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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy. Due to its
wide heterogeneity, PDAC acts aggressively and responds poorly to most chemotherapies, causing an urgent need
for the development of new therapeutic strategies. Cell lines have been used as the foundation for drug
development and disease modeling. CRISPR-Cas9 plays a key role in every step-in drug discovery: from target
identification and validation to preclinical cancer cell testing. Using cell-line models and CRISPR-Cas9 technology
together make drug target prediction feasible. However, there is still a large gap between predicted results and
actionable targets in real tumors. Biological network models provide great modus to mimic genetic interactions in
real biological systems, which can benefit gene perturbation studies and potential target identification for treating
PDAC. Nevertheless, building a network model that takes cell-line data and CRISPR-Cas9 data as input to accurately
predict potential targets that will respond well on real tissue remains unsolved.

Methods: We developed a novel algorithm ‘Spectral Clustering for Network-based target Ranking’ (SCNrank) that
systematically integrates three types of data: expression profiles from tumor tissue, normal tissue and cell-line PDAC;
protein-protein interaction network (PPI); and CRISPR-Cas9 data to prioritize potential drug targets for PDAC. The
whole algorithm can be classified into three steps: 1. using STRING PPI network skeleton, SCNrank constructs tissue-
specific networks with PDAC tumor and normal pancreas tissues from expression profiles; 2. With the same network
skeleton, SCNrank constructs cell-line-specific networks using the cell-line PDAC expression profiles and CRISPR-Cas
9 data from pancreatic cancer cell-lines; 3. SCNrank applies a novel spectral clustering approach to reduce data
dimension and generate gene clusters that carry common features from both networks. Finally, SCNrank applies a
scoring scheme called ‘Target Influence score’ (TI), which estimates a given target’s influence towards the cluster it
belongs to, for scoring and ranking each drug target.
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Results: We applied SCNrank to analyze 263 expression profiles, CRPSPR-Cas9 data from 22 different pancreatic
cancer cell-lines and the STRING protein-protein interaction (PPI) network. With SCNrank, we successfully
constructed an integrated tissue PDAC network and an integrated cell-line PDAC network, both of which contain
4414 selected genes that are overexpressed in tumor tissue samples. After clustering, 4414 genes are distributed
into 198 clusters, which include 367 targets of FDA approved drugs. These drug targets are all scored and ranked
by their TI scores, which we defined to measure their influence towards the network. We validated top-ranked
targets in three aspects: Firstly, mapping them onto the existing clinical drug targets of PDAC to measure the
concordance. Secondly, we performed enrichment analysis to these drug targets and the clusters there are within,
to reveal functional associations between clusters and PDAC; Thirdly, we performed survival analysis for the top-
ranked targets to connect targets with clinical outcomes. Survival analysis reveals that overexpression of three top-
ranked genes, PGK1, HMMR and POLE2, significantly increases the risk of death in PDAC patients.

Conclusion: SCNrank is an unbiased algorithm that systematically integrates multiple types of omics data to do
potential drug target selection and ranking. SCNrank shows great capability in predicting drug targets for PDAC.
Pancreatic cancer-associated gene candidates predicted by our SCNrank approach have the potential to guide
genetics-based anti-pancreatic drug discovery.

Keywords: Integrated network, Protein-protein interaction network, Spectral clustering, Drug target ranking

Introduction
Pancreatic cancer is the third leading cause of cancer
death in the United States. The American Cancer Soci-
ety estimates that 53,070 Americans will be diagnosed
with pancreatic cancer in 2017, and that 41,780 will die
from the disease [1]. About 85% of pancreatic cancers
are pancreatic ductal adenocarcinomas (PDACs). Des-
pite decades of effort, PDAC has the shortest survival
time of all major cancers, and the five-year survival rate
is only ~ 8%. Patients diagnosed with PDAC are usually
diagnosed at advanced stages, when tumor cells have
spread into the lymphatic system and vicinal organs,
which limit the choices of effective treatments [2].
Another challenge in treating PDAC is its treatment-
recalcitrant characteristics [3, 4], which often lead to in-
sensitivity towards many chemotherapeutic drugs and
target-based drugs [5]. Even though drug combinations
such as Gemcitabine plus epidermal growth factor re-
ceptor (EGFR) inhibitor Erlotinib or Gemcitabine plus
Nab-paclitaxel have been widely applied in the clinical
setting, survival is only modestly improved [3]. There-
fore, identifying novel drug targets for treating PDAC is
an urgent need.
The establishment of cell lines from human tumors is

