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Abstract

Background Skeletal muscle metrics on computed tomography (CT) correlate with clinical and patient-reported
outcomes. We hypothesize that aggregating skeletal muscle measurements from multiple vertebral levels and skeletal
muscle gauge (SMG) better predict outcomes than skeletal muscle radioattenuation (SMRA) or -index (SMI) at a single
vertebral level.
Methods We performed a secondary analysis of prospectively collected clinical (overall survival, hospital readmission,
time to unplanned hospital readmission or death, and readmission or death within 90 days) and patient-reported
outcomes (physical and psychological symptom burden captured as Edmonton Symptom Assessment Scale and Patient
Health Questionnaire) of patients with advanced cancer who experienced an unplanned admission to Massachusetts
General Hospital from 2014 to 2016. First, we assessed the correlation of skeletal muscle cross-sectional area, SMRA,
SMI, and SMG at one or more of the following thoracic (T) or lumbar (L) vertebral levels: T5, T8, T10, and L3 on
CT scans obtained ≤50 days before index assessment. Second, we aggregated measurements across all available
vertebral levels using percentile-based averaging (PBA) to create the average percentile. Third, we constructed one
regression model adjusted for age, sex, sociodemographic factors, cancer type, body mass index, and intravenous
contrast for each combination of (i) vertebral level and average percentile, (ii) muscle metrics (SMRA, SMI, &
SMG), and (iii) clinical and patient-reported outcomes. Fourth, we compared the performance of vertebral levels
and muscle metrics by ranking otherwise identical models by concordance statistic, number of included patients,
coefficient of determination, and significance of muscle metric.
Results We included 846 patients (mean age: 63.5 ± 12.9 years, 50.5% males) with advanced cancer [predominantly
gastrointestinal (32.9%) or lung (18.9%)]. The correlation of muscle measurements between vertebral levels ranged
from 0.71 to 0.84 for SMRA and 0.67 to 0.81 for SMI. The correlation of individual levels with the average percentile
was 0.90–0.93 for SMRA and 0.86–0.92 for SMI. The intrapatient correlation of SMRA with SMI was 0.21–0.40. PBA
allowed for inclusion of 8–47% more patients than any single-level analysis. PBA outperformed single-level analyses
across all comparisons with average ranks 2.6, 2.9, and 1.6 for concordance statistic, coefficient of determination,
and significance (range 1–5, μ = 3), respectively. On average, SMG outperformed SMRA and SMI across outcomes
and vertebral levels: the average rank of SMG was 1.4, 1.4, and 1.4 for concordance statistic, coefficient of
determination, and significance (range 1–3, μ = 2), respectively.
Conclusions Multivertebral level skeletal muscle analyses using PBA and SMG independently and additively outper-
form analyses using individual levels and SMRA or SMI.
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Introduction

Clinical studies increasingly utilize body composition analysis,
particularly skeletal muscle assessment, to refine risk stratifi-
cation of patients with cancer.1–3 Segmentation of muscle
and adipose tissue on computed tomography (CT) at the level
of the third lumbar vertebra (L3) represents the current de
facto gold standard method for opportunistic body composi-
tion analysis on CT scans obtained for routine clinical
care.2,4–6 Skeletal muscle cross-sectional area (CSA) at the
L3 level correlates better with whole-body muscle mass
than CSA at other vertebral levels, thereby rendering L3 the
most common measurement location for body composition
analysis.7–10 Muscle CSA can be divided by the squared
height (in meters) to obtain the skeletal muscle index (SMI).
SMI can be multiplied with skeletal muscle radioattenuation
(SMRA) to calculate skeletal muscle gauge (SMG). While
prior research suggests that SMG is superior to CSA and
attenuation alone, comparisons with other body composition
metrics (e.g. SMI) are limited.3,11–17

Segmentation at multiple vertebral levels provides a better
assessment of an individual’s muscle and adipose tissue9 and
may allow for body composition analysis in patients lacking
CT imaging at the L3 level. However, single-level analyses
remain the default strategy, in part because of the time
required for manual segmentation, and few studies have
aggregated muscle measurements across multiple vertebral
levels to predict clinical outcomes.18 Recent advances in
machine learning have fuelled the creation of algorithms that
can replace manual segmentation at various vertebral levels,
thereby enabling large-scale, multilevel body composition
analysis.19–22 These algorithms can provide radioattenuation
in addition to CSA, thereby making SMG widely available.

