all 70 classification trials were visu-
alized using a network map and heat map, where edge color and grid square
color, respectively, correspond to how frequently two drug profiles were
identified as nearest neighbors. Because our goal was to identify similar
treatment profiles, connections between profiles in the cKNN were made
undirected, and the drug–drug categorization matrices (such as Fig. 3 B, Left)
are symmetric. These visuals allow for classification of the target biological
pathway of each drug based on the fact that the robustness of phenotypic
similarities between drug profiles can easily be evaluated. All maps and plots
were generated in MATLAB 2019a.

Comparison to Random. We evaluated model performance by testing how
accurate MorphEUS was when the drug categories were randomly assigned. To
do so, the labels for the drugs in the final cKNN were randomly swapped,
resulting in 22%accuracy compared to 94%for the joint doseMorphEUSanalysis.

Cross Validation and Classification of Unknown Compounds. To test the
strength of our model, we performed cross validation. This was done by
removing 1 of the drugs out of our 34-drug set and running the remaining 33
drugs through the MorphEUS pipeline. The PCA transformation created by
the 33 drugs was applied to the TVN-normalized, removed drug, and KNN
analysis was performed. At the end of the 70 trials, a cKNN was created, and
the pathway of action of the cross-validated drug was classified in accor-
dance to its strongest drug connections and their corresponding pathway(s)
of action as classified in SI Appendix, Table S1.

Low Dose, High Dose, and Joint Dose Profiles. Mtb cytological features are
dependent on drug target but also treatment dose and duration (SI Ap-
pendix, Fig. S6). This raised the possibility that morphological profiles from a
low dose of treatment or a joint profile of low- (0.25 × IC90) and high- (3 ×
IC90) dose treatments would improve the accuracy of drug classification
using the full drug set and subsequent cross validation. To investigate
whether a joint dose profile best describes the variation in the morphological
response in Mtb, the full 94 feature datasets from both drug doses were
concatenated, resulting in 188 total features. We also applied MorphEUS to
low-dose and high-dose treatments as separate profiles. We observed high
accuracy using each of the dose treatments (low, high, and joint as 97, 91, and
94%, respectively), but the joint dose profiles were better cross validated
(76%) compared to high- (68%) and low- (62%) dose MorphEUS. We therefore
use joint dose profiling as the default for MorphEUS.

Classification of Unknown Compounds.Weapply new compounds toMorphEUS
in the same manner as cross validation, only the MorphEUS pipeline is done on
the full 34-drug set, and the unknown is added to the set for the final KNN
during each classification trial.

Statistical Analysis. We performed the Kruskal–Wallis test to identify drug
treatments that induce significantly different morphological features com-
pared to untreated cells in rich medium (Fig. 1A and SI Appendix, Fig. S8A).
Through the MorphEUS pipeline utilizes population-based features, the
Kruskal–Wallis test was applied to the features of individual cells (n = 1,625
to 3,983 for rich, n = 1,029 to 6,733 for conditions). The Kruskal–Wallis test
was applied to each drug and/or environmental condition individually, per
feature. In each case the null hypothesis was that the median feature value
for Mtb populations exposed to a specific drug and/or environmental stress
was drawn from the same distribution as the median feature value for the
untreated controls.

Data and Materials Availability. All data needed to evaluate the conclusions in
the paper are present in the paper and/or SI Appendix. All code for analysis has
been deposited at https://gitlab.tufts.edu/aldridgelab-morpheus/morpheus.
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