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Amino acids have been shown to be among the most important metabolites to be altered

following stroke; however, they are a double-edged sword with regard to regulating

hemostasis. In this study, we conducted a targeted metabolomic study to examine the

association between serum levels of amino acids and functional recovery after stroke.

Three hundred and fifty-one patients with stroke admitted to an acute rehabilitation

hospital were screened, and 106 patients were selected based on inclusion and exclusion

criteria. Recruited patients were stratified using Montebello Rehabilitation Factor Score

(MRFS) efficiency. We selected the top (n = 20, 19%) and bottom (n = 20, 19%) of

MRFS efficiency for metabolomic analysis. A total of 21 serum amino acids levels were

measured using ultra high performance liquid chromatography and mass spectrometry.

The normalized data were analyzed by multivariate approaches, and the selected

potential biomarkers were combined in different combinations for prediction of stroke

functional recovery. The results demonstrated that there were significant differences in

leucine-isoleucine, proline, threonine, glutamic acid, and arginine levels between good

and poor recovery groups. In the training (0.952) and test (0.835) sets, metabolite

biomarker panels composed of proline, glutamic acid, and arginine had the highest

sensitivity and specificity in distinguishing good recovery from poor. In particular, arginine

was present in the top 10 combinations of the average area under the receiver operating

characteristic curve (AUC) test set. Our findings suggest that amino acids related to

energy metabolism and excitotoxicity may play an important role in functional recovery

after stroke. Therefore, the level of serum arginine has predictive value for the recovery

rate after stroke.
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INTRODUCTION

Increasing evidence suggests that amino acids, including
homocysteine and branched-chain amino acids (BCAA), are one
of the most important disturbed metabolites after stroke (1, 2).
Importantly, recent studies suggest that amino acids could have
beneficial and detrimental effects. For example, glutamate plays
an important role in maintaining the normal signal transduction
of nerve cells, which is beneficial to the synaptic plasticity of
neurons and to the recovery of stroke (3). However, elevated
levels of glutamate can trigger oxidative stress, inflammation,
and endothelial damage (4). BCAAs were also found to be low
in stroke patients compared with normal controls, and lower
BCAA levels correlated with poor neurological outcome in stroke
patients (5). On the other hand, higher concentrations of baseline
BCAA were associated with increased risk of stroke in a high
cardiovascular risk population (6). Therefore, elucidating the
effects of dysregulated amino acid levels on stroke recovery will
contribute to identifying prognostic biomarkers and formulating
effective therapeutic interventions. However, there are few
studies on the relationship between the changes in amino acid
levels and the rate of functional recovery after stroke (7, 8).

Metabolomics is a new strategy that can detect changes in
amino acids, vitamins, organic acids, and other small-molecule
metabolites in biofluids (e.g., plasma or serum) of patients in
real time (9, 10). As it is difficult to detect the metabolites
directly in the brain, metabolites in serum are usually used
as alternative indicators to reflect biological and pathological
functions of the brain (11, 12). Metabolic alterations in the brain
can result in changes in the metabolome of biofluids (12, 13),
especially those metabolites with low molecular weight, which
may be easily exchanged through the meningo between the
cerebrospinal fluid (CSF) and the blood (5, 14). As a result,
potential biomarkers associated with stroke recovery can be
detected in serum by metabolomics, and signaling pathways
involved in stroke recovery can be drawn.

Currently, most studies of metabolomic biomarkers in
patients with stroke compare metabolomic profiles of stroke
patients with the normal population (9, 13). Few studies
explore the differences in metabolomic biomarkers among stroke
patients with good or poor functional recovery (4). Therefore,
in this study, we performed a metabolomic analysis of serum
amino acid levels in stroke patients undergoing acute inpatient
rehabilitation. Our initial hypothesis was that alterations in
amino acids can affect the rate of functional recovery in stroke
patients. The aim of this study was to find new biomarkers
with high sensitivity and specificity, and to provide a basis for
further investigation into the rehabilitation mechanism of stroke,

Abbreviations: AMPK, adenosine monophosphate activated protein kinase;

AUC, area under the receiver operating characteristic curve; CSF, cerebrospinal

fluid; FIM, Functional Independence Measure; GR, good recovery; IR, ischemia

reperfusion; MRFS, Montebello Rehabilitation Factor Score; NO, nitric oxide;

NOS, nitric oxide synthase; PCA, principal component analysis; PLS-DA, partial

least-squares discriminant analysis; PR, poor recovery; ROC, receiver operating

characteristic; TCA, tricarboxylic acid cycle; UHPLC-MS, ultra high performance

liquid chromatography—mass spectrometry; UV, unit variance; VIP, variable

importance of projection.

as well as the development of targeted treatment methods and
improvement of prognosis.

