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Abstract
Background: Alveolar capillary dysplasia with misalignment of pulmonary 
veins (ACDMPV) results from haploinsufficiency of the mesenchymal transcrip-
tion factor FOXF1 gene. To date, only one case of an ACDMPV- causative CNV de-
letion inherited from a very- low level somatic mosaic mother has been reported.
Methods: Clinical, histopathological, and molecular studies, including whole  
genome sequencing, chromosomal microarray analysis, qPCR, and Sanger se-
quencing, followed by in vitro fertilization (IVF) with preimplantation genetic 
testing (PGT) were used to study a family with a deceased neonate with ACDMPV.
Results: A pathogenic CNV deletion of the lung- specific FOXF1 enhancer in the 
proband was found to be inherited from an unaffected mother, 36% mosaic for 
this deletion in her peripheral blood cells. The qPCR analyses of saliva, buccal 
cells, urine, nail, and hair samples revealed 19%, 18%, 15%, 19%, and 27% vari-
ant allele fraction, respectively, indicating a high recurrence risk. Grandparental 
studies revealed that the deletion arose on the mother's paternal chromosome 16. 
PGT studies revealed 44% embryos with the deletion, reflecting high- level ger-
mline mosaicism.
Conclusion: Our data further demonstrate the importance of parental testing in 
ACDMPV families and reproductive usefulness of IVF with PGT in families with 
high- level parental gonosomal mosaicism.
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1  |  INTRODUCTION

Postzygotic formation of single nucleotide variants (SNVs) 
or copy- number variants (CNVs) results in somatic, germ-
line, or gonosomal mosaicism (Biesecker & Spinner, 2013; 
Iourov et al.,  2010; Lupski,  2013). Somatic mosaicism 
has been described in a wide variety of genetic disorders 
with all modes of inheritance and across different tis-
sues (Ansari et al.,  2014; Bartnik et al.,  2011; Biesecker 
& Spinner,  2013; Boone et al.,  2010; Cao et al.,  2019; 
Conlin et al.,  2010; Erickson,  2010; Goriely et al.,  2010; 
King et al.,  2015; Lim et al.,  2017; Morales et al.,  2020; 
Myers et al.,  2018; Poduri et al.,  2013; Sano et al.,  2020; 
Serra et al.,  2020; Stosser et al.,  2018; Xin et al.,  2017). 
Depending on mosaicism levels and tissue distribution, 
somatic mosaic variants have been found both in affected 
and unaffected individuals, including parents of patients 
with genetic disease (Campbell, Yuan, et al., 2014; Huang 
et al., 2014). Importantly, the level of somatic mosaicism 
in the parents has been shown to correlate positively with 
the recurrence risk if the pathogenic variant is present 
in the parental germline (Campbell, Stewart, et al., 2014; 
Jonsson et al., 2018; Rahbari et al., 2016).

Alveolar capillary dysplasia with misalignment of pul-
monary veins (ACDMPV, MIM #265380) is a rare neo-
natal lethal lung developmental disorder, characterized 
by severe respiratory distress with refractory pulmonary 
arterial hypertension, from which patients die most often 
during the first postnatal month (Bishop et al.,  2011; 
Janney et al.,  1981; Langston,  1991; Sen et al.,  2004; 
Szafranski et al., 2016). Heterozygous SNVs in the FOXF1 
gene on chromosome 16q24.1 or CNV deletions involving 
FOXF1 (MIM# 601089) and/or its distant lung- specific 
enhancer, located ~286 kb upstream, are found in 80%– 
90% of patients with ACDMPV. To date, more than 64 
distinct pathogenic or likely pathogenic SNVs (missense 
and nonsense), 29 indels (frameshift) and 70 CNV de-
letions have been reported (Abu- El- Haija et al.,  2018; 
Everett et al., 2017; Hayasaka et al., 2018; Ma et al., 2017; 
Nagano et al., 2016; Pradhan et al., 2019; Sen et al., 2013; 
Stankiewicz et al., 2009; Szafranski et al., 2013, 2014, 2016, 
2019, 2022; Yildiz Bolukbasi et al., 2022).

