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Abstract: The combination of a low-pressure mercury lamp and chlorine (UV/chlorine) was applied
as an emerging advanced oxidation process (AOP), to examine paracetamol (PRC) degradation under
different operational conditions. The results indicated that the UV/chlorine process exhibited a
much faster PRC removal than the UV/H2O2 process or chlorination alone because of the great
contribution of highly reactive species (•OH, •Cl, and ClO•). The PRC degradation rate constant (kobs)
was accurately determined by pseudo-first-order kinetics. The kobs values were strongly affected by
the operational conditions, such as chlorine dosage, solution pH, UV intensity, and coexisting
natural organic matter. Response surface methodology was used for the optimization of four
independent variables (NaOCl, UV, pH, and DOM). A mathematical model was established to predict
and optimize the operational conditions for PRC removal in the UV/chlorine process. The main
transformation products (twenty compound structures) were detected by liquid chromatography
coupled to high-resolution mass spectrometry (LC-HRMS).

Keywords: paracetamol; UV/chlorine; reaction kinetics; response surface methodology;
transformation products

1. Introduction

Recently, pharmaceutical and personal care products (PPCPs) and polar pesticides—ubiquitously
present in water bodies (i.e., groundwaters, rivers and lakes, hospital effluents, domestic effluents,
pharmaceutical industries, and wastewater treatment plants)—have been identified and reported as
emerging organic micropollutants. The elimination of residual PPCPs from the water environment
(especially from municipal wastewater) is an urgent concern for the social and scientific communities.
In essence, the majority of synthetic PPCPs constituents are difficult to effectively eliminate through
biological degradation [1,2]. Paracetamol (PRC)—one of the most ubiquitous non-prescription
drugs—is extensively used to relieve moderate intensity pain (i.e., headaches, muscle, and other
minor pains) because of its antipyretic and analgesic properties [3]. Although PPCPs residues are
typically detected in water bodies at trace levels ranging from a few nanograms per liter (ng/L) to
several microgram per liter (µg/L) [4,5], their existence in an aquatic environment could deteriorate
the water quality, cause ecotoxicity to living aquatic organisms, and negatively impact human health
(particularly with long-term exposure) [2,6].
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According to the previous literature, various potential approaches have been explored
and applied to remove PPCPs from water media. They include photodegradation (i.e., using
carbonaceous-TiO2 composites) [7], membrane bioreactors [8], adsorption (i.e., using carbon
nanotubes) [9], aquatic plant-based systems (i.e., constructed wetlands) [10], ultrasonic treatment [11],
biological treatment [2], ozonation [12], coagulation and sedimentation [13], electrochemical
processes [14], and chlorination [15]. Among these methods, the combination of UV irradiation
and chlorination is the most frequently used method in water and wastewater treatment for two
purposes: disinfection (i.e., inactivating pathogenic microorganisms) and contaminant elimination (i.e.,
removing PPCPs). In addition, the chlorination disinfection coupled with UV irradiation have been
widely used for the post-treatment of drinking water due to its excellent capacity in controlling taste,
odor, and bacterial growth [16].

It has been reported that chlorine-based disinfectants (i.e., NaOCl) can produce some primary
radicals (•OH and •Cl) and chlorine-containing secondary radicals (Cl2•−, ClHO•−, and ClO•) that
have been acknowledged as powerful oxidants [16,17]. Furthermore, reactive chlorine species (i.e.,
•Cl, Cl2•−, and ClO• as selective oxidants) can rapidly react with various compounds containing
aromatic rings (i.e., benzene) [18] and electron-rich organic moieties (i.e., olefins, phenols, anilines,
and deprotonated-amines) [19]. Therefore, the combination of UV irradiation and chlorination
(UV/chlorine) turns into the advanced oxidation process (AOP). This combination can enhance
the degradation efficiency of diffident kinds of organic pollutants, such as atrazine [20], ibuprofen [21],
diuron [22], trimethoprim [23], phenacetin [15], benzoic acid [24], and clofibric acid [25,26]. It is also
expected that such combination can remarkably enhance the degradation efficacy of paracetamol in
water solutions.

Notably, depending on the target organic compounds, some transformative products, which are
generated during the chlorination process, can be more toxic than the target parent compounds.
As reported by many researchers, the •OH and •Cl radical groups played an important role
in the decomposition pathways of organic compounds [15,20,22,23,25,26]. The existence of
by-products generated from the degradation process of parent organic compounds through the
UV/chlorine system has been thoroughly identified by the gas chromatography–mass spectrometry
(GC-MS) or liquid chromatography–mass spectrometry (LC-MS). However, the combination of
liquid chromatography-tandem mass spectrometry (LC-MS/MS) and Compound Discoverer 2.0 in
identifying certain intermediate compounds generated during the degradation of organic compounds
(especially paracetamol) has been limitedly reported in the scientific literature.