MATERIALS AND METHODS

Study Participants
This is a retrospective study approved by the ethics committee
of Spaulding Rehabilitation Hospital. Three hundred and fifty-
one patients with stroke admitted to an acute rehabilitation
hospital in Boston between January 2015 and December 2016
were screened with the following inclusion criteria: first ischemic
stroke, confirmed by CT or MRI, no tPA (tissue plasminogen
activator) treatment, age between 50 and 85 years, length of
stay >6 days, admission total Functional Independence Measure
(FIM) score between 36 and 71 (12, 15, 16), and has serum
samples available upon admission. Exclusion criteria included:
continuing with gastric tube feeding, active cancer, HIV (human
acquired immunodeficiency) carrier, or severe liver and kidney
dysfunction (12, 15, 16). All patients received standard inpatient
rehabilitation including physical therapy, occupational therapy,
and speech therapy. One hundred and six patients met the
inclusion/exclusion criteria and were stratified at the top 20
of MRFS efficiency (top 19%) and the bottom 20 of MRFS
efficiency (bottom 19%), and they were defined as good recovery
group (GR) and poor recovery group (PR) (Figure 1). The MRFS
efficiency formula is described in the following section.

Functional Independence Measure Scale
FIM scale is widely used to evaluate the functional abilities
of stroke patients undergoing rehabilitation (15, 17). The scale
includes 18 items graded on a 7-point ordinal scale, with a
maximum total score of 126 where a lower score means less
functional independence. The total FIM scores were recorded at
admission and discharge. The gain of the total FIM score, which is
commonly used to evaluate functional recovery after stroke, was
determined for every patient by calculating the difference of the
total FIM score from admission to discharge (15, 17).

Because length of stay and total FIM scores at admission
varied considerably, Montebello Rehabilitation Factor Score
(MRFS) efficiency was used to evaluate functional recovery after
stroke (17, 18). The MRFS evaluates relative gain, and this
method depends on the validated FIM score. According to this
method, the basis for calculating relative gain is a patient’s specific
potential for improvement (maximal possible FIM – actual
admission FIM). The actual score ranges from 0 to 1, and the
MRFS can overcome the misinterpretation of the ceiling effect.
The MRFS was calculated using the following formula: MRFS
= (discharge FIM – admission FIM)/(maximum FIM score –
admission FIM).MRFS efficiency reflects recovery and functional
outcomes of stroke more appropriately and precisely because it is
measured relative to the potential for change and overcomes the
fact that different patients have different admission FIM scores
(15, 18). MRFS efficiency=MRFS/length of stay (15, 17, 18).

Clinical Characteristics
Demographic data and clinical characteristics including
age, gender, education, body mass index (BMI), diagnosis,
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FIGURE 1 | Patients with stroke were screened according to the inclusion criteria and the exclusion criteria.

comobilities, and discharge destination were collected from
electronic medical records. Stroke features including site
(supratentorial and infratentorial) and side were collected from
MRI or CT reports. Lesion size was not measured due to limited
imaging available for the measurement.

Sample Preparation
Non-fasting venous blood was obtained from all stroke patients
within 1 week after hospitalization. Studies showed that there
were no significant difference of amino acids between fasting
serum samples and non-fasting serum samples (19, 20). The
blood sample testing process follows standard protocol of ultra
high performance liquid chromatography—mass spectrometry
(UHPLC-MS), and the standard protocol are as follow.

Blood samples were centrifuged at 13,000 g for 30min at
4◦C, after which time serum was removed and aliquotted
before storage at −80◦C (not more than 2 years) until ultra
high performance liquid chromatography—mass spectrometry
(UHPLC-MS) analysis. Prior to analysis, serum samples were
thawed and centrifuged at 14,000 g for 10min in a cold room
(4◦C). Then 200µl supernatant was transferred into a new 1.5ml
microcentrifuge tube, and 800 µl of cool methanol (−80◦C)
(Fisher Scientific, cat. no. A452SK1) was added to make a final
80% (vol/vol) methanol solution. This mixture was incubated
for 8 h at −80◦C and then centrifuged at 14,000 g for 10min
(4◦C). Subsequently, the supernatant was transferred into a new
1.5ml microcentrifuge tube, dried in a SpeedVac (Savant AS160,
Farmingdale, NY), and stored at−80◦C until analysis (21, 22).