Interestingly, in contrast to pathogenic SNVs that have 
been found either on the maternal or paternal chromo-
some, CNVs encompassing FOXF1 and/or its distant lung- 
specific enhancer apparently arise almost exclusively 
de novo on maternal chromosome 16 (n = 50 vs. n = 5) 
(Szafranski et al., 2019, 2022; Yildiz Bolukbasi et al., 2022). 
We proposed a model of FOXF1 regulation with the dis-
tant lung- specific enhancer acting stronger on the pater-
nal chromosome 16 and suggested that paternal deletions 
may lead to more severe non- lung anomalies (Szafranski 
et al.,  2016, 2022) unless mitigated by hypermorphic 

modifier(s), e.g., located within the remaining allele of 
the enhancer (Szafranski et al., 2019). Although the pLI 
score of FOXF1 is 0.96, reflecting low tolerance of FOXF1 
to the loss- of- function, six cases of pathogenic SNVs in-
volving FOXF1 have been described to be inherited from 
a nonmosaic parent (Karolak et al., 2020; Luk et al., 2016; 
Reiter et al.,  2016; Szafranski et al.,  2016) and only one 
CNV deletion inherited from the very low- level (0.4% in 
peripheral blood) mosaic mother (Karolak et al., 2020) has 
been reported.

Here, we describe clinical, histopathological, and mo-
lecular findings and application of in vitro fertilization 
(IVF) with preimplantation genetic testing (PGT) in a 
family with a deceased neonate with ACDMPV due to a 
non- coding CNV deletion of the distant FOXF1 enhancer 
inherited from the unaffected mother found to be high- 
level mosaic for this variant in different tissues.

2  |  METHODS

2.1 | Patients and samples

Peripheral blood samples from the deceased neonate 
proband (ACD209.3) and his parents (ACD209.1 and 
ACD209.2), as well as urine, buccal, saliva, hair, and 
nail samples from the proband's mother, and the saliva 
sample from the proband's grandparents (ACD209.4 
and ACD209.5), were collected after obtaining written 
informed consent approved by IRB at Baylor College of 
Medicine (protocol H- 8712).

2.2 | DNA extraction

Peripheral blood DNA was extracted using Gentra Purgene 
Blood Kit (Qiagen, Germantown, MD). DNA from urine 
was extracted 24 hours after collection using the Quick- 
DNA Urine Kit (Zymo Research, Irvine, CA). The prepIT- 
L2P (DNA Genotek, Ottawa, Canada) reagent was used 
to isolate DNA from buccal cells and saliva. The QIAamp 
DNA Investigator Kit (Qiagen) was used to extract DNA 
from hair follicles and nail clippings from fingers and 
toes. All procedures were followed to the manufacturer's 
protocols.

2.3 | Histopathological analyses

Histopathological evaluation was carried out on formalin- 
fixed, paraffin- embedded 5- μm sections of lung tissue 
specimens from infant autopsy stained with hematoxylin 
and eosin (HE).
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2.4 | Rapid whole genome sequencing

Clinical rapid whole genome sequencing (rWGS) of the 
proband was performed at the Rady Children's Institute 
for Genomic Medicine in San Diego (CA) (Kingsmore 
et al., 2022). Sequence via next- generation sequencing 
(NGS) technology was generated from genomic DNA. 
PCR- free library preparation was performed prior to 
rWGS. An average genomic coverage of at least 35x, and/
or at least 90% of OMIM genes were achieved 100% of cod-
ing base coverage of >10x for each proband. Alignment 
and variant calling were performed with the Illumina 
DRAGEN pipeline using the official reference build 37.1 
(hg19). CNV calling was performed using a combination 
of CNV callers. Interpretation of CNVs was focused on 
variants that overlap or have a boundary that lies within 
1 kb of an exon in all coding genes.

2.5 | CNV deletion analyses

Chromosomal microarray analysis (CMA) was performed 
using high- resolution custom- designed 16q24.1 region- 
specific 4x180K oligonucleotide microarrays (Agilent 
Technologies, Santa Clara, CA). CNV deletion junction 
was amplified using long- range PCR with LA Taq poly-
merase (Takara Bio, Madison, WI) and was Sanger se-
quenced to map the deletion breakpoints. Sequences 
were assembled using Sequencher v4.8 (Gene Codes, Ann 
Arbor, MI). Parental and maternal grandparental DNA 
samples were tested for the presence of the CNV deletion 
using junction- specific PCR.

