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Abstract: Microorganisms are important sources for screening bioactive natural products. However,
natural products from deep-sea microbes have not been extensively explored. In this study,
the metabolites of bacteriophage GVE2 -infected (Geobacillus sp. E263 virus) thermophilic
bacterium Geobacillus sp. E263, which was isolated from a deep-sea hydrothermal vent, were
characterized. A novel quinoid compound, which had anti-tumor activity, was isolated from
the phage-challenged thermophile. The chemical structure analysis showed that this novel
quinoid compound was 2-amino-6-hydroxy-[1,4]-benzoquinone. The results indicated that
2-amino-6-hydroxy-[1,4]-benzoquinone and its two derivatives could trigger apoptosis of gastric
cancer cells and breast cancer cells by inducing the accumulation of intracellular reactive oxygen
species. Therefore, our study highlighted that the metabolites from the phage-challenged deep-sea
microbes might be a kind of promising sources for anti-tumor drug discovery, because of the similarity
of metabolic disorder between bacteriophage-infected microbes and tumor cells.
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1. Introduction

Although remarkable advances in medicine have been achieved, cancer remains one of the most
important causes of human mortality [1]. Among cancers, liver cancer is the second leading cause
of cancer-related death in the world, while breast cancer is the leading cause of cancer death in
women [2]. To treat cancers, many strategies have been developed. Tumor resection and chemotherapy
are the most frequently used methods in the cancer treatment. In the early stage of cancers, tumor
resection is effective. However, chemotherapy has severe side effects on patients. Thus, it is urgent
to obtain compounds that target the cancer cells but have little effect on normal cells. Natural
products have become one of important resources for discovery of anticancer drugs. As reported,
more than 15,000 chemical substances including nearly 4000 bioactive marine natural products have
been found from marine microorganism [3], indicating that marine microbes are important resources
for anti-tumor compounds discovery. For example, Napyradiomycine derivatives, produced from
a marine-derived actinomyceteCNQ525, are illustrated to induce apoptosis of colon adenocarcinoma
cell line homo sapiens colorectal tumor cells 116 (HCT-116) [4]. Gallinamide A, isolated from a marine
cyanobacterium, is shown to potently and selectively inhibit the human cysteine protease cathepsin L
which is upregulated in multiple cancer cells [5]. Recently, Salinosporamide A, which is isolated from
marine Salinisporatropica, was approved by FDA (Food and Drug Administration) of USA for treatment
of multiple myeloma [6]. Although many bioactive compounds for anti-tumor treatment are obtained
from marine bacteria, the anticancer metabolites from deep-sea microbes have not been extensively
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explored. As is well known, the deep sea possesses a lot of special ecosystems, such as deep-sea
hydrothermal vents. In the vent ecosystem, chemolithoautotrophic microorganisms, which are capable
of oxidizing hydrogen sulfide or other inorganic compounds to provide energy, are unique compared
to other ecosystems [7,8]. The unique deep-sea vent ecosystem implies some unique metabolites may
be produced by chemolithoautotrophic microbes.

Cancer is a disease involving multiple time- and space-dependent changes in the health status of
cells and tissues that ultimately lead to malignant tumors. Emerging evidence indicates that cancer
is a primarily metabolic disease [9]. One of the well-known phenomena about metabolic disorder
found in cancers is the Warburg effect [10]. Proliferating tumor cells convert the majority of their
glucose into lactate even in oxygen-rich conditions. As reported, during the bacteriophage–bacterium
interactions, the bacterial metabolism is altered due to the virus infection [11]. In this context, there
may be a relationship between tumor cell metabolic disorder and virus-induced host metabolic
disorder. Our previous study showed that when the bacteria were challenged by bacteriophage, they
could generate some special metabolites [12]. The bacteriophage-challenged bacterial metabolites
may be an important resource of anticancer drugs. At present, however, this issue has not been
extensively explored.

To evaluate the anti-tumor activity of metabolites from virus-induced bacteria, the thermophile
Geobacillus sp. E263, which was isolated from a deep-sea hydrothermal vent [8], was challenged by its
bacteriophage GVE2, followed by characterization of bioactive compounds from the virus-infected
thermophile. The results revealed that a novel benzoquinone compound isolated from the
GVE2-infected E263 presented its anti-tumor activity by triggering apoptosis of tumor cells.