Therefore, in this study, we aimed to: (1) investigate the effects of operational parameters on PRC
degradation efficiency and rate in water media using the UV/chlorine process, (2) apply the response
surface methodology to evaluate the interactions of four independent factors (i.e., UV, pH, NaOCl, and
dissolved organic matter) on the PRC degradation process, and (3) postulate the probable degradation
pathways of PRC under the UV/chlorine treatment by the LC-MS/MS methodology.

2. Materials and Methods

2.1. Chemicals

Sodium hypochlorite solution (5% NaOCl), sodium chloride (NaCl), hydroxyl peroxide (H2O2),
sodium sulphate (Na2SO4), sodium sulphite (Na2SO3), sodium hydroxyl (NaOH), bicarbonate
(NaHCO3), and sulfuric acid (H2SO4) were purchased from Sigma-Aldrich (Sydney, Australia).
Meanwhile, phosphoric acid, methanol, and acetonitrile of HPLC grade were obtained from Fisher
Scientific (Waltham, MA, USA). All chemicals used in this work were of reagent grade, and they were
directly used without further purification. Deionized water was used to prepare whole solutions in
this study.
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2.2. Experimental Procedures

Experiments were carried out using a batch reactor system that is schematically drawn in Figure 1.
Briefly, the reactor consists of a 2-L cylindrical double-wall jacketed vessel to circulate thermostatted
water with an external circulating pump connected to a thermostatic water bath (25 ± 0.5 ◦C). The
low-pressure mercury lamp (G6 T5, TUV 6W, 254 nm, Philips, Jena, Germany) was vertically fixed in
the center of the reactor. The photon fluxes (Io) emitted from the UV lamp were measured by hydrogen
peroxide actinometry using high concentrations of hydrogen peroxide (50–125 mM) to absorb all the
photons received by the solution (49.7–102.2 mM) [27,28]. The calculated mean of Io of Hg lamp was
3.41 × 10−6 (± standard deviation; SD = 0.105 × 10−6) Einstein/s. The reactor was covered by a black
plastic film to protect the PRC aqueous solution from ambient light. The solution was homogeneously
stirred by a magnetic stirrer at 400 rpm. The intensity of the UV lamp was adjusted by changing the
number of UV lamps in the reactor. Solution pH value was adjusted using 0.5 M HClO4 or 0.5 M
NaOH. The degradation of PRC by the UV/chlorine system was initiated by spiking a designed
amount of NaClO into the initial PRC solution (~10 µmol/L). At target time intervals, approximately
1 mL of reaction solution was sampled for analyzing PRC concentrations and intermediates. The
samples were quenched by adding sodium sulphite at twice the stoichiometric ratio in order to avoid
further reactions.
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2.3. Analytical Methods

Chlorine was determined by the standard N,N-diethyl-p-phenylenediamine (DPD) colorimetric
method (4500-Cl G) [29]. The concentration of H2O2 was spectrophotometrically analyzed using
the TiCl4 method [30]. Total organic carbon (TOC) was measured by a carbon analyzer (Multi N/C
Analytik Jena, Jena, Germany). The concentration of PRC in solution was determined using HPLC
(Dionex 3000 Thermo, Sunnyvale, California, USA) coupled with a photo-diode array. The column was
a Hypersil Gold C-18 (150 mm × 2.1 mm × 3 µm, Thermo Fisher Scientific, Waltham, Massachusetts,
USA). The intermediates were identified by a LC/HRMS Q-Exactive Focus system (Thermo). The
MS/MS parameters were optimized as follows: sheath gas flow rate: 35, aux gas flow rate: 15, sweep
gas flow rate: 1, spray voltage (kV): 3.4, capillary temperature: 320 ◦C, S-lens RF level: 50, aux gas
heater temperature: 350 ◦C, and CE: 18. The used mobile phase includes solvent (A) H2O 0.1% Formic
acid and solvent (B) CH3CN, with the gradient being 0 min: 5%B, 0–27 min: 5–95%B, 27–28 min: 95%B,
28–28.5 min: 5%B, and 28.5–30 min: 5%B. The signals were normally recorded in two modes, such as
positive and negative in 30 min.
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2.4. Data Analysis by Response Surface Methodology

The statistical software MODDE 12.1 trial (Umetrics, Malmö, Sweden) was used to create the
experimental design, statistical analysis, and regression model. Response surface methodology (RSM)
based on quadratic and cubic models with central composite circumscribed design (CCC) is composed
of a full factorial design and star points (star distance: 2). The RSM was used to study the simultaneous
effects of independent variables—UV photon fluxes (Einstein/s), pH, NaOCl (µM), and dissolved
organic matter (DOM; mg/L)—on response functions for removal PRC efficiency from water solutions.
The four independent variables (UV, pH, NaOCl, and DOM) were coded with X1, X2, X3, and X4,
respectively; and each independent variable was divided into five levels (Table 1). The real values of
the variable related to the coded variable are indicated in Equation (1). The relationship between the
response functions and the coded variables is presented by a second-degree polynomial (Equation (2)).
Furthermore, thirty-one combinations along with seven replicates of the central point were formed,
corresponding to 24 experiments. The experiments with the coded and real values of the variables are
shown in Table 1.