Each sample was resuspended in 20 µl of UHPLC-MS
grade water (Fisher Scientific, cat. no. MWX00016), and 10 µl
per sample was analyzed with UHPLC-MS using the selected
reaction monitoring (SRM) method with positive/negative ion
polarity switching on the hybrid triple quadrupole/linear ion
trap mass spectrometer (AB/SCIEX). A total of 21 amino acids
were monitored and detected for each sample. Peak areas from
the total ion current for each metabolite SRM transition were
integrated using MultiQuant v2.0 software (AB/SCIEX) (21, 22).

Statistical Analysis
Statistical analysis was carried out in SPSS 14.0. The T-test was
used to analyze the difference in the continuous variables between
the two groups, and the chi-square test was used to evaluate
clinical categorical measures (23, 24). The Pearson correlation
coefficient was used to calculate the correlations between age and
identified metabolites in the two groups. The differences between
the two groups were considered significant at p < 0.05.

Metabolomics Data Analysis
As glycine could not be detected in most samples, only 20
amino acids’ data were analyzed. All peak areas were aligned and
normalized using themedian of all amino acids from each sample
before further analysis. The normalized data were imported
into SIMCA-P version 14.1 (Umetrics Inc., Umea, Sweden) for
multivariate analysis, including principal component analysis
(PCA) and partial least-squares discriminant analysis (PLS-
DA) after mean-centering and unit variance (UV) scaling. The
potential biomarkers were filtered and confirmed when their
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Variable Importance of Projection (VIP) scores are >1 (VIP >

1) (5, 12).
The quality of the PLS-DA model was determined based

on a goodness of fit parameter (R2Y) and a goodness of
prediction parameter (Q2Y). In addition, the PLS-DAmodel and
the reliability models were further validated using a rigorous
permutation test (n = 200). The parameters of the models, such
as the R2 and Q2 intercepts, were investigated to ensure the
quality of the models and to avoid over-fitting (5, 11, 25).

Through analysis of PLS-DA loadings, the metabolites
contributing to sample discrimination were identified by Variable
Importance of Projection (VIP) scores. The potential biomarkers
were filtered and confirmed when their VIP scores are >1 (VIP
> 1) (5, 11, 25).

Matlab R2014a (The MathWorks Inc., Natick, MA, USA)
was used to perform variable selection of potential biomarkers.
The selected potential biomarkers were combined in different
combinations for prediction of stroke functional recovery. All
prediction combinations were examined separately, using 10-fold
cross-validation (26, 27).

In 10-fold cross-validation, nine-tenths of the serum samples
from all 40 samples were randomly assigned to the training
set. The metabolite profile of this training set was used to
diagnose for this prediction task. The remaining one-tenth
of the serum samples from all 40 samples formed the test
set. This test set was used to validate the metabolite profile
diagnostic for the feature of interest. This was repeated 10
times, so that each one-tenth split of the data set acts as
the testing set once. Areas under the curve (AUCs) with
95% confidence intervals (CIs) were calculated for sensitivity
and specificity values. Mean AUC in the training set, mean
AUC in the test set, standard deviation (SD) of AUC in the
test set, and 95% CI of mean AUC in the test set were
analyzed (26, 27).

Predictive performance results for each prediction
combination were compared using area under the receiver
operating characteristic curve (AUC of ROC). We note that
this predictive performance is for the stratified data set, so our
primary interest is in the predictive factors. The values of mean
AUC in the test set are regarded as the criteria for selecting the
best combination of predictive biomarkers (26, 27). Since the
mean test-set AUC scores were used for ranking models and not
for formal hypothesis testing, multiple testing corrections were
not needed.

RESULTS

Clinical Characteristics of Stroke Patients
The clinical characteristics of stroke patients are shown in the
Table 1. According to the effectiveness of MRFS, stroke patients
were divided into two subgroups: good recovery (GR) group
and poor recovery (PR) group. The average age of GR group
was significantly lower than that of PR group (61.25 ± 7.84 vs.
71.55 ± 10.39 years) (P < 0.001). The time of hospitalization,
destination of discharge, total score of FIM at admission and
discharge, and effective rate of MRFS and MRFS in the GR
group were significantly better than those in the PR group (P

TABLE 1 | The clinical characteristics of stroke patients.