2.6 | PCR and sanger sequencing

FOXF1 (NG_016273.1) and the ~7  kb core interval 
(chr16:86,218,225- 86,225,319, hg38) of the lung- specific 
enhancer essential for lung development were Sanger se-
quenced for the presence of SNPs that might have acted as 
phenotype modifiers in the proband and his mother. SNPs 
in the grandparental samples were analyzed using Sanger 
sequencing to determine the origin of the CNV deletion.

2.7 | qPCR analysis

The qPCR primers (5'- GGACAACTTCCAAGTGCTTTC- 3' 
and 5'- ACTGATGGGTCTTGACTCTTTATCC- 3') were 
designed to amplify the deletion junction fragment of 
200– 400 bp. The GAPDH gene was used as the internal 
reference. qPCR was performed in triplicates in 20 μl re-
action with 10 μl of PowerUp SYBR™ Green Master Mix 

(ThermoFisher Scientific, Waltham, MA), 0.25 μM of each 
forward and reverse primer, and 50 ng of blood DNA. 
DNA from mother's saliva, buccal cells, urine, hair, and 
nail samples were also tested. The qPCR reactions were 
carried out by CFX Connect Real- Time PCR Detection 
System (Bio- Rad, Hercules, CA) and the quantitation 
cycle (Cq) value for each reaction was read by Bio- Rad 
CFX Maestro software (Bio- Rad). Relative quantification 
of the deletion junction fragments (ΔCq) in the proband, 
the mosaic parent, and an unrelated wild- type control was 
calculated by comparing it to the internal reference gene. 
By measuring the fold- change differences between the 
mother's and the proband's samples (ΔΔCq), the relative 
level of mosaicism in the mother's samples were deter-
mined (2– ΔΔCq) (Liu et al., 2020).

2.8 | Pulmonary and heart studies

Pulmonary function test (PFT) by standard spirometry 
and plethysmography, measuring lung volumes, flows, 
and diffusion capacity, oximetry and echocardiogram 
studies were performed in the proband's mother.

2.9 | IVF and PGT

Chromosomal testing was done at Colorado Center for 
Reproductive Medicine (CCRM). The normal embryos 
were tested for CNV deletion of the FOXF1 lung- specific 
enhancer at Reproductive Genetic Innovations LLC (RGI) 
in Northbrook, IL.

3  |  RESULTS

3.1 | Clinical findings

The decedent is a 54- day- old term appropriately grown 
male infant born via vaginal delivery following a pregnancy 
complicated by late maternal fever, which led to evalua-
tions for potential neonatal sepsis. Shortly after birth, he 
developed hypoxemic respiratory failure and pulmonary 
hypertension. He was intubated and transferred from a 
community hospital to the neonatal intensive care unit 
at Children's Hospital Colorado (CHCO), where disease 
progression with severe persistent pulmonary hyperten-
sion required the initiation of extracorporeal membrane 
oxygenation (ECMO) therapy for 18 days. Investigation 
as to the etiology of severe pulmonary hypertension was 
pursued, following separation from ECMO and extuba-
tion. Despite treatment with inhaled nitric oxide (iNO), 
bosentan and remodulin (continuous IV infusion), his PH 
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remained at near systemic levels. Serial echocardiograms 
demonstrated no improvement in the severity of pulmo-
nary hypertension despite maximal therapy. Several failed 
attempts with other therapies, including sildenafil, failed 
to improve his clinical course with increasing episodes of 
pulmonary hypertensive crises. Due to the high suspicion 
for a severe or lethal developmental lung disease, rWGS 
studies were performed, but these were reported as nega-
tive for any known disorder, including ACDMPV. With 
an anticipated high risk of mortality, unresponsive to 
therapy, the parents elected to withdraw life- sustaining 
support. Palliative care arrangements were subsequently 
made and support was withdrawn.