Coded variable =
X− X0

λ
(1)

Y = β0 + βi∑xi + βii∑x2
i + βij∑xixj (2)

where X0 is the real value of variables at the central level; λ is the step change of the variable; Y is
a response function; xi and xj are independent variables; β0 is a constant; and βi, βii, and βij are the
linear, quadratic, and interactive coefficients, respectively.

Table 1. Parameters of four variables.

Symbol Variable Unit
Coded Variable and Independent Variable

−α −1 0 1 +α

X1 Io Einstein/s 0 3.41 6.82 10.2 13.6
X2 pH — 1.5 4.0 6.5 9.0 11.5
X3 [NaOCl] µM 0 50 100 150 200
X4 DOM mg/L 0.5 2.0 3.5 5.0 6.5

Note: UV light intensity (Io), chlorine concentration ([NaOCl]), and dissolved organic matter (DOM).

2.5. Kinetic Degradation Modelling

The kinetic model for the UV/chlorine degradation of substances has been developed, and the
kinetics can be described as the pseudo-first-order equation with respect to the contaminant concentration:

ln
Co

Ct
= kobst = (kchlorine + kradicals + kUV)t (3)

where kobs is the observed rate constant of the pseudo-first order equation (1/s); t is the irradiation
time (s); Co and Ct are the initial and final concentrations of PRC contaminant (µM); and kchlorine, kUV,
and kradicals represent the degradation contributions of chlorine, UV, and reactive radicals, respectively.

3. Results and Discussion

3.1. Comparison of PRC Degradation Efficiency by Different Operational Systems

The comparative time-dependent PRC degradation results achieved by the different processes
(i.e., UV irradiation alone, chlorination alone, UV/H2O2 oxidation, and UV/chlorine oxidation) in
pure water are shown in Figure 2a. The results demonstrated that the PRC degradation efficiency
within 30 min by the different processes decreased the following order: UV/chlorine (~99%) > NaClO
alone (~53%) > UV/H2O2 (~42%) > UV irradiation alone (~36%). Dark chlorination is usually used to
degrade organic pollutants through the oxidation of free chlorine, which is similar to the finding of
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Zhu and co-workers [15] for phenacetin (~50%). As expected, the combination reaction of chlorination
with UV irradiation (UV/chlorine) effectively removed PRC within 20 min (Figure 2a). In essence,
when sodium hypochlorite is transferred into water solution, a hydrolysis process rapidly occurs to
form hypochlorous acid (HOCl) and hypochlorite ion (OCl−) (Equations (4) and (5)). During the
UV/chlorine process, HOCl and OCl− are activated by the UV photolysis to simultaneously produce
the main •OH and •Cl radicals (Equations (6)–(8)). The formed •Cl radicals can react with the chloride
ions (derived from the HOCl or OCl− solution) to form Cl2•− (Equation (9)) [24,26,31]. Those radicals
can induce the PRC oxidation and sequentially generate some specific by-products. Notably, the
previous study demonstrated that the contribution of Cl2•− and O•− radicals in the degradation of
aromatic pollutants was negligible [24]:

NaOCl + H2O→ Na+ + HOCl + OH− (4)

HOCl 
 H+ + OCl− (5)

HOCl + hv→ •OH + •Cl (6)

OCl− + hv→ O•− + •Cl (7)

O•− + H2O→•OH + OH− (8)

•Cl + Cl−
 Cl2•− (9)

Figure 2b gives information on the concentration of residual reactants after the elapsed time (~1/2
h) during the dark chlorination alone, UV/H2O2, and UV/chlorine processes. Clearly, the combined
reaction of UV irradiation and chlorination consumed more chlorine (approximately twice) than
chlorination alone. The result suggested that the majority of chlorine were used for the transformation
of paracetamol under the UV/chlorine advanced oxidation process. Therefore, to determine observed
rate constants (kobs) of the PRC degradation reactions, the oxidation reactants (NaClO and H2O2) were
used with a higher amount to prevent any scavenging effects of active radicals by these reactants. As
provided in Figure 2a, the PRC degradation rate constant (1/s) by the UV/chlorine process (0.00232/s)
was approximately six-time faster than that by the UV/H2O2 one (0.00037/s). A similar finding was
reported by Zhu and colleagues [15] for the degradation of phenacetin and Xiang and colleagues [21] for
the degradation of ibuprofen. This is because the photodegradation quantum yield (ϕ; mol/Einstein)
under the UV irradiation (λ = 254 nm) of HOCl (1–1.5 mol/E) and OCl− (0.87–1.3 mol/E) was higher
than that of H2O2 (0.5–1.0 mol/E) [26,31,32]. In other words, HOCl and OCl− are is mild free radical
scavengers compared to H2O2.
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Figure 2. (a) Comparison of PRC degradation over time by the UV irradiation alone, UV/H2O2,
chlorination alone, and UV/chlorine processes; (b) the plot of pseudo-first-order model (Experimental
conditions: UV photon flux = 3.41 × 10−6 Einstein/s, [PRC]o ≈ 10 µM, pH = 6.5, [NaClO] = 100 µM,
and [H2O2] = 100 µM); and (c) time-dependent profile of the residual reactants.