Characteristics Good recovery

group (n = 20)

Poor recovery

group (n = 20)

P

Demographics

Age(y) 61.25 ± 7.84 71.55 ± 10.39 0.001

Sex, male 8 (40) 10 (50) 0.525

Education 0.525

College 12 (60) 10 (50)

High school 8 (40) 10 (50)

Handedness (right) 20 (100) 19 (95) 0.311

BMI 28.48 ± 8.74 29.02 ± 6.69 0.826

Medical history

Smoking 17 (85) 14 (70) 0.256

Hypertension 13 (65) 17 (85) 0.114

Diabetes 10 (50) 8 (40) 0.525

Hyperlipidemia 6 (30) 9 (45) 0.327

CAD history 1 (5) 5 (25) 0.077

Atrial fibrillation 0 (0) 2 (10) 0.147

Laboratory items

AST(units/l) 24 ± 13.36 24.9 ± 11.95 0.824

ALT(units/l) 37.25 ± 25.82 39.3 ± 33.81 0.858

BUN(mg/dl) 21.8 ± 18.95 25.55 ± 21.07 0.558

CREAT(mg/dl) 1.05 ± 0.59 0.99 ± 0.45 0.430

HCT (%) 37.25 ± 4.91 35.8 ± 10.23 0.571

Clinical assessment

Days from onset to

admission

8 ± 6.39 8.8 ± 6.55 0.598

Day from onset to blood 12.65 ± 7.02 15.15 ± 8.19 0.307

Length of stay(d) 10.7 ± 3.19 22.9 ± 9.26 0.001

Discharge destination 0.001

Home 20 (100) 4 (20)

Skilled nursing facility 0 (0) 16 (80)

Total FIM scores

Admission 64.20 ± 5.58 42.95 ± 6.65 0.001

Discharge 109.10 ± 6.64 55.45 ± 11.66 0.001

Gain of total FIM (discharge

FIM—admission FIM)

40.90 ± 8.29 12.51 ± 9.26 0.001

MRFS 0.71 ± 0.11 0.14 ± 0.10 0.001

MRFS efficiency 0.071 ± 0.023 0.007 ± 0.003 0.001

Stroke features

Stroke sites 0.598

Supratentorial 18 (90) 19 (95)

Infratentorial 1 (5) 1 (5)

Both 1 (5) 0 (0)

Side of hemiparesis 0.525

Left side 12 (60) 10 (5)

Right side 8 (40) 9 (45)

Both side 0 (0) 1 (5)

Values shown are as mean ± SD, N (%), or as otherwise indicated.

BMI, body mass index; CAD, coronary artery disease.

< 0.001). There was no significant difference in other clinical
indexes (including education, BMI, medical history, laboratory
items, stroke features, and side of hemiparesis) between the two
groups (P > 0.05) (Detailed P-values can be seen in the Table 1).
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Serum Metabolic Profile of Stroke Patients
With Good Recovery and Poor Recovery
A PLS-DA model was performed to explore the correlation
between the GR and PR groups. According to a PLS-DA score
plot (Figure 2A), there was a significant separation between
stroke patients with good recovery and poor recovery (R2Y
= 0.495, Q2Y = 0.345) (Figure 2A), indicating that there is
a difference in serum metabolite levels between the GR and
PR groups. The PLS-DA model validation was performed using
the number of permutations equaling 200 generated and the
intercepts of Q2 (fewer than 0), which meant that the PLS-DA
model was non-overfitting and reliable (Figure 2B).

Differences in Metabolites Between Stroke
Patients With Good Recovery and Poor
Recovery
The PLS-DA model was further analyzed to identify the
serum metabolites associated with functional recovery of
stroke. Through analysis of PLS-DA loadings, the metabolites
contributing to sample discrimination were identified by VIP
scores. The potential biomarkers were filtered and confirmed
when their VIP scores are >1 (VIP > 1). Through analysis,
five serum metabolites [threonine (VIP predicted values:
1.04), arginine (VIP predicted values: 1.47), glutamate (VIP
predicted values: 1.89), proline (VIP predicted values: 1.97),
and leucine-isoleucine (VIP predicted values: 2.46)] were
screened out, which were closely related to the recovery level
of stroke (VIP > 1) (Table 2). In contrast to those in the
GR group, levels of glutamate (KEGG:C00025) and arginine
(KEGG:C00062) were increased in the PR group, whereas levels
of leucine-isoleucine (KEGG:C00123), proline (KEGG:C00148),
and threonine (KEGG:C00188) were markedly decreased. The

average normalized quantities of the differential metabolites in
the GR and PR groups are shown in the heat map (Figure 3).

Identify Potential Predictive Biomarkers in
Serum
Models were fit where five metabolites were considered in
all possible combinations, including one single metabolite
combination, two different metabolites in combination, and
up to the combination of all five metabolites (Table 3). There
were 31 combinations, and all combinations of the selected five
metabolites for prediction of functional recovery after stroke
were analyzed by cross-validation (Table 3).