Multivertebral level body composition analysis introduces
a new set of challenges concerning data analysis and
interpretation. For example, the high correlation of skeletal
muscle measurements between vertebral levels7,11,17,23,24

would lead to collinearity if measurements were included as
separate variables within the same statistical model. Al-
though aggregation of measurements from multiple vertebral
levels into a single metric would prevent collinearity during
statistical analysis, established methods for aggregation and
interpretation of the aggregate are currently lacking. Also, pa-
tients might be missing measurements at one or more verte-
bral level, and methods to address missing values in
multivertebral level analyses are needed.

The objectives of this paper are threefold: (i) describe and
discuss the concept of percentile-based averaging, a novel,
flexible, and scalable method for aggregating multivertebral
level body composition measurements into a single metric while
also addressing missing values; (ii) validate percentile-based
averaging in a cohort of patients with advanced cancer by com-
paring it with conventional complete-case single-level-analyses;
and (iii) substantiate evidence supporting the use of SMG.

We hypothesize that aggregating skeletal muscle
measurements from multiple vertebral levels using percentile-
based averaging and SMG better predict clinical and patient-
reported outcomes than SMRA or SMI at a single vertebral level.

An improved understanding of multivertebral level
body composition analysis would represent a significant
advance for cancer cachexia and sarcopenia research.

Methods and materials

This is a secondary analysis of a prospective longitudinal co-
hort study conducted between September 2014 and May
2016 with approval from the Dana Farber/Harvard Cancer
Center institutional review board.25 In brief, we recruited
adult patients with advanced cancer who experienced an
unplanned admission to Massachusetts General Hospital to
describe their clinical and patient-reported outcomes.25

Study design and patient cohort

In the original study, we approached patients within 5 days
after their first unplanned hospital admission and collected
patient-reported outcomes following enrolment using stan-
dardized surveys.26–28 We also analysed CT scans obtained
within 50 days prior to index assessment, as previously
described.29 We included patients with CT scans that techni-
cally allowed evaluation of muscle at one or more of the fol-
lowing thoracic (T) or lumbar (L) vertebral levels: T5, T8, T10,
and L3 (Figure 1).

Skeletal muscle and subcutaneous adipose tissue
measurements

We used a multistep process (pipeline) including previously
validated machine learning algorithms to (i) identify vertebral
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levels T5, T8, T10, and L3 on axial images and (ii) segment
skeletal muscle at each level using thresholds of �29 to
+150 Hounsfield Units.20

The output consisted of CSA and mean attenuation of all
voxels labelled as muscles, as well as a label map (Figure 2).

We subjected each label map to independent review by
two trained analysts (medical students with 1 year of experi-
ence with body composition analysis, trained and supervised
by a board-certified radiologist) blinded to clinical and
patient-reported outcomes. Analysts determined the pres-

Figure 1 Flow diagram of inclusion and exclusion criteria. Abbreviations: CT, computed tomography; T5/T8/T10, fifth/eight/tenth thoracic; L3, third
lumbar. *The last exclusion step excludes patients who had unusable segmentations at all four vertebral levels. We determined segmentation quality
for each image individually, which is why we report errors for each of the four slices.
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ence or absence of intravenous contrast and discarded
instances where the labels did not match anatomy, as
previously described.29 We calculated SMI [cm2/m2] by
dividing CSA of skeletal muscle by the patient’s squared
height. We calculated SMG [Hounsfield Unit*cm2/m2] by
multiplying SMI with SMRA.

Percentile-based averaging

We used percentile-based averaging to aggregate body com-
position measurements from multiple vertebral levels into a
single, normalized value: the average percentile. For each
body composition metric (SMRA, SMI, & SMG), and at every
analysed vertebral level, we ranked patients within a stratum.

Strata were defined by characteristics known to influence
body composition measurements30,31: We stratified SMI by
sex, and stratified SMRA and SMG by sex and presence of
intravenous contrast. We then normalized the rank to a
percentile by multiplying the rank with 100 and dividing the
product by the number of cases in the stratum. Then, we
calculated the average percentile of each metric for each
patient by averaging the percentiles at each vertebral level.
We did not include missing values in calculating the average
percentile, which is mathematically equivalent to first imput-
ing missing percentiles using the mean value of non-missing
levels (Appendix 1, Proof 1). Therefore, we assigned an
average percentile to every patient with one or more
measurements for a given metric. For example, a female
patient’s SMI at the L3 level would be ranked against the L3
SMI of other female patients to obtain her L3 SMI percentile.
This percentile would then be averaged with her T8 and T10
SMI percentiles, while a missing value at T5 would not
contribute to her average percentile.