3.2 | Histopathological analysis

HE sections showed global lobular immaturity character-
ized by enlarged and simplified alveoli and mildly thick-
ened interstitium. The pulmonary vasculature appeared 
diffusely congested (Figure  1a). The bronchovascular 
bundles contained many congested and dilated bronchial 
microvessel and extensively dilated bronchial veins, some 
with visible connections to pulmonary veins. Pulmonary 
arteries showed moderately muscularized walls. Many 
capillaries were dilated and located within the middle por-
tion of the interstitium lacking visible connection to type 
1 pneumocytes (Figure 1b). Lymphangiectasia was focally 
present. Black ink (injected at autopsy into main pulmo-
nary veins) highlighted the extensively dilated bronchial 
veins, pulmonary veins, and bronchial microvessels, 
while green ink (injected into main pulmonary arteries) 
highlighted the pulmonary arteries. The presence of green 
ink in the bronchial arteries and bronchial microvessels 
and bronchial veins suggested recruited intrapulmonary 
bronchopulmonary anastomoses (not shown). The histo-
logic features were diagnostic of ACDMPV characterized 
by a rich network of recruited bronchial vasculature. The 
combination of histologic features and differential ink 
injection suggested open intrapulmonary bronchopul-
monary anastomoses as previously reported (Galambos 
et al., 2014, 2015; Norvik et al., 2020).

3.3 | Molecular and 
computational analyses

Clinical rWGS analyses in the proband showed no patho-
genic variant. CMA revealed a heterozygous ~91 kb CNV 
deletion mapping upstream to the FOXF1 lung- specific en-
hancer at 16q24.1. Using junction- specific PCR and Sanger 
sequencing analyses, we mapped the proximal deletion 
breakpoint within the repetitive LTR element LTR16C 

(chr16:86,177,468- 86,177,904) at chr16:86,177,823. The 
distal breakpoint mapped within the LINE element 
L1PA3 (chr16:86,266,902- 86,272,916) at chr16:86,268,849, 
located within the previously reported LINE/Alu genomic 
instability hotspot (Szafranski et al., 2018). At the break-
point junction, there was a 1 bp (C) microhomology. The 
same deletion junction- specific fragment of weaker in-
tensity was also detected in the proband's mother's blood, 
suggesting somatic mosaicism. The variant allele fraction 
(VAF) in the proband's mother's blood, sample measured 
using qPCR, was ~18%, corresponding to ~36% of the mu-
tant cell fraction. The VAFs in the remaining maternal tis-
sues were determined at 19% in saliva, 18% in buccal cells, 

F I G U R E  1  (a) Low- power examination of the lung shows 
global immaturity with diffusely enlarged alveoli and mildly thick 
interstitium. Markedly dilated pulmonary vessels surrounding the 
bronchoarterial bundles (circle) are clearly visible. (b) At higher 
power view disordered circulatory elements including thickened 
pulmonary artery (PA) and dilated dysplastic capillaries located 
in the middle of the interstitium lacking connections with type 1 
pneumocytes (green arrow) are seen. Surrounding and within the 
bronchoarterial bundle, markedly dilated and congested bronchial 
vasculature, including thin- walled bronchial veins (BV) and 
microvessels (black arrows) are noted.
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15% in urine, 19% in nail samples, and 27% in hair follicles 
(Figure 2).

Sanger sequencing of the ~7  kb core interval 
(chr16:86,252,422- 86,258,902; hg19) within the ~60 kb 
distant FOXF1 lung- specific enhancer region map-
ping upstream to FOXF1 in the proband and his mother 
(ACD209.2), for the presence of genetic phenotype mod-
ifiers, did not reveal any candidate variant. No evidence 
of low- level mosaicism in the proband's maternal grand-
parental saliva samples was revealed, confirming somatic 
mosaicism in the proband's mother. Analyses of the in-
formative polymorphic markers showed that the deletion 
arose on the grandpaternal chromosome (data not shown).

3.4 | Pulmonary and heart studies

Standard PFT, including spirometry and plethysmogra-
phy in the proband's mother revealed normal lung func-
tion, including lung volumes, airway resistance, and 
diffusing capacity, except for a reduced peak inspiratory 
flow measured at 3.53 L/s (54.5% of the reference value). 
Her oximetry and echocardiogram studies were com-
pletely normal with no evidence of pulmonary hyperten-
sion, left or right ventricular hypertrophy, or myocardial 
dysfunction.

3.5 | IVF and PGT

Out of the 42 collected eggs, 40 were mature, and 36 were 
subjected for IVF. Out of the 18 embryos tested for the 
FOXF1 enhancer deletion, including two mosaic, 10 chro-
mosomally normal, and six chromosomally inconclusive, 
eight embryos (44%) were found positive.