Cross-validation is a well-known technique to choose tuning
parameters of a model, while limiting the risk of overfitting
(26, 27). As shown in Table 3, standard deviations (SD) of
the AUC in the testing set are between 0.09 and 0.13, which

TABLE 2 | Results of the VIP predicted values of differential metabolites between

stroke patients with GR and PR.

Metabolites VIP predicted values Fold change

Leucine-isoleucine 2.46 0.65

Proline 1.97 0.54

Glutamate 1.89 2.11

Arginine 1.47 1.74

Threonine 1.04 0.66

FC, Fold change, ratio of metabolite’s relative peak area in PR stroke patients to that of

GR stroke patients.

This table shows those metabolites with a VIP predicted value >1 and their fold change.

When the fold change is >1, the metabolite levels in the PR group were higher than those

in the GR group. When the fold change is <1, metabolite levels in the PR group were

lower compared with those in the GR group.

FIGURE 2 | (A) PLS-DA models—Two-component plots of GR and PR (green = GR, blue = PR) from UHPLC-MS metabolic profiles, demonstrate clear separation

between the GR and PR groups. (B) Validation plots for the PLS-DA model obtained from 200 permutation tests (green = R2, blue = Q2): the intercepts of Q2

were <0.
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FIGURE 3 | The heat map of the five different metabolites in the GR and PR groups. The colors changing from blue to red indicate the changes of characteristic

metabolite content relative to the average normalized quantities of the metabolites in the GR group, blue plots indicate down-regulated metabolites, and red plots

indicate up-regulated metabolites.

indicate that the model is steady. Single metabolite did not
offer good predictive value but displayed low sensitivity and
specificity in both the training and test sets. The panel including
proline, glutamate, and arginine had the highest values of mean
AUC in the test set [0.835, 95% CI: (0.756, 0.913)] and mean
AUC in the training set: [0.952, 95% CI: (0.951, 0.953)] of the
31 combinations (Table 3, Figure 4). Therefore, this panel was
regarded as the best combination of predictive biomarkers out of
the 31 combinations.

As shown in Table 3, arginine was in all of the top 10
combinations ranked by values of mean AUC in the test set.

Four out of the top five combinations ranked by values of mean
AUC in the test set contained both glutamate and arginine.When
leucine-isoleucine, threonine, and proline were combined with
arginine, these new panels all had high predictive value for stroke
functional recovery (Table 3). The models suggest that arginine
is important in stroke recovery.

The Correlations Between Age and
Metabolites
There were significant differences in age between the GR and
PR groups. So, we investigated the correlation between age and
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TABLE 3 | Results of 10 independent replicates of 10-fold cross-validation of all combinations of the selected five metabolites for prediction of functional recovery after

stroke.

NO Proline Threonine Leucine-

Isoleucine

Glutamate Arginine Mean AUC in

training set

Mean AUC

in test set

SD of AUC

in test set

95% CI of mean

AUC in test set

1 1 0 0 1 1 0.952 0.835 0.109 (0.756, 0.913)

2 1 0 1 1 1 0.956 0.817 0.113 (0.735, 0.897)

3 1 0 0 0 1 0.920 0.808 0.099 (0.737, 0.879)

4 0 1 0 1 1 0.947 0.799 0.115 (0.717, 0.881)

5 0 1 1 1 1 0.991 0.795 0.094 (0.727, 0.861)

6 0 0 1 1 1 0.924 0.793 0.106 (0.716, 0.868)

7 1 1 0 1 1 0.972 0.792 0.130 (0.699, 0.884)

8 1 0 1 0 1 0.929 0.788 0.093 (0.721, 0.854)

9 1 1 0 0 1 0.929 0.773 0.114 (0.691, 0.853)

10 1 1 1 0 1 0.935 0.771 0.114 (0.689, 0.852)

11 1 0 0 1 0 0.870 0.767 0.115 (0.684, 0.849)

12 0 0 1 0 1 0.857 0.766 0.094 (0.698, 0.833)

13 1 0 1 1 0 0.871 0.758 0.103 (0.684, 0.831)

14 1 1 1 1 1 0.994 0.758 0.119 (0.672, 0.843)

15 0 1 1 0 1 0.895 0.744 0.120 (0.658, 0.830)

16 1 1 0 1 0 0.909 0.744 0.136 (0.647, 0.842)

17 1 1 1 1 0 0.908 0.728 0.121 (0.642, 0.815)

18 0 0 0 1 1 0.846 0.723 0.096 (0.655, 0.792)

19 0 1 0 0 1 0.852 0.713 0.102 (0.640, 0.787)