We implemented percentile-based averaging in R version
4.0.2 (Vienna, Austria).32 The source code of the implementa-
tion is available at https://github.com/p-mq/Percentiles, and
the packaged version may be downloaded at the Comprehen-
sive R Archive Network as ‘percentiles’ (https://cran.r-pro-
ject.org/web/packages).

Clinical and patient-reported outcomes

We used prospectively collected clinical and patient-reported
outcomes, as previously described.25 Briefly, clinical out-
comes included overall survival, hospital length of stay, time
to unplanned hospital readmission or death, and readmission
or death within 90 days. Patient-reported outcomes included
physical and psychological symptom burden captured as the
revised Edmonton Symptom Assessment System total (range
0–100) and physical score (range 0–70)27,28 as well as the
Patient Health Questionnaire-4 consisting of depression
and anxiety scores (both range 0–6).26 Higher scores indicate
greater symptom burden across all patient-reported
outcomes.

Statistical modelling and model comparison

We performed analyses and visualizations in R version 4.0.2
(Vienna, Austria) using percentiles, BlanketStatsments,
survAUC, ggplot2, and psych libraries32 and Python version
3.8. Our code for this analysis is available for download at
https://github.com/p-mq/Percentile_based_averaging.

We analysed the relationship between muscle metrics and
measurement locations using Pearson’s correlation coeffi-
cient. We used multivariable Cox regression to model the re-
lationship between muscle metrics and overall survival and

Figure 2 Illustration skeletal muscle segmentation (red) at the level of
the fifth (A), eighth (B), and tenth (C) thoracic, and third lumbar (D) ver-
tebral body in a 65-year-old female with advanced pancreatic cancer.
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time to hospital readmission or death. We used multivariable
logistic regression to model the relationship between muscle
metrics and readmission or death within 90 days. We used
multivariable linear regression to model the relationship
between muscle metrics and hospital length of stay as well
as patient-reported outcomes. We adjusted all models for
potential confounders: age, sex, marital status, education
level, insurance, cancer type, and body mass index (BMI).29

If the muscle metric was SMRA or SMG, we additionally
adjusted for presence of intravenous contrast.30

We evaluated a total of 240 statistical models. Of these,
120 models reflected all combinations of the three different
muscle metrics (SMRA, SMI, & SMG), five measurement
locations (T5, T8, T10, L3, and average percentile), and eight
outcomes described above. For internal validation and explo-
ration, we generated an analogous set of 120 models using
the subset of patients with muscle measurements at all four
vertebral levels.

We ranked statistical models describing the same outcome
according to four pre-specified performance characteristics:
(i) concordance statistic (C-statistic) as a measure of
in-group predictive accuracy was the primary performance
characteristic; (ii) number of included patients (n); (iii) coeffi-
cient of determination (R2); and (iv) significance of muscle
metric (P value). We considered larger values to represent
better performance for n, C-statistic, and R2, while smaller
values indicated better performance for P values. We used
Uno’s modified C-statistic for right-censored outcomes in
Cox regression models.33

For each of the four performance characteristics, we
assigned a rank for measurement location and a rank for
muscle metric to each model. Ranks ranged from 1 to 3 for
muscle metrics and from 1 to 5 for measurement location.
We assigned ranks in descending order. We assigned the
same, best available rank to tied models. We calculated
the average rank of performance characteristics for each
measurement location and each muscle metric by taking
the mean of individual model ranks using the respective
measurement location or metric. If there were no differences
between measurement locations and muscle metrics, all
models’ average ranks would be equal to the expected value
(μ). The average rank of C-statistic was the key metric for the
primary and secondary hypothesis. Construction and compar-
ison of statistical models was implemented in R version 4.0.2
(Vienna, Austria).32 The source code of the implementation is
available at https://github.com/p-mq/BlanketStatsments and
the packaged version may be downloaded at the Comprehen-
sive R Archive Network as ‘BlanketStatsments’ (https://cran.
r-project.org/package=BlanketStatsments).