2. Materials and Methods

2.1. Geobacillus sp. E263 Infection and Fermentation

The thermophilic Geobacillus sp. E263 strain from a deep-sea hydrothermal vent in East Pacific
was infected by its bacteriophage GVE2. The E263 strain was challenged with the purified GVE2
virons at MOI (multiplicity of infection) of 5 when the OD600 (optical density at 600 nm) of the bacteria
reached 0.3. After fermentation for 24 h at 60 ◦C, the bacteria were collected for metabolite extraction.

2.2. Extraction and Isolation of Bacterial Metabolites

The bacterial metabolites were extracted with methanol for 24 h at 4 ◦C. After three extractions,
the supernatant was filter through a 0.45 µm filter. Then the filtrate was evaporated to dryness
on a rotary evaporator under reduced pressure. The obtained crude extracts were resuspended
into methanol. Subsequently, the solubilized metabolites were separated by semi-preparative HPLC
(high performance liquid chromatography) using a C18 column and an H2O/CH3OH gradient (0~100%
methanol for 60 min) by a UV (ultraviolet) detector at 254 nm.

2.3. Cell Proliferation Assay

The cell proliferation was determined with MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay (Promega, Madison, WI,
USA). Briefly, cells were seeded into a 96-well plate until they reached 60% confluence. The cells in
each well were treated with a serially diluted compound. After incubation for 48 h, 20 µL MTS reagent
was added to each well. Three hours later, the absorbance data at 450 nm of samples were recorded
using a 96-well plate reader.

2.4. Identification of Isolated Compound and the Synthesis of Its Derivatives

To identify the isolated compounds, gas chromatography coupled mass spectrometry (GC-MS)
was conducted as described previously [12]. Briefly, the compound was silylated with trimethylsilyl
cyanide and then analyzed on a Q Exactive GC Mass Spectrometers (Thermo Scientific, Waltham,
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MA, USA). The obtained mass spectra were searched against the National Institute of Standards and
Technology (NIST) database (New York, NY, USA). To reveal the structure of the isolated compound,
NMR (Nuclear Magnetic Resonance) was carried out. 1H and 13C spectra were determined on a Bruker
500 MHz (Advance III DRX500, Billerica, MA, USA) spectrometer using DMSO-d6.

The derivatives were synthesized by Yuhao Chemical Company (Hangzhou, China).

2.5. Detection of Apoptosis

To detect apoptosis of cells treated with the compounds, 5000 cells per well were plated into a
96-well plate and incubated overnight at 37 ◦C. Then the compounds were added into cells. After
incubation for 24 h, 100 µL Caspase-Glo reagent (Promega, Madison, WI, USA) was added into the
cells, followed by incubation for 1 h at room temperature. Subsequently, the fluorescence of cells was
determined using a GloMax 96 microplate reader (Promega).

2.6. Measurement of Intracellular ROS (Reactive Oxygen Species)

The intracellular ROS production was measured using CM-H2DCFDA (carboxy-2′,7′-di-
chlorofluorescein) (Life Technology, Waltham, MA,USA) as a cell-permeant indicator of ROS.
Breast cancer cells (MDA-MB-435) and gastric cancer cells (MGC-803) were seeded into a 6-well
plate, followed by culture overnight. The cells were incubated with a compound at different
concentrations or dimethylsulfoxide (DMSO) as a control for 24 h. Subsequently the cells were
incubated with CM-H2DCFDA at room temperature for 30 min. The fluorescence of cells was detected
by fluorospectrophotometer.

2.7. Statistical Analysis

The numerical data of three independent experiments were analyzed with one-way analysis
of variation (ANOVA). Students’ t-test was employed to test the significant differences between
different treatments.