3.2. Effect of UV Light Intensity on PRC Degradation

Effects of UV intensity on the PRC degradation by the UV/chlorine process were conducted
under different UV photon fluxes (×10−6 Einstein/s), such as 3.41, 6.82, and 10.23 (Figure 3). The
degradation rate constant (kobs) increased the following order: 0.00192 < 0.00320 < 0.0049 (1/s) when
the UV intensity increased from 3.41, to 6.82, and then to 10.23 (×10−6 Einstein/s), respectively. The
result suggested that the PRC degradation rate constant was strongly dependent on the UV intensity;
a higher UV intensity coincided with a faster PRC degradation in solution [21,33]. In this study, we
selected the UV intensity of 3.41 × 10−6 (Einstein/s) for further experiments because of sufficient
degradation and economic efficiency.
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Figure 3. Effect of UV photon fluxes (Einstein/s) on the PRC degradation efficiency and rate constant by
the UV/chlorine process (experimental conditions: [PRC]o ≈ 10 µM, pH = 6.5, and [NaClO]o = 100 µM).

Notably, the degradation efficiency of PRC by the UV/chlorine advanced oxidation process can
result from three contributions, including (1) the direct reaction of chlorine with PRC, (2) the photolysis
of PRC under UV irradiation (254 nm), and (3) the reactive radicals generated from the photolysis
process of chlorine. Table 2 presents the contribution percentages of UV, chlorine, and radicals on
PRC degradation efficiency by the UV/chlorine process. The contributions of reactive radicals (•OH,
•Cl, and ClO•) were calculated as approximately 85%, proving that the predominant role of reactive
radicals in the UV/chlorine decomposition of PRC.

Table 2. Contribution percentage of UV, chlorine, and reactive radicals to the PRC degradation by the
UV/chlorine process under different UV light intensities (Io).

Io
(10−6 E/s)

The Observed Degradation Rate Constant (10−3/s) Contribution (%)

PRC/UV PRC/Chlorine PRC/UV/Chlorine UV Chlorine Radicals

3.41 0.195 0.121 2.01 9.70 6.02 84.3
6.82 0.381 0.121 3.36 11.34 3.60 85.1

10.23 0.571 0.121 4.81 11.87 2.52 85.6

Note: Experimental conditions: [PRC]o = 10 µmol/L, [NaClO] = 100 µmol/L, pH = 7.0, and T = 25 ◦C.

3.3. Effect of Chlorine Dosage on PRC Degradation

The time-dependent profiles of paracetamol degradation by the UV/chlorine process under
different chlorine dosages ranging from 10 µmol/L to 985 µmol/L are displayed in Figure 4a. In
general, an increase in chlorine dosage lead to increasing PRC degradation efficacy. The percentage
of PRC degradation reached a constant value of approximately 98% when the chlorine dosage used
was 100 µmol/L. The observed degradation rates of paracetamol under the UV and dark chlorination
processes are illustrated in Figure 4b. Clearly, the kobs values remarkably increased when the chlorine
dosage increased, suggesting an increasing in the generation of ClO• radicals.



Int. J. Environ. Res. Public Health 2018, 15, 2637 8 of 18
Int. J. Environ. Res. Public Health 2018, 15, x 8 of 18 

 

 
Figure 4. Effect of NaClO concentrations on (a) degradation efficiency and (b) degradation rate 
constant (Experimental conditions: UV photon flux = 3.41 × 10−6 Einstein/s, pH = 6.5, [NaClO]o = 10–
985 μM, and [PRC]o ≈ 10 μM). 

However, because of the variable chlorine dosage, the combined effects of two opposing aspects 
such as radical generation and scavenging could pose some complicated influence on the degradation 
rate of aromatic compounds. The upward trend of the reaction rate constant of PRC degradation by 
the UV/chlorine process is similar to the observations of some previous studies, such as trimethoprim 
degradation [23] and diuron degradation [22] under UV/chlorine process conditions. However, a 
dissimilar finding was reported by Fang and colleagues [24] for degradation of a micropollutant 
(benzoic acid) under UV/free chlorine process conditions. To avoid the residual concentrations, we 
selected a NaClO concentration of 100 μmol/L for the subsequent experiments. 