We tested for differences in demographic variables, cancer
history, Charlson comorbidity index, and BMI between pa-
tients with and without imaging. We used t-tests for continu-
ous variables, Fisher’s exact test for race/ethnicity, and χ2

tests for all other categorical variables.

Results

Patient sample

Of 1121 patients enrolled in the original study, 890 (79.4%)
had one or more CT scans within 50 days prior to the index
assessment. We excluded 44 (4.9%) patients who lacked
measurements for all vertebral levels of interest due to lack
of available images or artefacts precluding accurate muscle
segmentation (Figure 1). The remaining 846 participants
(1476 scans imaging 2712 levels that passed quality assur-
ance) had a mean age of 63.5 ± 12.9 years, and 50.5% were
male participants (Table 1). Participants were predominantly
white (92.1%), married (65.8%), and educated beyond high
school (59.7%). The most prevalent cancer types were gastro-
intestinal (32.9%), lung (18.9%), and genitourinary (9.0%),
with a mean time since diagnosis of 3.2 ± 4.3 years. The mean
BMI was 25.9 ± 5.96 kg/m2, and most (82.8%) analysed CT
images were performed with intravenous contrast. The
median time to death or loss to follow-up was 117 days with
an interquartile range of 214 days. The mortality and
readmission rate within 90 days was 42.0% and 44.3%, re-
spectively, with amean hospital length of stay of 6.7 ± 5.6 days.
Patients excluded due to lack of available imaging were older
(2.5 years), more likely to have government-sponsored health
insurance, and more likely to carry a diagnosis of advanced
cancer for a longer period of time (all P < 0.01) (Table A1).
No differences were found for sex, race/ethnicity, marital
status, education level, Charlson comorbidity index score,
and BMI (Table A1).

Skeletal muscle measurements

Muscle measurements were available at 4, 3, 2, and only 1
of 4 possible vertebral levels in 424 (50%), 228 (27%),
138 (16%), and 56 (7%) of 846 (100%) patients. Muscle
measurements were most frequently available at the T10
level (93%) and least frequently available at the T5 level
(68%) (Figure 1). At L3, muscle measurements were available
for 80.0% of patients.

Correlation of muscle metrics between vertebral
levels

The correlation of muscle metrics between vertebral
levels was high for SMRA (range 0.71–0.84) and SMI
(range 0.67–0.81). The average percentile demonstrated
the best correlation with each assessed level (range 0.90–
0.93 for SMRA and 0.86–0.92 for SMI) (Figure 3). SMRA
only correlated moderately with SMI (range 0.10–0.0.40)
(Figure 3).
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Performance of single-level complete-case analysis
versus percentile-based averaging

We found that percentile-based averaging aggregating
muscle measurements from any available vertebral level
performed better than complete-case analyses at the four
possible single vertebral levels for all four chosen perfor-
mance metrics: in otherwise identical models compared by
ranking on a scale from 1 to 5 (expected value of 3), models
using percentile-based averaging had an average C-statistic
rank of 2.6 compared with a mean of 3.1 (range 2.3–3.8) in
single-level models. In all models, percentile-based averaging
maximized the number of included patients (average rank
1.0). The increase in the number of included patients
achieved by percentile-based averaging was 25% compared
with complete-case analyses at the L3 level. The average rank
for R2 value (2.9) and P value (1.6) was also better for

percentile-based averaging than for single-level analyses,
indicating superior performance for percentile-based
averaging than expected under the null hypothesis of equal
performance (Table 2, Figure 4).

In the subset of 424 patients with muscle measurements
at all four levels, we found that percentile-based averaging
demonstrated superior performance compared with
single-level analyses: in otherwise identical models compared
by ranking on a scale from 1 to 5 (expected value of 3), the
average rank for C-statistics was 2.2 for models with percen-
tile-based averaging, compared with a mean of 3.2 (range
3.0–3.5) for single-level models. Similarly, mean ranks for R2

values [2.39 vs. 3.2 (range 2.6–3.8)] and P values [2.1 vs.
3.2 (range 2.8–3.8)] were also lower for percentile-based
averaging, indicating superior performance for percentile-
based averaging than expected under the null hypothesis of
equal performance (Table 2, Figure 4).