20 0 1 1 1 0 0.877 0.698 0.134 (0.602, 0.794)

21 0 0 0 0 1 0.758 0.698 0.084 (0.637, 0.758)

22 0 1 0 1 0 0.850 0.694 0.128 (0.603, 0.785)

23 1 0 0 0 0 0.745 0.654 0.115 (0.572,0.737)

24 0 1 0 0 0 0.750 0.653 0.130 (0.561, 0.746)

25 1 1 0 0 0 0.748 0.628 0.129 (0.536,0.721)

26 0 0 1 1 0 0.764 0.628 0.092 (0.561,0.694)

27 0 0 0 1 0 0.680 0.626 0.097 (0.557,0.695)

28 1 0 1 0 0 0.743 0.625 0.111 (0.546, 0.704)

29 1 1 1 0 0 0.751 0.604 0.119 (0.519, 0.689)

30 0 1 1 0 0 0.730 0.573 0.126 (0.483, 0.664)

31 0 0 1 0 0 0.645 0.536 0.102 (0.463, 0.609)

1 refers to containing this metabolite when performing 10-fold cross-validation, and 0 means that the metabolite is not contained.

According to the metabolites combinations, there were 31 combinations for prediction of functional recovery after stroke that were analyzed by cross-validation. The standard deviations

(SD) of the AUC in the testing set are between 0.09 and 0.13, which indicates the model of this study is steady. The values of mean AUC in the test set are used as criteria for evaluation.

The panel including proline, glutamate and arginine had the highest values of mean AUC in the test set [0.835, 95% CI (confidence interval): (0.756, 0.913)] [mean AUC in the training

set:0.952, 95% CI: (0.951, 0.953)] in the 31 combinations. As a result, this panel was the best combination of predictive biomarkers of the 31 combinations.

identified metabolites in the two groups. As shown in Table 4

and Figure 5, there was little significant correlation between
identified metabolites and age in the two groups.

Based on the above results, we recombined the age and the
panel of proline, glutamate, and arginine. We analyzed the 4-
variable panel, respectively, in the training and test sets. The
values of mean AUC of the 4-variable panel was 0.962 (95%
CI: 0.961, 0.963) in the training set, and 0.871 (95% CI: 0.819,
0.924) in the test set, which had higher sensitivity and specificity
distinguished between patients with GR and PR compared with
the identified panel from 31 combinations (Figure 6).

DISCUSSION

Amino acids are among the most important disturbed
metabolites after stroke, but the association of amino acid
levels with level of stroke recovery is not clear. Our main

findings were that there was a significant difference in leucine-
isoleucine, proline, threonine, glutamic acid, and arginine levels
between the GR and PR groups. The panel of combined proline,
glutamate, and arginine provided high sensitivity and specificity
in prediction of functional recovery.

Our results showed that arginine levels in the PR group
were significantly higher than those in the GR group. This is in
line with evidence suggesting that high arginine concentration
can induce neurotoxic substances (12, 14, 28). Studies have
shown that arginine in plasma can cross the blood-brain
barrier (BBB) into the brain (16, 28), and that there is a high
correlation between serum arginine and arginine in cerebrospinal
fluid (CSF) in stroke patients (16). As shown in the arginine
metabolic pathway (Figure 7A), arginine is the precursor of nitric
oxide (NO), and NO is synthesized from L-arginine by nitric
oxide synthase (NOS), which includes neuronal NOS (nNOS),
endothelial NOS (eNOS), and inducible NOS (iNOS). In the
human brain, the synthesis of NO is mainly related to nNOS
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FIGURE 4 | The ROC curve of the identified panel—The values of mean AUC of the panel including proline, glutamate, and arginine are 0.952 (95% CI: 0.756, 0.913)

in the training set (A), and 0.835 (95% CI: 0.951, 0.953) in the test set (B).

TABLE 4 | The Pearson’s correlation coefficients between age and identified

metabolite.