3. Results

3.1. Novel Anti-Tumor Compound Isolated from Bacteriophage-Challenged Thermophileof Deep-Sea
Hydrothermal Vent

To obtain the anti-tumor compounds from bacteria, thermophile Geobacillus sp. E263 from a
deep-sea hydrothermal vent was challenged with GVE2, followed by the extraction of virus-infected
bacterial metabolites. The crude extracts of GVE2-challenged bacteria could suppress the growth
of breast cancer cells (MDA-MB-231). To isolate the anti-tumor compounds, the crude bacterial
metabolites were subjected to successive separations of metabolites and then the anti-tumor activity of
metabolites were examined. After five successive separations of metabolites using semi-preparative
HPLC, an anti-tumor compound was isolated (Figure 1A). This compound could inhibit the growth of
breast cancer cells (MDA-MB-231) (Figure 1B). As a control, crude metabolites from bacteriophage-free
bacteria were extracted and the influence of these metabolites on breast cancer cells (MDA-MB-231)
was evaluated. The results indicated that the metabolites from virus-challenged bacteria significantly
inhibited the cancer cell proliferation compared with those from virus-free bacteria (Figure 1C).
To identify the isolated anti-tumor compound, the compound was subjected to GC-MS analysis
(Figure 1D). The searching of the compound mass spectrum against the NIST database indicated
that the isolated compound had no similarity to any known compounds, showing that the isolated
compound was a novel compound. To determine the structure of this compound, 1H and 13C NMRs
of the compound were conducted. The results revealed that the isolated compound was designated
as 2-amino-6-hydroxy-[1,4]-benzoquinone, which contained a quinone ring (Figure 1E,F). The above
findings indicated that a novel anti-tumor benzoquinone compound was isolated from deep-sea
hydrothermal vent.
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Figure 1. A novel anti-tumor compound isolated from bacteriophage-challenged thermophile from
deep-sea hydrothermal vent. (A) The isolation of the anti-tumor compounds. The crude extracts from
GVE2-infected Geobacillus sp. E263 were separated by semi-preparative HPLC using a H2O/CH3OH
liner gradient. The compounds from each separation were subjected to cell proliferation assay.
The peaks collected were indicated with boxes. (B) The anti-tumor activities of the isolated compounds.
Breast cancer cells (MDA-MB-231) were treated with the isolated compounds. At 48 h after treatment,
the cell viability was evaluated by cell proliferation assays using MTS. DMSO was included in the assays
as a control. Data represented the mean ± standard deviation of triplicate. (C) The influence of crude
metabolites from virus-challenged and virus-free bacteria on cancer cell proliferation. MDA-MB-231
cells were treated with extracted crude metabolites, followed by evaluation of cell viability. (D) GC-MS
analysis of the isolated compound. After five successive separations, the isolated compound was
subjected to GC-MS. The m/z of 326.97 indicated the compound with three trimethylsilyl. (E) 1H NMR
(up) and 13C NMR (bottom) of the isolated compound. (F) The structure of the isolated compound.
(** p < 0.01).

3.2. Effects of Derivatives of the Anti-Tumor Compound on the Tumor Cell Proliferation

The isolated anti-tumor compound 2-amino-6-hydroxy-[1,4]-benzoquinone contains two
important functional groups including a hydroxyl and an amino. In order to evaluate the roles
of these functional groups in their function, two derivatives of 2-amino-6-hydroxy-[1,4]-benzoquinone
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were synthesized (Figure 2A). To assess the anti-tumor activity of the derivatives, gastric
cancer cells (HGC-27 and MGC-803), breast cancer cells (MDA-MB-231), and melanoma cells
(MDA-MB-435) were used. As shown in Figure 2B, when the cancer cells were treated with the
two derivatives at 10 µM and 100 µM, the proliferation of cancer cells was significantly suppressed,
indicating that the amino and hydroxyl groups did not contribute to the anti-tumor activity of
2-amino-6-hydroxy-[1,4]-benzoquinone.
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Figure 2. The effects of derivatives of the anti-tumor compound on the tumor cell proliferation.
(A) The derivatives of the compound 2-amino-6-hydroxy-[1,4]-benzoquinone. (B,C) The effects of
twoderivatives of 2-amino-6-hydroxy-[1,4]-benzoquinone on the cancer cells proliferation. The gastric
cancer cells (HGC-27 and MGC-803), the breast cancer cells (MDA-MB-231) and the melanoma cells
(MDA-MB-435) were treated with the derivatives at different concentration. At 48 h after treatment,
the cell viability was evaluated. DMSO (1%) was included in the assays as a control. The viability of
cells treated using 2-amino-6-hydroxy-[1,4] benzoquinone or its two derivatives was relative to that
of the cells treated using DMSO. Data represented the mean ± standard deviation of triplicate assays
(* p < 0.05; ** p < 0.01).

Taken together, these findings revealed that 2-amino-6-hydroxy-[1,4]-benzoquinone and its two
derivatives possessed anti-tumor activity against breast, gastric, and melanoma cancers.