Table 1 Patient characteristics

Characteristic

Overall cohort

N = 846 %

Age—mean (SD) 63.46 (12.90)
Sex
Male 427 50.5
Female 419 49.5

Race/ethnicity
White 779 92.1
African American 30 3.5
Asian 20 2.4
Hispanic 15 1.8
Other 2 0.1

Marital status
Married 557 65.8
Single 135 16.0
Divorced 92 10.9
Widowed 62 7.3

Education level
High school and below 266 31.4
Beyond high school 505 59.7
Declined to provide 75 8.9

Health insurance
Government-sponsored 421 49.8
Private 421 49.8
None 4 0.5

Cancer type
Gastrointestinal 278 32.9
Lung 160 18.9
Genitourinary 76 9.0
Melanoma 68 8.0
Breast 56 6.6
Sarcoma 45 5.3
Gynaecologic 42 5.0
Head and neck 41 4.8
Leukaemia 35 4.1
Lymphoma 33 3.9
Cancer of unknown primary 12 1.4

Months since cancer diagnosis—mean (SD) 38.44 (51.60)
Charlson comorbidity index score—mean (SD) 0.84 (1.25)
Body mass index—mean (SD) 25.87 (5.96)
Measurements with IV contrast (N = 2712a) 2245a 82.7a

CT, computed tomography; IV, intravenous; SD, standard deviation.
aThe proportion of measurements with intravenous contrast present was calculated on a per slice basis.
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We chose to not to highlight associations of measurement
location with outcomes as these associations do not contrib-
ute to evaluating the proposed changes in methodology and
would require extensive corrections for multiple testing. For
results of individual models, refer to Table A2.

Comparison of muscle metrics

Models based on SMG generally outperformed models based
on SMRA and SMI with regards to C-statistics: In otherwise

identical models compared by ranking on a scale from 1 to
3 (expected value of 2), the average rank of C-statistic was
1.4 for SMG-based models, indicating superior performance
compared with SMRA-based and SMI-based models. Average
ranks of R2 and P values of SMG-based models were 1.4
and 1.4, indicating superior performance compared with
SMRA-based and SMI-based models (Table 3, Figure 4).

We found the same trend in the subset of 424 patients
with muscle measurements available at all levels, with mean
ranks of SMG-based models being 1.6, 1.3, and 1.3 for
C-statistic, R2, and P value, respectively (Table 3, Figure 4).

Figure 3 Correlation of skeletal muscle index and skeletal muscle radioattenuation across the T5, T8, T10, and L3 levels. Bottom left half: dot plots and
regression estimates (red line); top right half: Pearson’s correlation coefficients, brighter green corresponding to higher correlation. Top-left quadrant:
correlation of skeletal muscle index percentiles at each vertebral level. Bottom right quadrant: correlation of skeletal muscle radioattenuation percen-
tiles at each vertebral level. Top right and bottom left quadrant: correlation of skeletal muscle index percentiles and skeletal muscle radioattenuation
percentiles at each vertebral level. Abbreviations: L3, third lumbar; SMIp, skeletal muscle index percentile; SMRAp, skeletal muscle radioattenuation
percentile; T5/T8/T10, fifth/eight/tenth thoracic.
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Figure 4 Comparison of skeletal muscle metrics (x-axis/dot size) and vertebral levels (y-axis/colour) across concordance statistic, number of included
patients, coefficient of determination, and P value. Abbreviations: C, concordance statistic; ESASp, Edmonton Symptom Assessment System physical;
ESASt, Edmonton Symptom Assessment System total; L3, third lumbar; LOS, hospital length of stay; n, number of included patients; OS, overall survival;
P, P value; PBA, percentile-based averaging; PHQ4A, patient health Questionnaire-4 anxiety; PHQ4D, patient health Questionnaire-4 depression; R

2
,

coefficient of determination; RD, time to unplanned hospital readmissions or death; RD90, readmission or death within 90 days; SM, skeletal muscle;
SMG, skeletal muscle gauge; SMI, skeletal muscle index; SMRA, skeletal muscle radioattenuation; T5/T8/T10, fifth/eighth/tenth thoracic.