largely responsible for our early progress in cancer re-
search. Cancer cell models show immense potential for
cancer medicine by linking cellular variation to genomic
features. However, the complexity of modeling cancer in
cells has increased the difficulty of observing and ma-
nipulating a complex PDAC process in a manner that
cannot be performed in patients [6]. In recent years,
CRISPR-Cas9 genome editing technology has become a
reliable tool for discovering therapeutic targets in cancer
cells and validating large-scale preclinical testing on

cancer cells [7]. This ease of construction of CRISPR
libraries enables large-scale screening that targets all (or
a desired subset) of the protein-coding genes encoded in
a whole genome by microarray-based platform [8]. The
capabilities of CRISPR-based genetic screens offers great
opportunities to observe cell variations, which further
benefit essential gene selection and effective target iden-
tification on cancer cells. On the other hand, recent ad-
vances in high-throughput microarrays have produced a
wealth of information concerning pancreatic cancer
mechanisms. Whole genome profiling has allowed the
simultaneous identification of hundreds of genes that
are perturbed in pancreatic cancer patients. Substantial
progress has been made in our understanding of the
biology of pancreatic cancer from the molecular level,
including cancer-associated genes for drug targets in
PDAC [9]. However, it remains a challenge to identify
potential targets by building upon cancer cell CRISPR/
Cas9 genetic perturbation screen data and transcriptome
data collected from patients and cancer cells.
Network-based analysis has greatly benefited cancer

biology. Patterns that reflect important cancer-related
processes and mechanisms can be shown in a large-scale
complex network, in which genes, proteins and other
components interact with each other. A better under-
standing of associations/regulations of genes or proteins
from a network perspective can provide valuable insights
towards target selection for developing novel cancer
treatments [10]. So far, biological networks have been
widely used in numerous studies for identifying genes
related to certain therapies through a curated database,
specialized drug-protein [11] or protein-disease net-
works [12, 13]. (1) Curated databases, such as STRING
protein-protein interaction [14] network and KEGG [15]
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pathway network, provide complete genome-wide net-
works that contain entire gene regulations, signal trans-
ductions and gene-protein associations. However, these
methods are not built for specific cancer types, making
them too generalized. It is also difficult for people to
analyze them as a whole. (2) A drug-protein network is
often used to investigate the mechanism of drug action
and drug target prioritization [16]. For instance, Isik et.al
provided drug target identification by perturbed gene
expression from Connectivity Map (CMAP) [17] and
protein-protein Interaction (PPI) network information.
However, these technologies did not directly connect a
drug with disease genes. (3) Constructing protein-
disease networks is another approach to identify gene-
disease associations for selecting therapeutic targets in
cancer [18]. Ferrero et al. proposed a semi-supervised
network approach, which evaluates disease association
evidence and makes de novo predictions of potential
therapeutic targets based on that [19]. These types of
methods fail to incorporate target information in their
models to accurately predict drug targets.
CRISPR-Cas9 genome-wide perturbation data provides

the opportunity to find genes vital to pancreatic cancer
by looking at the mortality of an individual gene. The
mortality of an individual gene is found from observing
genes expression variation of cancer cells [20]. However,
solely using gene perturbation data targets cannot re-
solve target ranking problems. Moreover, identifying
drug targets that actually work on living tissues from
gene perturbation data is still challenging. In this paper,
we proposed a method called ‘SCNrank’ that systematic-
ally utilizes expression data from tissue and cell-line,
along with gene perturbation data and PPI networks to
select and rank druggable targets that effectively work
on tissues. SCNrank systematically compares the net-
work structure between PDAC tissue-specific network
and PDAC cell-line-specific network to identify similar-
ities commonly exited in two networks. PDAC then uti-
lized CRISPR-Cas9 data to score and rank targets from
these similarities. To our knowledge, this is the first-
time people have proposed a model that systematically
score and rank potential targets by considering network
similarities between tumor networks and cell-line net-
works. On the other hand, we validated ranking drug
targets by 1) mapping them onto existing PDAC drug
targets; 2) applying pathway analysis on drug targets and
the clusters within to show their functional associations
with PDAC; and 3) performing survival analysis for top
ranked drug targets.