3.3. Influence of Anti-Tumor Compound and Its Derivatives on Apoptosis of Tumor Cells

To evaluate whether the isolated compound 2-amino-6-hydroxy-[1,4]-benzoquinone and its two
derivatives induced the gastric, breast, and melanoma cancer cell apoptosis, the caspase 3/7 activities of
cancer cells treated with the compounds at different concentrations were examined. The results showed
that the percentage of apoptotic cancer cells treated with 2-amino-6-hydroxy-[1,4]-benzoquinone at 10
or 100 µM was significantly increased compared with the controls (Figure 3A), while the two derivatives
induced apoptosis of cancer cells at lower concentration (1 µM) (Figure 3B,C). Among the three
compounds, derivative 1 presented the highest activity to induce apoptosis of cancer cells (Figure 3B).
These findings revealed that 2-amino-6-hydroxy-[1,4]-benzoquinone and its two derivatives could
trigger apoptosis of cancer cells.
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Figure 3. The influence of anti-tumor compound and its derivatives on apoptosis of tumor cells.
(A) The effects of 2-amino-6-hydroxy-[1,4]-benzoquinone on apoptosis of cancer cells. The gastric
cancer cells (HGC-27 and MGC-803), the breast cancer cells (MDA-MB-231) or the melanoma cells
(MDA-MB-435) were treated with 2-amino-6-hydroxy-[1,4]-benzoquinone at different concentrations.
Twenty four hours later, the caspase 3/7 activity of cancer cells was examined. (B) The influence of
derivative 1 on apoptosis of cancer cells. The cancer cells were incubated with derivative 1 for 24 h and
then the caspase 3/7 activity was evaluated. (C) The role of derivative 2 in cancer cell apoptosis. After
incubation with derivative 2 for 24 h, the caspase 3/7 activity of cancer cells was assessed. In all panels,
the data represented means ± standard deviations of triplicate assays (* p < 0.05; ** p < 0.01).

3.4. Mechanism of Anti-Tumor Compound-Induced Apoptosis of Tumor Cells

As reported, the quinone-like compound can induce oxidative stress and ROS (reactive oxygen
species) accumulation in cells, then leading to apoptosis [13]. In order to explore the mechanism of
apoptosis induced by anti-tumor compound, therefore, the ROS accumulation in the tumor cells treated
with 2-amino-6-hydroxy-[1,4]-benzoquinone and its two derivatives was examined. The results showed
that the ROS accumulations in breast cancer cells (MDA-MB-231) and gastric cancer cells (MGC-803)
were significantly increased by the anti-tumor compound 2-amino-6-hydroxy-[1,4]-benzoquinone at
10 and 100 µM compared with the DMSO control (Figure 4A), which further triggered apoptosis of
cancer cells. The two derivatives of 2-amino-6-hydroxy-[1,4]-benzoquinone yielded the similar results
(Figure 4B,C). To explore the role of ROS in apoptosis, gastric cancer cells (MGC-803) were treated
with 2-amino-6-hydroxy-[1,4]-benzoquinone or its two derivatives and NAC (N-acetyl-L-cysteine),
an antioxidant which functions as a ROS scavenger [14], followed by the detection of apoptosis.
It was revealed that 2-amino-6-hydroxy-[1,4]-benzoquinone and its two derivatives could not induce
apoptosis of MGC-803 cells in the presence of NAC compared with the control (Figure 4D), indicating
that ROS played a positive role in the induction of apoptosis.
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Taken together, these findings presented that the anti-tumor compound 2-amino-6-hydroxy-[1,4]-
benzoquinone and its two derivatives triggered apoptosis of cancer cells by inducing the ROS
accumulation in cancer cells.Mar. Drugs 2017, 15, 200  8 of 10 
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Figure 4. The mechanism of anti-tumor compound-induced apoptosis of tumor cells. The breast
cancer cells (MDA-MB-231) or gastric cancer cells (MGC-803) were treated with the isolated
anti-tumor compound 2-amino-6-hydroxy-[1,4]-benzoquinone (A) and its two derivates (B,C)
at different concentrations. Twenty-four hours later, the ROS accumulation in the cells was
examined with fluorospectrophotometer. The ROS accumulation of the cells treated with
2-amino-6-hydroxy-[1,4]-benzoquinone or its two derivatives was relative to that of the cells treated
with DMSO. (D) The role of ROS in apoptosis of gastric cells. Gastric cancer cells (MGC-803) were
treated 2-amino-6-hydroxy-[1,4]-benzoquinone or its two derivatives in the presence or absence of
NAC (N-acetyl-L-cysteine) for 24 h. Then the apoptotic cells were examined. The control was the
cells treated with DMSO. In all panels, the data were shown as means ± standard deviations (n = 3).
The statistical difference significance between treatments were indicated with asterisks (** p < 0.01).