Table 2 Performance of vertebral levels T5, T8, T10, and L3 or multilevel analysis using percentile-based averaging compared against each other in
concordance statistic, number of included patients, coefficient of determination, and P value using otherwise equal statistical models

Model specifications Average rank of model performance metrics (μ = 3)

Measurement location Included patients C N R2 P

T5 Measurements at any level (n = 846) 2.33 5.00 2.67 3.33
Measurements at all levels (n = 424) 3.25 — 3.46 3.33

T8 Measurements at any level (n = 846) 3.75 3.75 3.17 3.71
Measurements at all levels (n = 424) 3.46 — 3.83 3.83

T10 Measurements at any level (n = 846) 3.58 2.00 3.04 3.00
Measurements at all levels (n = 424) 3.13 — 2.58 2.75

L3 Measurements at any level (n = 846) 2.71 3.25 3.21 3.38
Measurements at all levels (n = 424) 3.00 — 2.83 3.00

Percentile-based averaging Measurements at any level (n = 846) 2.63 1.00 2.92 1.58
Measurements at all levels (n = 424) 2.17 — 2.29 2.08

μ describes the expected ranking if there was no difference between methods. C, concordance statistic; N, number of included patients;
R2, coefficient of determination; P, P value; μ = expected value.

Table 3 Performance of skeletal muscle metrics compared against each other in concordance statistic, number of included patients, coefficient of
determination, and P value using otherwise equal statistical models

Model specifications Average rank of model performance metrics (μ = 2)

Metric Included patients C N R2 P

Skeletal muscle radioattenuation Measurements at any level (n = 846) 2.10 1.00 1.85 1.90
Measurements at all levels (n = 424) 2.08 1.00 2.18 2.23

Skeletal muscle index Measurements at any level (n = 846) 2.55 1.00 2.75 2.70
Measurements at all levels (n = 424) 2.35 1.00 2.58 2.50

Skeletal muscle gauge Measurements at any level (n = 846) 1.35 1.00 1.40 1.40
Measurements at all levels (n = 424) 1.58 1.00 1.25 1.28

C, concordance statistic; N, number of included patients; R2, coefficient of determination; P, P value; μ = expected value.
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We chose to not to highlight associations of muscle
metrics with outcomes as these associations do not contrib-
ute to evaluating the proposed changes in methodology
and would require extensive corrections for multiple testing.
For results of individual models, refer to Table A2.

Discussion

In this study, we describe and validate a novel approach to
harness multivertebral level muscle measurements using
percentile-based averaging and validate SMG as a muscle
metric superior to SMRA and SMI. We evaluated
percentile-based averaging and SMG in a large cohort of
patients with advanced cancer using prospectively collected
clinical and patient-reported outcomes. We found that
percentile-based averaging of multivertebral level muscle
measurements and SMG additively and independently
outperformed the standard complete-case, single-level
approach using SMI at the L3 level for outcome prediction
and allowed for the inclusion of more patients. Collectively,
these findings indicate that percentile-based averaging of
multivertebral level body composition measurements and
SMG improve body composition analysis.

Skeletal muscle gauge combines aspects of both muscle
quantity and quality. We demonstrated that SMG better
predicted clinical and patient-reported outcomes compared
with SMRA or SMI alone.14–16 SMI is the most widely used
muscle metric but only measures muscle quantity.4,5 SMRA
is weakly correlated with SMI across vertebral levels, sug-
gesting that these metrics capture distinct aspects. Future
studies should consider SMG as the metric encompassing
both muscle quantity and quality and establish reference
values for SMG.

There are multiple reasons to use percentile-based
averaging in addition to SMG. One, while multilevel body
composition measurements are increasingly available,
methods to aggregate this information are missing.18,24,34,35

Two, the current study’s performance characteristics
indicate that multilevel body composition analysis using
percentile-based averaging can improve upon the current
standard of single-level complete-case analysis. We chose
the C-statistic as a measure of predictive accuracy for the
primary characteristic, as the C-statistic reflects a model’s
primary purpose. C-statistics were generally higher for models
using percentile-based averaging, suggesting multilevel
analysis improves prediction and prognostication of clinical
outcomes and patient-reported outcomes. Three, multilevel
analysis increased the number of included patients compared
with single-level analyses and reduced standard errors,
aligned with previous work.9,10 Four, the associated increased
statistical power may allow investigators to minimize sample
size while also minimizing their exclusion rate. Minimizing
the exclusion rate would address non-random missingness

due to incompletely imaged vertebral levels or artefacts, both
of which frequently limit body composition studies relying on
CT scans acquired as part of routine clinical care.3