Materials and methods
Research framework
This study aimed to identify perturbed genes based on
gene expression datasets representing distinct states of

tumor tissues and adjacent normal tissues, and then
align them with the integrated network that is generated
from cell-line PDAC expression and CRISPR-Cas9 per-
turbation data for target selection (Fig. 1). Gene expres-
sion profiles from 263 samples, CRISPR-Cas9 data from
22 pancreatic cancer cell-lines, STRING protein-protein
interaction (PPI) network consisting of 19,056 proteins
and 116,009,230 PPI, and 1317 targets corresponding to
all FDA-approved drugs are included in this study. We
developed a subnetwork target identification algorithm
called Spectral Clustering for Network-based target
Ranking ‘SCNrank’. The core idea of SCNrank is to align
tissue PDAC patterns to cell-line PDAC, and then in-
corporate gene perturbation (CRISPR-Cas9 data) to
score and rank targets based on these patterns.
SCNrank used STRING PPI [14] as a skeleton and ex-

pression data from PDAC tissue and cell-line as comple-
ments to construct two networks: one for tissue and one
for cell-line, both of which share the same PPI skeleton
but have totally different weights of nodes and edges,
which are used to carry their unique characteristics. We
took advantage of dimension reduction approaches to
decompose the networks into clusters to better capture
their common features in tissue network to detect opti-
mal targets. Finally, we aligned the clusters of interest
from tissue network to cell-line networks and then ap-
plied a customized Dijkstra-paths searching algorithm
for searching and ranking all possible targets with each
cluster. SCNrank includes four steps (see Fig. 1a-d): For
cell-line PDAC and Tumor PDAC data respectively, the
algorithm generates integrated networks and maps them
onto the STRING PPI network so that they become
comparable (Fig. 1a-b). Subnetwork partition (Fig. 1c)
and a scoring scheme for aligned subnetworks (Fig. 1d)
are two key methods of SCNrank. Validations on ranked
targets are included in this study (Fig. 1e). The detailed
SCNrank algorithm is illustrated in Fig. 2.
Subnetwork partitioning is typically used to subdivide

large networks into smaller, more efficient subnetworks.
Subnetworks can reflect important cancer-related gene
regulation processes and module mechanisms. Associa-
tions/regulations of genes or proteins from subnetworks
can provide valuable insights towards target selection for
developing novel treatments for pancreatic cancer [10].
Spectral clustering [21] is a dimension reduction and
clustering graphs approach. It firstly reduces data
dimension so that core features will be revealed, then
performs clustering analysis on the simplified data to
better categorize data compared to approaches that dir-
ectly perform clustering on the complete data. In our
study, spectral clustering is used to: firstly reduce data
dimension for the integrated networks; then perform
clustering for the integrated networks. Here, spectral
clustering is designed to reduce data dimension and
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identify perturbed gene subnetworks of pancreatic
tumors, where nodes are originated from dysregulation
degree of gene expression datasets representing distinct
states tumors and adjacent tumors normal, edges are
from correlation coefficient of tumors gene expression
profiles.

Subnetwork alignment score for priority targets
Numerous graph alignment approaches by certain
features or conditions have been developed. Typic-
ally, algorithms include seed-based and score-based
strategies. SubNet [22] firstly apply seed genes with
the PageRank algorithm to identify aligned subnet-
works [23]. Score-based strategies rely on the scoring
schemes on either edges or nodes. Guo et al. pro-
posed a condition-specific subnetwork selection algo-
rithm that scores solely edges [24]. Dezso et al.

developed an algorithm that scores nodes to extract
disease-specific subnetworks [25]. However, this
method only uses parts of graph information, such as
nodes or edges to detect network structure variation,
which is not enough to observe network topology
variation [26]. IODNE deploys a minimum spanning
tree search algorithm and simultaneously scores
edges and nodes for selecting subnetworks that are
most dysregulated for potential target disease genes.
IODNE can then be successfully applied for breast
cancer subnetwork identification [27]. However, it
doesn’t provide direct evidence of actionable drug
targets. To overcome these drawbacks, we developed
a scoring scheme that simultaneously takes node
weight and edge weight into account. Dijkstra short-
est paths algorithm is proposed to rank subnetworks
for ranking targets.