4. Discussion

Cancer is a leading cause that threatens human health. Except for tumor resection on early stage
of tumor formation, the treatment of tumor with specific compounds that target the tumor cells is an
important strategy for cancer therapy [15]. Both natural products and synthesized compounds are
vital sources for the discovery of invaluable anti-tumor compounds [16]. Especially from the natural
products, many structurally special and functionally effective anti-tumor compounds have been
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found. At present, natural products from microbes represent a very important source for discovering
anti-tumor compounds [17]. Deep-sea hydrothermal vents, very special ecosystems in oceans, are
enriched in microorganisms [8]. In the deep-sea vent ecosystems, thermophilic chemosynthetic
prokaryotes exploit the vent chemicals to obtain energy for their growth, and the vent animals in the
environment, such as tubeworms, huge clams, crabs, and several species of fish, are supported by
on-site production by chemosynthetic thermophiles. As important agents for thermophile mortality,
bacteriophages infecting thermophiles are believed to be the major players in the deep-sea vent
ecosystems. Due to the similarity of metabolic disorder between bacteriophage-infected microbes
and tumor cells, the metabolites from the bacteriophage-challenged microorganisms that reside in
deep sea hydrothermal vents may be a resource for screening anti-tumor compounds. In this study,
the results indicated that 2-amino-6-hydroxy-[1,4]-benzoquinone obtained from the GVE2-infected
thermophilic bacterium Geobacillus sp. E263 possessed anti-tumor activity. Thus, our study revealed
that the metabolites of the bacteriophage-challenged deep-sea vent thermophiles were important
resources for discovering novel anti-tumor drugs.

Our study showed that 2-amino-6-hydroxy-[1,4]-benzoquinone exhibited anti-tumor activity
against breast cancer, gastric cancer, and melanoma by triggering apoptosis of the cancer cells. It
is well-known that quinone compounds such as daunorubicin and doxorubicin can form reactive
oxygen species (ROS) to induce cells to apoptosis [18]. The high concentration of ROS in cells
promotes the cellular senescence and apoptosis [19]. In this investigation, the anti-tumor compound
2-amino-6-hydroxy-[1,4]-benzoquinone, belonging to the quinone class of organic compounds family,
could induce the accumulation of ROS in breast and gastric cancer cells. As reported, the intracellular
ROS can trigger oxidative stress and increase the activity of the antioxidant defense system to cause
the mitochondrial damage [20]. The ROS accumulation in cells can permeabilize the mitochondrial
membrane and induce the leakage of proteins to cells to activate the caspase 9 cascade, leading
to apoptosis of breast and gastric cancer cells in a mitochondrial-dependent pathway [13]. In this
study, therefore, the ROS accumulation in 2-amino-6-hydroxy-[1,4]-benzoquinone-treated cancer cells
might trigger the mitochondrial apoptotic pathway of cancer cells. Besides, the ROS production
of breast and gastric cancer cells treated with 2-amino-6-hydroxy-[1,4]-benzoquinone might be
associated with the redox cycling of quinone-containing substances. During the redox recycling,
quinoid substances in the reduced states can yield extra electrons to oxygen with the formation of
superoxide anions, beginning a cascade that generates H2O2 and hydroxyl radicals [21]. In this
context, 2-amino-6-hydroxy-[1,4]-benzoquinone might alter the redox state of cancer cells and breakthe
balance of redox states to cause the cancer cells to death. To further reveal the mechanism of
2-amino-6-hydroxy-[1,4]-benzoquinone-induced apoptosis of cancer cells, the proteins interacted
with 2-amino-6-hydroxy-[1,4]-benzoquinone merited to be explored in the future study. If the target
proteins of 2-amino-6-hydroxy-[1,4]-benzoquinone were upregulated in cancer cells compared with
normal cells, 2-amino-6-hydroxy-[1,4]-benzoquinone could only trigger apoptosis of cancer cells.
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