3.4. Effect of Solution pH on PRC Degradation 

When the UV/chlorine process is operated to degrade the pollutant PRC, the controlled pH 
parameter plays an important role in distributing the existing forms of free chlorine Cl2, HOCl, and 
OCl−. To explore the impacts of solution pH values on the PRC degradation efficiency by the 
UV/chlorine process and chlorination alone, a series of experiments with the following conditions 
was carried out at different pH solutions from 3.5 to 8.5. As shown in Figure 5, the observed rate 
constants generally increased within increasing solution pH. Furthermore, the observed rate 
constants of the UV/chlorine-degraded PRC process were remarkably (approximately four times) 

Figure 4. Effect of NaClO concentrations on (a) degradation efficiency and (b) degradation rate constant
(Experimental conditions: UV photon flux = 3.41 × 10−6 Einstein/s, pH = 6.5, [NaClO]o = 10–985 µM,
and [PRC]o ≈ 10 µM).

However, because of the variable chlorine dosage, the combined effects of two opposing aspects
such as radical generation and scavenging could pose some complicated influence on the degradation
rate of aromatic compounds. The upward trend of the reaction rate constant of PRC degradation by
the UV/chlorine process is similar to the observations of some previous studies, such as trimethoprim
degradation [23] and diuron degradation [22] under UV/chlorine process conditions. However, a
dissimilar finding was reported by Fang and colleagues [24] for degradation of a micropollutant
(benzoic acid) under UV/free chlorine process conditions. To avoid the residual concentrations, we
selected a NaClO concentration of 100 µmol/L for the subsequent experiments.

3.4. Effect of Solution pH on PRC Degradation

When the UV/chlorine process is operated to degrade the pollutant PRC, the controlled pH
parameter plays an important role in distributing the existing forms of free chlorine Cl2, HOCl,
and OCl−. To explore the impacts of solution pH values on the PRC degradation efficiency by the
UV/chlorine process and chlorination alone, a series of experiments with the following conditions was
carried out at different pH solutions from 3.5 to 8.5. As shown in Figure 5, the observed rate constants
generally increased within increasing solution pH. Furthermore, the observed rate constants of the
UV/chlorine-degraded PRC process were remarkably (approximately four times) higher than those of
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NaClO-degraded PRC one. The result confirmed that the PRC degradation occurred rapidly under the
conditions of the combined UV and NaClO process.
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Notably, when the solution pH was higher than 7.0, the kobs values were remarkably increased by
approximately 1.5 times for the two processes. This is because during the chlorination, the oxidant
constituents and paracetamol species might be strongly dependent on their pKa values. Paracetamol
contains a phenol functional group in its structure, so its pKa value is often around 9.5, suggesting
that the existence of paracetamol in the ionized form seems negligible within the studied pH solutions
(3.5–8.5). Moreover, the pKa value of HOCl is approximately 7.5 at 25 ◦C. Therefore, when pH solutions
were higher that its pKa, the dissociation of HOCl will occur to form the OCl− ions (Equation (5)) [15,22].
The results suggested that OCl− can contribute to degrading PRC faster than HOCl did. Zhu and
coworkers [15] also found that ClO− was a stronger oxidant than HOCl during the chlorination process
of some secondary amides with the phenacetin structure.

3.5. Effect of Water Matrices of Inorganic Ions and Natural Organic Matters

The most common inorganic ions existing in water bodies are ammonium (NH4
+), nitrate (NO3

−),
chloride (Cl−), sulphate (SO4

2−), and carbonate (CO3
2−). These ions have an inevitable influence on

the reaction mechanism and the formation of free radicals generated from the UV/chlorine system.
These inorganic ions have strongly reactive radical (•OH, •Cl, and ClO•) scavenging capacities, creating
less reactive radicals, such as SO4

•− and CO3
•−. Generally, the presence of Cl−, SO4

2−, HCO3
−, and

NH4
+ ions caused a decrease in the PRC degradation efficiency and rate constant (Figure 6a). The

effects of foreign ions on the UV/chlorine process indicated the following order: no ion > chloride >
sulphate > bicarbonate > ammonium presence. Among the selective anions, bicarbonate had the most
negative impact on the PRC degradation efficiency and rate constant because the HCO3

− ions were a
strong scavenger of •OH radicals in the UV/chlorine system [22].
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Figure 6. (a) Effect of some co-existing inorganic ions on the PRC degradation efficiency and
rate (concentrations of each ion: 100 µM); and (b) effect of co-existing NOM (humic acid) and
a •OH scavenger (tert-butanol) on the PRC degradation rate constant (experimental conditions:
[PRC]o ≈ 10 µM, [NaClO]o = 100 µM, pH = 7.0, and UV photon fluxes = 3.14 × 10−6 photon fluxes).