4  |  DISCUSSION

Genetic counseling on recurrence risk in a family with 
detected parental mosaicism is often challenging and 
imprecise due to the uncertainty about the level of  
mosaicism in germline. In addition, recurrence risk for 
apparent de novo variants depends on the variant's paren-
tal origin. Although the mothers are the parent- of- origin 
in ~20% of inherited variants, the risk of recurrence for 
apparent de novo variants is 10- fold higher than when 
inherited from the fathers (Campbell, Yuan, et al., 2014; 
Jonsson et al.,  2018), likely because of the presence of 
self- replication phase during spermatogenesis (Campbell, 
Yuan, et al.,  2014). Variants detected in parental blood 
have been found to positively correlate with a recurrence 
risk substantially higher than those confined to the ger-
mline. Rahbari et al. showed that when mosaicism for the 
variant is present in more than 1% of parental blood cells, 
recurrence risk increases to 24% and to 50% when mosai-
cism is found in greater than 6% of parental blood cells 
(Rahbari et al., 2016). Recently, paternal germline mosai-
cism was studied in the families with children with au-
tism spectrum disorders with de novo mutations (Breuss 
et al., 2020). Using genome sequencing of paternal blood 
and sperm, the causative variant was detected only in 2.5% 
of the fathers' blood or sperm, allowing classification of 
apparent de novo variants into low- risk or high- risk for re-
currence (Breuss et al., 2020). The maternal germline mo-
saicism can be estimated indirectly, e.g., in IVF studies.

A number of sensitive quantitative molecular methods 
have been applied to measure the levels of somatic mosa-
icism, e.g., qPCR, droplet digital PCR (ddPCR), multiple 
independent primer PCR sequencing, amplicon- based 
NGS, and blocker displacement amplification (BDA) 
(Wu et al.,  2017). ddPCR, amplicon- based NGS, and 
BDA are more sensitive and precise methods whereas 
qPCR is less precise but more cost effective. Using qPCR 
in the proband's mother samples, we have measured the 
deletion- containing cell fraction across peripheral blood, 
saliva, buccal cells, urine, hair follicles, and nails ranging 
between 30% to 54%. High- level mosaicism for the CNV 
deletion in tissues originating from all three germ layers 
suggests that it occurred during early embryonic develop-
ment, most likely in the second postzygotic division.

In the family studied here, identification of high- level 
somatic mosaicism in the mother allowed for a more re-
fined assessment of the potential disease recurrence risk 
for the identified deletion and the family was offered IVF 
and PGD for the future planned pregnancy. Subsequent 
IVF and PGD studies revealed 44% of germline mosaicism  
reflecting a high fraction of the deleted allele in the ova-
ries, and further supporting previous finding that the  
recurrence risk increases to 24% when mosaicism for the 

F I G U R E  2  Variant allele fraction measured by qPCR in the 
mother's blood, saliva, buccal swab, urine, hair, and nail tissues 
compared to the proband's blood tissue
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variant is present in more than 1% of parental blood cells 
and to 50% when mosaicism is found in greater than 6% of 
parental blood cells (Rahbari et al., 2016).

The results of PFT, oximetry, and echocardiogram studies 
in the proband's mother further confirmed normal structure 
and function of her lungs and heart, and indicated that the 
estimated ~85% residual amount of the FOXF1 protein was 
likely sufficient for physiological development. The identi-
fied decreased peak inspiratory flow (PIF) value that mea-
sures the maximal flow achieved by an individual during 
an inspiratory maneuver (Clark & Hollingworth, 1993) was 
reduced almost by half; however, we interpret it as likely not 
linked to a disease. PIF has been found to vary in normal 
population depending on the muscle strength and its lower 
values have been consistently linked to a female gender 
(Ghosh et al.,  2019; Silva et al.,  2021). Significantly lower  
average PIFs have been also reported in patients with 
chronic obstructive pulmonary disease and asthma.

Our results further confirm the notion that quantita-
tive testing of parental DNA samples for the mosaicism for 
the causative apparent de novo variants is essential to ac-
curately evaluate the recurrence risk (Zemet et al., 2022). 
They also demonstrate the need for more extensive genetic 
testing in patients with histopathologically diagnosed 
ACDMPV, or with high level of suspicion for this diagno-
sis, or even in the setting of severe refractory persistent 
pulmonary hypertension of the newborn when routine 
clinical rWGS, CMA, or other genetic studies are negative.
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