Fig. 1 Workflow of this study (a) Constructing an integrated tissue-specific PDAC network with weighted nodes and weighted edges using tissue
PDAC expression profile, normal PDAC expression profile and PPI network data. b Constructing an integrated cell-line-specific PDAC network with
weighted nodes and weighted edges using cell-line PDAC expression profile, CRISPR data and PPI network data. c Spectral clustering for
integrated tissue-specific PDAC network. d Aligning clustering results on integrated cell-line-specific PDAC network and ranking targets with a
scoring scheme (TI score). e Validation on top ranked targets.
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SCNrank algorithm
‘SCNrank’ takes multiple types of omics data from tissue
and cell-line data as input to rank druggable targets.
SCNrank mainly consists of four steps (shown as sub-
graphs A, B, C, D in Fig. 2).

STEP A: construct an integrated network for tissue PDAC
The algorithm first compares tumor tissue and normal tis-
sue expression profiles to select the overexpressed genes
in tumors. Since the sample number of tissue tumor and
normal groups are not equal, we performed an unpaired
T-test with a p-value cut-off 0.05. Log fold changes be-
tween tumor and normal tissue samples are calculated for
all significantly overexpressed genes. The algorithm then

constructed a correlation network by calculating the Pear-
son correlation coefficient as edge weights. Log fold
change is then used as the node weights in the network.
The algorithm then maps the integrated network onto the
STRING PPI network and selects the overlapped subnet-
work. The rationale of mapping is that: 1. we believe high
correlations among genes that also reflect on protein level
are more likely to be true; 2. mapping both tissue inte-
grated network and cell-line tissue integrated network
onto the same PPI network makes them comparable via
the PPI network. Eventually, a network with the skeleton
from PPI network, edge weights from pair-wise gene cor-
relation, and node weights from Tumor -versus-Normal
log fold change are constructed.

Fig. 2 Workflow of ‘SCNrank’ (a) Constructing integrated tissue PDAC network; (b) Constructing integrated cell-line PDAC network; (c) Spectral
clustering for subnetwork partitioning; (d) Clusters alignment between tissue network and cell-line network, and then calculating TI score for
targets to rank them
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STEP B: construct an integrated perturbation network of
pancreatic cancer cells
Only genes that are selected in STEP 1 are picked from
the cell-line expression profile for integrated network
construction. Similarly, the pair-wise Pearson correlation
coefficients for these genes are calculated to build a cor-
relation network. The network is then mapped onto the
STRING PPI network and only the overlapped subnet-
work is kept. Gene essentiality value (CRISPR-Cas9 data)
is then integrated into the network as node (gene)
weights. Finally, two constructed networks share the
same nodes and edges but with totally different node
weights and edge weights.

STEP C: dimension reduction and network partition
Spectral clustering [21] is a dimension reduction scheme
that divides a network into pieces based on the spectrum
(eigenvalues) of the corresponding similarity matrix. In
the clustering process, the high dimension network is re-
duced to low dimension clusters since common features
among variables can be better captured from a graph
perspective. Given a graph G with n nodes and k cat-
egories, the objective function of spectral clustering can
be described as:

min:cut A1;…Akð Þ ¼ 1
2

Xk
i¼1

W Ai;
�Ai

� � ð1Þ

Where W ðAi;
�AiÞ is the weight between cluster Ai and

its complement set �Ai . However, this has been proven
as an NP-hard discrete problem. In this study, we ap-
plied a widely used spectral approach called RatioCut
[28] to make the optimal cut by solving the following
objective function:

min
A1;…;Ak

Tr A
0
LA

� �
subject to A

0
A ¼ I ð2Þ

Where L is the normalized Laplacian matrix (defined

as formula (7)), A ¼ Y ðYTY Þ−1
2 is a scaled partition

matrix, and Y is a partition matrix indicating a clustering
scheme.
The general steps of performing spectral clustering

can be described as:

1. For n variables (nodes), construct an affinity matrix S

S ¼
s11 ⋯ s1n
⋮ ⋱ ⋮
sn1 ⋯ snn

0
@

1
A ð3Þ

Where Sab in the matrix indicates the connectivity be-
tween variables a and b in the network.