Percentile-based averaging has additional advantages.
One, clinicians frequently use percentiles, and thus
percentile-based averaging represents a familiar and
approachable concept for clinicians. Two, percentile-based
averaging is level-agnostic, meaning it enables investigators
to assess measurements at vertebral levels without
established reference values. Three, percentile-based averag-
ing is scalable and can accommodate measurements from
any number of vertebral levels. While each included vertebral
level contributes equally to the average percentile, the
interpretation is independent of the number or choice of ver-
tebral levels. Specifically, the range of values remains 0–100
disregard of whether measurements originated from only
the third lumbar or all thoracic and lumbar vertebral levels,
and the differences in absolute CSA between measurement
locations are no longer important. Four, percentile-based av-
eraging also does not require dedicated statistical software
and extensive statistical expertise, unlike other imputation
methods.36 We implemented code to use percentile-based
averaging in R and made it freely available on the Compre-
hensive R Archive Network (https://cran.r-project.org/pack-
age=percentiles). Five, the average percentiles created with
percentile-based averaging are fixed for a given dataset, con-
trary to other imputation methods.36 As a result, investiga-
tors can store and transfer average percentiles between
software programmes and collaborators. Six, the ability to
estimate extreme values mitigates potential non-random
missingness due to the exclusion of patients with incom-
pletely imaged muscle due to limited field of view. In this
study, patients excluded because of absent or unusable
imaging did not have a significantly higher BMI than included
patients, contrary to other reports. Seven, percentile-based
averaging is flexible. While we focused on percentile-based
averaging for muscle measurements in this study, the
correlation of adipose tissue suggests that percentile-based
averaging can also analyse multilevel adipose tissue
measurements.37,38

Despite these advantages, percentile-based averaging is
not universally applicable: For one, percentile-based averag-
ing creates cohort-specific average percentiles. Intercohort
comparison of these cohort-specific percentiles would
require adjusting for intercohort differences in absolute
values. Second, in small or unbalanced cohorts, stratification
by sex and intravenous contrast in the process of calculating
percentiles may result in small subgroups. If reference values
were available for all analysed vertebral levels, level-specific
percentiles of a given cohort could be compared with the
reference cohort prior to averaging. Such standardized per-
centiles would resolve the limitations of intercohort compar-
isons and small subgroups described above. Unfortunately,
we currently lack reference values for many vertebral levels
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outside the abdomen, an important opportunity for future
research.22

Our data presented does not allow us to conclusively
answer the question what number of vertebral levels and
which vertebral levels would be optimal. First, we found that
no individual vertebral level performs above average across all
performance characteristics (Table 2, Figure 4). However, the
correlation between muscle measurements decreases as
distance increases (Figure 3). Therefore, we assume the bene-
fits of added levels to increase with anatomic distance. We
further believe that the incremental benefit of each additional
level decreases with the total number of levels. The optimal
level for single-level analysis depends on the relationship of
the outcome of interest with the muscles imaged at a given
level and the characteristics of the patient cohort.39

We need to interpret these results in the context of several
limitations. First, we conducted this study at a single, tertiary
care institution in a population with limited demographic
diversity. In contrast, the heterogeneity of our cohort regard-
ing cancer type, treatments, and outcomes can introduce un-
accounted variability but also suggests wider generalizability.
Although we collected clinical and patient-reported outcomes
prospectively, images were obtained as part of routine clinical
care, and thus collected and analysed retrospectively. The
compared statistical models only varied in one predictor,
and therefore, we did not analyse individual combinations
of multiple vertebral levels or muscle metrics. We compared
and ranked the performance of different statistical models
without testing for statistical significance of the performance
differences. Given the multidimensionality of comparisons
(measurement location, metric, outcome, & performance
characteristic), reporting P values may not accurately encap-
sulate this study’s complex and descriptive nature. We
validated our findings internally using the data set with
muscle data at all four levels, and we plan to validate the
dataset externally in the future.

In conclusion, this study validates percentile-based
averaging as a novel, flexible, and scalable method that
permits aggregation of multiple vertebral levels of body
composition data while also addressing missing values at
one or more vertebral levels. Aggregating muscle measure-
ments from multiple vertebral levels into a single metric

using percentile-based averaging improved predictive
performance compared with complete-case, single-level anal-
yses, including the current de facto gold standard using SMI
at the L3 level. We further highlighted how SMG, as an indi-
cator of both muscle quantity and quality, captures more in-
formation than muscle quantity or quality alone. Findings
from this work should inform future body composition
studies which stand to benefit from increased accuracy,
statistical power, and interpretability conferred by this ap-
proach. We made the code to use percentile-based averaging
freely available on the Comprehensive R Archive Network
(https://cran.r-project.org/package=percentiles) to facilitate
use and further validation.
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Appendix A

Proof 1:
We state that in calculating the average percentile, not in-

cluding missing values is mathematically equivalent to silently
imputing them as the mean of present variables.