For water quality, natural organic matter (NOM) might provide a convenient source for the
formation of disinfection by-products (DBPs) (as precursors) and microbial reproduction (as organic
food source) in municipal water distribution systems. As reported in the literature, the presence of
NOM in water matrices has a great influence on the degradation process of aromatic pollutants through:
(1) free radical scavenging capacity (also known as radical scavenging effect) and (2) competitively
interacting with the photons during the UV/chlorine process (UV filtering effect) [15,22,23]. For
comparative purposes, a water matrix of humic acid was used as NOM source; meanwhile, tert–butanol
(tert-B) is well known as a •OH scavenger. The effects of different NOM concentrations on PRC
degradation by the UV/chlorine process are plotted in Figure 6b. The results demonstrated that the
PRC degradation process was inhibited when the NOM concentration was higher than 5 mg/L. Unlike
the •OH scavenger tert-B, NOM is a known radical scavenger that possibly reacts with both •OH and
•Cl radicals [24,25]. Therefore, NOM indicated a greater inhibition effect of PRC degradation than
tert-butanol. The influence of NOM present in the degradation process of organic compounds under
the UV/chlorine process has been highlighted by other scholars [15,20,24,25].

Notably, the PRC degradation efficiency in different kinds of water samples was also examined.
Some typical quality parameters of surface water and tap water are summarized in Figure 7. The
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results showed that the degradation efficiency of PRC within 10 min by the UV/chlorine process
followed the order: approximately 74% (deionized water) > 46% (tap water) > 36% (surface water
collected at Ho Tay lake, Ha Noi, Vietnam). A lower degradation efficiency of PRC in tap and surface
water environments resulted from the higher concentrations of NH4

+, Cl−, SO4
2−, PO4

3−, and CO3
2−,

especially DOM. The conclusion is well consistent with the result in Figure 6.
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3.6. Optimization of PRC Degradation by Response Surface Methodology

3.6.1. Modeling of Paracetamol Degradation

The result of removal efficiency of PRC (RE%) after 10 min with different parameters (UV, pH,
NaOCl, and DOM variables) obtained through the RSM experimental design is shown in Table S1. The
results were used for analysing the statistics and predicting the regression equation with the software
MODDE 12 Pro. The regression coefficient values for coded variables of the polynomial functions are
shown in Table S1. In addition, the statistical Student’s test was used to evaluate the significance of the
regression coefficients (Table 3). Moreover, the quadratic regression equation of response functions for
PRC removal efficiency was obtained after removing nonsignificant regression coefficients.

The quadratic regression equation (Equation (10)) of the response function for removal efficiency
was obtained after removing nonsignificant regression coefficients. The coefficients (X1, X2, X3, and
X4) have been defined in Table 1. The coefficient sign is helpful to evaluate a rapid analysis of the
parametrical effects of the model variables on the responses. As shown in Equation (10), the negative
coefficients (X4, X2

2, and X3
2) indicated an unfavorable effect on RE%; while, the positive coefficients

(X1 and X3) referred to a favorable effect on RE%. The parametric coefficient with its value close to
zero (P-value >0.05) indicated a lower relative intensity than the coefficients (X1, X2, X3, X2

2, X3
2, and

X4):
RE% = 47.406 + 3.444 X1 + 14.398 X3 − 7.006 X4 - 9.983 X2

2 − 5.420 X3
2 (10)
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Table 3. Regression coefficients values (coded variables) of the polynomial model of responses for
removal efficiency of PRC after 10 min.

Removal Efficiency Coeff. SC Std. Err. T-Value P Conf. Int (±)

Constant 46.41 2.009 23.14 1.02 × 10−13 4.258
UV light intensity 3.444 1.085 3.18 0.00589 2.299
pH −0.423 1.085 −0.39 0.702 2.299
Chlorine 14.39 1.085 13.29 4.72 × 10−10 2.299
DOM −7.006 1.085 −6.46 7.91 × 10−6 2.299
Io*Io 0.671 0.994 0.68 0.509 2.107
pH*pH −9.879 0.994 −9.95 2.98 × 10−8 2.107
NaClO*NaClO −5.317 0.994 −5.36 6.51 × 10−5 2.107
DOM*DOM 0.403 0.994 0.41 0.690 2.107
Io*pH −0.184 1.329 −0.14 0.892 2.817
Io*NaClO −0.516 1.329 −0.39 0.703 2.817
Io*DOM 0.009 1.329 0.00 0.995 2.817
pH*NaClO −0.141 1.329 −0.11 0.917 2.817
pH*DOM 0.034 1.329 0.02 0.979 2.817
NaClO*DOM 0.541 1.329 0.41 0.689 2.817

Model Summary
N = 31 Q2 = 0.790 Cond. No. = 4.686

DF = 16 R2 = 0.957 RSD = 5.315
R2-adj. = 0.919 Confidence = 0.95

Note: DF = degree of freedom; Adj SS = adjusted sum of square; Adj MS = adjusted mean square; SD = standard
deviation. UV light intensity (Io), chlorine concentration ([NaOCl]), and dissolved organic matter (DOM).