Pearson’s correlation

coefficients

Correlation between of age and arginine 0.159

Correlation between of age and glutamate 0.202

Correlation between of age and proline 0.024

Correlation between of age and threonine 0.249

Correlation between of age and leucine-isoleucine 0.214

that lies in neurons (13). At physiological concentrations (EC50

1–4 nM) (29, 30), NO can regulate blood flow, relax blood
vessels, and inhibit platelet aggregation, which are beneficial
for the recovery of stroke dysfunction (28, 31). Several studies
have shown that arginine supplementation contributes to stroke
recovery, which is related to the PKC-mediated NO signaling
pathway (32). However, recent studies indicate that high
concentrations of arginine can increase oxidative stress in the
general population (28). Arginase (also present in the brain) is
an enzyme that catalyzes the conversion of arginine to ornithine,
competing with eNOS (in the choroid plexus and vascular
endothelium) for arginine (28). A high concentration of arginine
could stimulate the expression and activation of arginase, and
the maximal catalytic activity of arginase is higher than that of
eNOS (15, 28). The increase of arginase activity will decrease
the catalytic activity of arginine for NO production and lead to
the uncoupling of eNOS, while uncoupled eNOS can induce the
transfer of electrons from NADPH to oxygen molecules to form
superoxide anions (O−

2 ). In vitro studies also found that a high
concentration of arginine decreased the antioxidant capacity of
brain tissue, which in turn increased oxidative stress, inhibited
the activity of glutathione peroxidase in the brain tissue, induced
the production of neurotoxic substances, and finally decreased
the recovery of nerve function (15, 28).

In this study, in addition to arginine, serum glutamate levels
in patients with PR were also significantly higher than those in

patients with GR. Glutamate is one of the most abundant free
amino acids in the mammalian central nervous system (CNS)
and is at the intersection of multiple metabolic pathways (33). In
its physiological concentration, glutamate is crucial for various
physiological processes, particularly synaptic transmission. But
a higher glutamate concentration in the brain may trigger
secondary brain injury following acute ischemic stroke, including
neuron death, axonal injury, and mitochondrial dysfunction (34,
35). First of all, neuronal death, impaired energy supply, and
increased oxidative stress caused by mitochondrial deregulation
are not conducive to functional recovery after stroke. Secondly,
glutamate receptors expressed on brain endothelial cells play
an important role in regulating the function of the BBB (36).
The excessive activation of glutamate receptors may lead to the
abnormal expression and distribution of tight junction proteins

in endothelial cells, resulting in the destruction of the BBB (36).
In this case, the harmful substances may easily pass through the

BBB and aggravate the death and injury of neurons. Thirdly,

abnormal synaptic transmission induced by a high concentration

of glutamate may decrease the synaptic plasticity and inhibit the
recovery of neural function after stroke (Figure 6A) (36).

High concentrations of arginine and glutamate may lead to
stronger neuroexcitotoxicity through synergistic action (37, 38).
nNOS is Ca2+-dependent and will be activated to generate
NO when calmodulin forms Ca2+/calmodulin complex with
calcium (37). During the ischemia reperfusion (IR) phase of
ischemic stroke, N-methyl-D-aspartic acid (NMDA) receptor-
mediated excitotoxicity caused by increased glutamate levels
may lead to calcium dysregulation and stimulate nNOS to
produce more NO in the neurons (35). At the same time, this
excitotoxicity may also trigger mitochondrial dysfunction and
reduce the ability of mitochondria to resist oxidative stress,
resulting in more reactive oxygen species (38, 39). Under
oxidative stress, the production of S-nitrosoglutathione (GSNO)
will be decreased, and the superoxide anion will react with
NO to form a peroxynitrite anion (ONOO−), which is of
high neurotoxicity (15, 40). ONOO− can inhibit the activity of
cytochrome c oxidase in the respiratory chain and destroy the
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FIGURE 5 | Pearson’s correlation coefficients graph between age and identified metabolites in the two groups (A) Arginine vs. Age, (B) Glutamate vs. Age, (C) Proline

vs. Age, (D) Threonine vs. Age, (E) Leucine-isoleucine vs. Age.

electron transport-associated proteins in mitochondria, which
leads to energetic failure and neuron death (15, 40). With the
death of neurons and mitochondria, the oxidative stress levels
in the brain may increase and lead to the production of more
neurotoxic substances, such as nitrotyrosine (Figure 7A).

It was found that NMDA-receptor-mediated calcium
dysregulation can activate nNOS by re-modifying its chemical
structure, such as phosphorylation of Ser1412 (40). Adenosine
monophosphate activated protein kinase (AMPK) is one energy

sensor with a high expression of neurons (41). AMPK is
activated when cellular energy is decreasing. The activation of
AMPK may keep nNOS in a hyperactivated state via sustained
phosphorylation of Ser1412 (40, 41). However, AMPK can also be
activated by peroxynitrite, resulting in a vicious circle of nNOS,
peroxynitrite, and AMPK (Figure 6A) (40). All of these will
ultimately lead to neuronal death and functional impairment.
Therefore, glutamate and arginine, both of which have high
sensitivity and specificity to functional results, appeared four
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FIGURE 6 | The ROC curve of the 4-variable panel including age, proline, glutamate, and arginine—The values of mean AUC of the panel including age, proline,

glutamate, and arginine in the training set (A) is 0.962 (95% CI:0.961, 0.963) and 0.871 (95% CI:0.819, 0.924) in the test set (B).