Let the average of values x and y be a ¼ x þ y
2

. Let z1, z2,

[…], zn be missing values imputed as the mean of x and y, so

that z ¼ x þ y
2

¼ a. Let the average calculated after imputa-

tion be ai ¼ x þ y þ z1 þ…þzn
nþ 2

. Solving by insertion step

by step:

ai ¼ x þ y þ z1 þ…þzn
nþ 2

¼ x þ y
nþ 2

þ z1 þ…þzn
nþ 2

¼ x þ y
nþ 2

þ
n

x þ y
2

� �

nþ 2

¼ 2 x þ yð Þ
2 nþ 2ð Þ þ

n x þ yð Þ
2 nþ 2ð Þ

¼ nþ 2ð Þ x þ yð Þ
2 nþ 2ð Þ

¼ x þ y
2

¼ a

qed.

Table A1 Characteristics of patients screened for imaging, those with skeletal muscle measurements, and those excluded because of lacking muscle
measurements

Characteristic Overall (n = 1121)Muscle data available (n = 846)No muscle data available (n = 275)P value*

Age—mean (SD) 64.07 (12.80) 63.46 (12.90) 65.95 (12.33) 0.005
Sex (%) 0.317
Male 576 (51.4) 427 (50.5) 149 (54.2)
Female 545 (48.6) 419 (49.5) 126 (45.8)

Race/ethnicity (%) 0.472
White 1038 (92.6) 779 (92.1) 259 (94.2)
African American 39 (3.5) 30 (3.5) 9 (3.3)
Asian 22 (2.0) 2 (0.7) 20 (2.4)
Hispanic 19 (1.7) 4 (1.5) 15 (1.8)
Other 3 (0.3) 2 (0.2) 1 (0.4)

Marital status (%) 0.349
Married 737 (65.7) 557 (65.8) 180 (65.5)
Single 170 (15.2) 135 (16.0) 35 (12.7)
Divorced 125 (11.2) 92 (10.9) 33 (12.0)
Widowed 89 (7.9) 62 (7.3) 27 (9.8)

Education level (%) 0.954
High school and below 350 (31.2) 266 (31.4) 84 (30.5)
Beyond high school 672 (59.9) 505 (59.7) 167 (60.7)
Declined to provide 99 (8.8) 75 (8.9) 24 (8.7)

Health insurance (%) 0.006
Government-sponsored 587 (52.4) 421 (49.8) 166 (60.4)
Private 530 (47.3) 421 (49.8) 109 (39.6)
None 4 (0.4) 4 (0.5) 0 (0.0)

Cancer type (%) <0.001
Gastrointestinal 331 (29.5) 278 (32.9) 53 (19.3)
Lung 188 (16.8) 160 (18.9) 28 (10.2)
Genitourinary 112 (10.0) 76 (9.0) 36 (13.1)
Melanoma 90 (8.0) 68 (8.0) 22 (8.0)
Breast 75 (6.7) 56 (6.6) 19 (6.9)
Gynaecologic 52 (4.6) 42 (5.0) 10 (3.6)
Sarcoma 50 (4.5) 45 (5.3) 5 (1.8)
Head and neck 54 (4.8) 41 (4.8) 13 (4.7)
Leukaemia 61 (5.4) 35 (4.1) 26 (9.5)
Lymphoma 94 (8.4) 33 (3.9) 61 (22.2)
Cancer of unknown primary 14 (1.2) 12 (1.4) 2 (0.7)

Months since cancer diagnosis—mean (SD) 16.81 (23.78) 15.20 (22.31) 22.39 (27.67) <0.001
Charlson comorbidity index—mean (SD) 0.89 (1.29) 0.84 (1.25) 1.02 (1.40) 0.051
Body mass index—mean (SD) 25.94 (6.02) 25.87 (5.96) 27.19 (7.07) 0.160

CT, computed tomography; SD, standard deviation.
*P value for test of intergroup differences. We used t-tests for continuous variables, Fisher’s exact test for race/ethnicity, and χ2 tests for all
other categorical variables.
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