However, the individual P-value is insufficient to evaluate the statistical significance of the
predictors and develop the model. Therefore, the ANOVA with 95% confidence intervals for RE%
was applied, and the results are represented in Table 4 and Figure 8a. Table 4 provides the analysis
results of the variance (ANOVA) for the quadratic regression and linear component equations for the
variables (i.e., UV, pH, NaOCl, and DOM). The statistical significance of the model was confirmed
by the determination coefficient (R2), the adjusted determination coefficient (R2-adj), and the Fisher
distribution (F test).

Table 4. Analysis of variance (ANOVA) for variables and the regression function.

Removal Efficiency
(10 min) DF SS MS (Variance) F P SD

Total 31 49,462.5 1595.56
Constant 1 39,026.2 39026.2
Total corrected 30 10,436.3 347.878 18.6515
Regression 6 9958.56 1659.76 83.3734 0.000 40.7401
Residual 24 477.781 19.9075 4.46179
Lack of fit 19 385.373 20.2827 1.3169 0.361 4.62705
Pure error 6 92.4086 15.4014 3.92447

N = 31 Q2 = 0.908 Cond. no. = 2.955
DF = 24 R2 = 0.954 RSD = 4.462

R2-adj. = 0.943

The results demonstrated that the determination coefficient value for RE% was close to unity
(R2 = 0.954), which is agreement with the R2-adj one (Table 4). The lack of fit was also calculated to
measure how to the model fitted the data. Thus, the P-value of the lack of fit for RE% was 0.361. An
insignificant lack of fit (P >0.10) is a desirable property because it suggests that the model fitted the
data well. The calculated F value for the full quadratic regression equations of RE% was 1.317 [<3.874
for the F(0.95, 19, 6) value], indicating that the model fitted well with the experimental data. The
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results of ANOVA indicated that the quadratic regression equation models for the response of UV, pH,
NaOCl, and DOM variables provided a good statistical validation for predicting experiments with a
valid concentration region.
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3.6.2. Optimization of Paracetamol Degradation

The highest PRC removal efficiency after 10 min under the optimal experiment conditions was
predicted by the RSM. The four condition predictors include UV light intensity (X1), pH value (X2),
initial NaOCl concentration (X3), and DOM concentration (X4). Using the numerical optimization
function of the statistical software MODDE 12.1, the results indicated that the highest PRC removal
efficiency (77.87%) was obtained at the UV photon fluxes (13.6393 × 10−6 Einstein/s), pH (6.43),
chlorine concentration (166.36 µmol/L), and DOM concentration (0.500124 mg/L). A typical example
of multiple response approach is provided in Figure 8b obtained from the desirability 3D response
surface for two typical variables (i.e., pH and chlorine) by maximizing the PRC removal efficiency at
the optimal factors.

Moreover, the attained optimal conditions were tested in another experimental run to validate
the responses. The result demonstrated that 75.67% of PRC in solution was removed within 10 min.
This confirmed the model reliability and accuracy because this removal efficiency lies 73.89% and
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77.87% (the 95% confidence interval). Therefore, the modelling result can serve to estimate the removal
efficiency of paracetamol with a high level of accuracy.

3.7. Degradation Pathways and Transformation Products Identification

Previous studies have shown that the active radicals (i.e., •OH, •Cl, and ClO•) are proved as
indispensable factors in the degradation process of aromatic pollutants [15,20,22,23,25,26]. In this study,
the degradation of PRC by the UV/NaOCl system was investigated by incorporating LC-MS/MS
analysis and Compound Discoverer 2.0. The results demonstrated that the combination of UV and
NaOCl can notably enhance the degradation of PRC and the formation of chloro compounds compared
to either UV or NaOCl alone. Approximately 90% of PRC was degraded within 10 min, which is
shown by comparing some signal peak areas over time on the LCMS chromatogram (Figure S1).

The results indicated that 1 (PRC) was identified with a retention time (RT) of 6.0 min
corresponding with the mass-to-charge ratio (m/z), with the precursors being 152.06367 [M + H]
and 174.05312 [M + Na] and the fragment ion peak at m/z being 110.06059. As the reaction proceeded,
the peak intensity of PRC decreased simultaneously with an increase in the intensity of the other peaks
with retention times (from 2 to 11 min), indicating that numerous chloro compounds were formed
within 10 min. The structures of these chloro PRC derivatives were determined by the unique and
identifiable ratios of isotopic peaks found in chloro compounds and their MS/MS chromatograms
(Table S2 and Figure S2).

In addition, two expected compounds— monochloro-PRC 2 and dichloro-PRC 3, with retention
times of 7.5 min and 8.7 min, respectively—were detected through the corresponding mass-to-charge
ratio (Figure 9). The m/z of the compound former was 186.02436 (100%) and 188.02436 (32%);
meanwhile, that of the latter was 218.00613 (100%), 220.00613 (64%), and 222. 00623 (10%). The
results are well consistent with the conclusion of Cao and colleagues [34] for the mass spectrometer
chromatogram of the monochloro-PRC and dichloro-PRC derivatives.