FIGURE 7 | (A) A higher glutamate concentration in the brain can induce excitotoxicity, and the increase of Ca2+ concentrations in the cell, which may cause

mitochondrial dysfunction and increase oxidative stress and neuron death. A high arginine concentration can increase arginase activity, which leads to an uncoupling

of eNOS and induces more neurotoxic substance (imaginary line). Excessive glutamate has excitotoxicity, and arginine can also increase oxidative stress and induce

more neurotoxins by itself. Arginine and glutamate can be converted into each other and linked in their metabolism. When higher concentrations of arginine and

glutamate come together, more neurotoxins such as peroxynitrite are produced. Adenosine monophosphate activated protein kinase (AMPK) also can be activated by

peroxynitrite, so nNOS, peroxynitrite, and AMPK become one vicious cycle. All these will ultimately lead to neuronal death and functional impairment. (B) Both

leucine-isoleucine and threonine can be converted to acetyl-coA and come into the TCA). TCA can provide ATP and AKG for the brain, which have an important effect

on brain function recovery after stroke.

times in the top five combinations sorted according to the average
value of AUC. This result is consistent with the synergistic effect
of excessive glutamate and arginine on neurotoxicity. As shown
in Figure 6A, arginine is also the precursor to glutamate.
Therefore, an increase in arginine can cause an increase in
glutamate, and arginine itself may also trigger this synergistic
effect. This may partly explain why arginine could be found in
the top ten combinations in the test set.

The levels of serum leucine-isoleucine and threonine in
the PR group were significantly lower than those in the GR
group. Studies have shown that leucine-isoleucine plays an
active role in inhibiting an excessive glutamate concentration
and excitotoxicity induced by stroke (5), and it is also an
important component of energy metabolism (42). Threonine is

also a fuel substrate that can be converted to pyruvic acid and
become part of the tricarboxylic acid cycle (TCA) (43). TCA can
provide adenosine triphosphate (ATP) and æ-ketoglutarate to the
brain, while reducing leucine-isoleucine and threonine leads to a
reduction in ATP and æ-ketoglutarate. The brain is an organ that
consumes a lot of energy without storing any, so an abnormal
energy metabolism may cause a brain disorder. æ–ketoglutarate
is an important intermediatemetabolite in the TCA cycle that can
also improve ischemia-induced brain disorders (Figure 7B) (44).

The relationship between proline and stroke is unclear. It has
been reported that the level of serum proline in patients with
acute ischemic stroke is significantly lower than that in normal
controls (7). He et al. further proved that the level of serum
proline in the PR group was significantly lower than that in the
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GR group, which may be related to the fact that proline can
enhance the stability of proteins and cell membranes (45).

Our results revealed that the serum levels of five amino
acids (leucine-isoleucine, proline, threonine, glutamic acid, and
arginine) differed significantly between GR and PR groups. The
panel grouped by proline, glutamate, and arginine had the highest
sensitivity and specificity in predicting recovery and functional
outcomes of stroke. This finding suggests that the metabolomic
process combined high level of neuroexcitoxicity with low level
of cell membrane stability may worsen stroke recovery.

STUDY LIMITATIONS

The stratification method used in this study enhanced the power
of detection by targeting the extremes; however, this study is still
limited by relatively small sample size. Second, subjects from
this study were from one single, urban rehabilitation hospital;
therefore, the findings cannot be generalized to the general
population. Third, in this study, the average age of the GR group
was significantly younger than the average age of the PR group
(p < 0.05). The age difference may contribute to the difference in
metabolimic profiling. In addition, the age difference could also
cause bias of the results. Further study with age-matched groups,
multi-center and large sample size is warranted to confirm
the findings.

CONCLUSION

1. High levels of glutamate and arginine are associated
with PR after stroke, which is related to oxidative stress
and excitotoxicity.

2. Leucine-isoleucine, threonine, and proline involved in energy
metabolism are positively related to functional recovery
after stroke.

3. Reduced leucine-isoleucine, threonine, and proline, as well as
all or only one or two of them, were combined with elevated
arginine into new panels, and these new panels illustrate
a high predictive value for stroke functional recovery. The
panel grouped by proline, glutamate, and arginine has the

highest sensitivity and specificity on predicting recovery and
functional outcomes of stroke of all 31 combinations. Age can
increase sensitivity and specificity of this identified panel for
stroke functional recovery.
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