On the basis of the structures of these aforementioned compounds, the mechanisms of degradation
could be explained by the attack of •OH or •Cl radicals on the aromatic ring of PRC molecules, leading
to the formations of ortho-, meta-, or para-chlorinated PRC derivatives. An analogous result was
reported by Vogna and co-workers [35]. Moreover, the (186.02436 m/z) fragment was detected at
144.01430 m/z (losing a CH3CO group) and 109.02114 m/z (losing CH3CO and Cl groups). Meanwhile,
the (219.00613 m/z) fragment was detected at 175.98773 m/z (losing CH3CO group) and 143.01 m/z
(losing CH3CO and Cl groups).

Along with the decreasing peak intensity of PRC in the reaction mixture, an increase in the peak
intensities of compounds 2 and 3 occurred concurrently. Notably, the peaks of the two compounds 2
and 3 were not detected in the mass spectrum after 10 min (Figure S1). The possible reasons were due
to the transformation of 2 into 3; and the transformation of 2 into 7 (317.10599 m/z), 8 (333.10090), 9
(335.07210), 10 (351.06700), and then to 11 (369.03312).

Notably, several organic compounds with molecular weights smaller than PRC were identified
along with the existing molecular weights. The presence of the small molecular weight compounds
resulted from the breakdown of PRC during the degradation process. These compounds were
chloro-derivatives—138.96395 m/z (two chlorine atoms), 128.98769 m/z (one chlorine atom), 80.96654
m/z (chlorine atom), and 78.98729 m/z (chlorine atom)—that were detected at retention times ranging
from 2.3 to 2.7 min in the LC-MS positive mode. In contrast, the LC-MS negative mode indicated
the identical organic compounds, such as 174.94330 m/z (two chlorine atoms), 140.98219 m/z (one
chlorine atom), and 107.02114 m/z (no chlorine atom) at retention times of 5.5 to 6.0 min as well as
160.90427 m/z (three chlorine atoms), 140.95883 m/z (two chlorine atoms), and 92.93779 m/z (two
chlorine atoms) at retention times of 2.0 to 2.6 min (Figure 9).

In summary, the two probable degradation pathways of PRC under the UV/chlorine system
conditions, which were identified by the LC-MS technique, are summarised in Figure 9. They include
the breakdown of PRC followed by chlorination (pathway a) and the chlorination followed the
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breakdown of the resulting chlorinated compounds (pathway b). Notably, some organic compounds
could be also detected in trace levels in pathway b (i.e., compounds 4, 5, 19, 20, 21, and 22; Figure S2).
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Figure 9. Possible pathways of PRC degradation under the UV/chlorine advanced oxidation process.

4. Conclusions

We have studied the degradation of PRC by the UV/chlorine in water media under different
operational conditions and elucidated the main intermediates. It can be experimentally concluded that:

• The PRC degradation rate constant (kobs) follows pseudo-first-order kinetics. Under the
same experimental conditions, the kobs values obtained by the UV/chlorine process were
overwhelmingly higher than those by UV/H2O2, chlorination alone, and UV alone.

• The operational parameters most positively effecting the degradation rate constant of PRC were
NaClO dosage, followed by UV irradiation and solution pH value. In contrast, the presence of
inorganic ions and natural organic matters significantly inhibited the PRC degradation process.

• The reactive radicals •OH, •Cl, and ClO• play an important role in degrading PRC by the
UV/chlorine advanced oxidation process.

• Response surface methodology was applied to evaluate the interaction of four independent
variables (chlorine, UV, pH, and DOM). The result indicated that the highest PRC removal was
obtained under the optimal conditions of UV photon flux (13.6 × 10−6 Einstein/s), pH (6.43),
chlorine concentration (166 µmol/L), and DOM concentration (0.50 mg/L).

• Twenty compounds and structures have been proposed using LC-MS/MS in combination with the
software Compound Discoverer 2.0. The ortho-position proved to be the major position of radical
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substitution. Monochloro-PRC and dichloro-PRC were identified as the two major derivatives,
which concentration increased at the beginning and then subsequently decreased with the increase
of the other PRC derivatives.

• We have presumed the chlorination pathway to be the primary mechanism of the PRC degradation
generating the major compounds. A secondary breakdown pathway led to the formation of several
unsaturated and carboxylic compounds that were detected using LC-MS.

• The toxicity of PRC transformation products and its variation during the UV/chlorine process
should be further investigated and evaluated.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/12/2637/s1,
Table S1: The RSM experiment design matrix and experimental results; Table S2: Accurate mass measurement of
product ions of PRC and its transformed products identified by LC/MS/MS; Figure S1: Change of signal peak
areas of main transformation products within 10 min; and Figure S2: Result of liquid chromatography-tandem
mass spectrometry (LC-MS/MS) of proposed compound.
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