2. Construct a diagonal matrix D as a degree matrix

D ¼
d1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ dn

0
@

1
A ð4Þ

Where da in the matrix indicates the degree (total
edges) of variable a in the network. Clearly,

da ¼
Xn
k¼1

Sak ð5Þ

3. Construct Laplacian matrix

L0 ¼ D−S ð6Þ

4. Normalize the Laplacian matrix

L ¼ D−1
2L

0
D−1

2 ð7Þ

5. Perform singular value decomposition for matrix L
6. Pick top K eigenvalues and their corresponding

eigenvectors to generate a N ∗ K matrix
7. Perform K-means clustering [29] on the extracted

matrix.

Clearly, the Laplacian matrix L consists of two types of
node information: local information, which is node con-
nectivity towards its neighbors in matrix S, and global in-
formation, which is node degrees, or ‘influence’ towards
the entire network. Hence, the clustering strategy can be
thought of as selecting similar nodes based on their local
and global similarities. Inspired by this idea, we used the
Pearson Correlation Coefficient (CC) among nodes in-
stead of the connectivity value (0 or 1) in the affinity
matrix to measure the local similarities among genes. We
also plugged in log fold change of tumor versus normal
expression value in the degree matrix to indicate the glo-
bal influence of genes. Hence, matrix S and D becomes:

S
0 ¼

r11 ⋯ r1n
⋮ ⋱ ⋮
rn1 ⋯ rnn

0
@

1
A ð8Þ

and
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D
0 ¼

FC1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ FCn

0
@

1
A ð9Þ

Where rab is the CC between gene a and b in the ex-
pression profile when constructing the integrated tumor
network and integrated cell-line network.
FCa is the log fold change of the gene when comparing

its expression value in the tumor group to its value in
the normal group while constructing the integrated
tumor network. In the cell-line network, FCa represents
the gene essentiality value (CRISPR-Cas 9 value).
To fulfill formula (5), S needs to be normalized to:

S
0 0 ¼

r11FC1Pn
k¼1r1k

⋯
r1nFC1Pn

k¼1r1k
⋮ ⋱ ⋮

rn1FCnPn
k¼1rnk

⋯
rnnFCnPn

k¼1rnk

0
BBB@

1
CCCA ð10Þ

Hence, the final Laplacian becomes L′ =D′ − S′′, and
normalized Laplacian becomes

L ¼ D
0−1

2L
0
D

0−1
2 ð11Þ

For K-means clustering, picking the optimal K could
be arbitrary. In our case, K is equal to the number of ei-
genvalues that the algorithm picked. Too many or too
few eigenvalues will result in overfitting and underfitting,
respectively. Hence, we applied an intuitive approach:
from K = 1 to the total number of variables, we per-
formed a K-means algorithm and calculated Hartigan’s
number, which is a measurement of the clustering qual-
ity, by comparing two clustering results. For a K-means
clustering, if the number is greater than 10, then having
K + 1-means clustering is of value [30]. We selected the
K when the Hartigan’s number is firstly less than 10. We
understand that this scheme of picking K doesn’t guar-
antee global optima.

STEP D: graph structure similarity alignment between
subnetworks of dysregulation genes in tumors and
perturbation networks in cancer cells and score to rank for
priority potential targets
We applied spectral clustering on the tissue integrated
network to look for genes that show common features.
We then mapped 1317 targets (genes) for all FDA ap-
proved drugs onto clusters. Then, for the successfully
mapped drug targets, we examined the influence that
the target might have over whole clusters. We assumed
that a drug target’s ‘influence’ is limited to its cluster. In
that case, a drug target’s influence towards any node is
determined by the paths between them. Hence, given a
graph G (V, E), where V and E are node set and edge
set, one can assume that the node weight set is W and

edge weight set is Y. For a drug target x, its maximum
‘influence’ towards all other nodes can be described as:

X
k∈V

Wk

Yx
i¼k

Y i;inext ð12Þ

where Y i;i next∈E

Where
Qx
i¼k

Y i;i next indicates the transmitted influence

from target x to a node k via one possible path. Obvi-
ously, to maximize term (12), for every other node i, we
need to find the most correlated path between x and i.
Thus, the total influence of x becomes:

TI ¼
X
k∈V

Wk max
Yx
i¼k

Y i;inext

 !
ð13Þ

Here, the term maxðQx
i¼k

Y i;inext Þ represents the most

correlated path between x and i. And we define term
(13) as Target Influence score (TI). We then developed a
scoring scheme for calculating TI for all 367 drug tar-
gets. The detail is described in Table 1:
Given a source node and a graph, the famous Dijk-

stra algorithm [31] can find all shortest paths (a path
that contains minimum weight) between the source
node and all other nodes. By taking the reciprocal
value for all edge weights, Dijkstra can be used to
find the ‘heaviest’ paths, which is also the most corre-
lated path, between the source node and all other
member nodes in a cluster (a subnetwork). Thus, we
applied the Dijkstra algorithm to find ‘most corre-
lated’ paths between drug targets and all other genes
within a cluster. The hypothesis behind it is that we
believe when a drug target is aimed, the influence
transmits to other nodes via most correlated paths.
Moreover, in the cell-line specific network, two genes
might be either positively or negatively correlated.
Hence, we multiplied these correlations to allow the
drug target to be positively or negatively associated
with the other nodes. This multiplied coefficient will
be multiplied by the node weight (gene essentiality
value) to represent this node’s reaction towards the
knockdown/knockout of the drug target as the node’s
influence score. Finally, all influence scores within the
cluster are summed up as the total influence score of
the drug target for the entire cluster. Since most of
the drug targets are highly regulated in tumors, we
record the maximum score that a target can have
towards its cluster. If multiple targets are in one clus-
ter, we report the target that causes maximum influ-
ence on its cluster as the druggable target for that
cluster. Finally, we ranked all targets by these
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influence scores. HMMR and POLE2 have been to-
gether reported as significantly overexpressed in
PDAC and lung cancer from a large cohort.

Materials
Expression data of PDAC
Expression data gathered from 263 samples across three
groups are used in this study, including 92 PDAC cell-
line samples, 113 PDAC tissue samples and 58 adjacent
normal pancreas tissue samples. These data are all from
the Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo/) database and are all generated from

Affymetrix Human Genome U133 Plus 2.0 Array, which
contains 54,675 probes pointing to over 20,000 genes.
Complete annotation of all samples can be found in
Additional file 1, (Table 2).

Protein-protein interaction network
STRING [14] is a comprehensive and public pathway
database (https://string-db.org/), which accumulates
prior knowledge of biological pathways and protein-
protein interactions. We included STRING network pro-
tein links version 11 data in our analysis.

Table 1 Scoring scheme for identifying druggable targets from a clustered graph
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Genome-wide CRISPR-Cas9 screening data and gene
essentiality value
To measure gene essentiality, we used CRISPR-Cas9
v3.3.8 screening data from ‘Project Achilles’ [32–34],
(https://portals.broadinstitute.org/achilles) which in-
cludes genome-wide CRISPR-Cas9 screening data that
affect cell survival across 43 tumorous cell lines and
genome-wide RNAi screening data over 501 cell-lines.
We choose CRISPR-Cas9 over RNAi because recent
studies have indicated that compared to RNAi,
CRISPR-Cas9 has less off-target effects, and is thus
better for cancer drug-target related research [35]. In
total, gene perturbation data of 74,222 sgRNAs on 17,
733 genes across 22 PDAC cell-lines are included in
this study.

FDA approved drug targets
We downloaded all FDA approved drugs and their tar-
gets from Drug bank [5]. In total, all targets have been
mapped onto 1317 genes, of which 283 genes are cancer
drug targets.

Data preprocessing
Gene expression profiles preprocess
We converted raw data (.cel files) to expression value by
3 steps: background correction, normalization and
summarization. We then applied normalizations for all
samples to make them comparable. Probe-based expres-
sion value is converted to gene-based expression value
by sequentially applying the following settings: 1. A
probe containing more than 20% missing data is elimi-
nated; 2. A K-nearest neighbor approach (KNN) is ap-
plied to infer the missing data; We estimated the
missing data with the average value from K = 10 nearest
neighbors. 3. We convert probes to genes using Affyme-
trix U133 Plus 2.0 annotation file as a reference, which
can be downloaded from AFFYMETRIX official website.
For probes that point to the same gene, their value is
averaged to represent the expression value of this gene.

Expression data normalization
To make the expression profiles from different samples
comparable, We applied Microarray Suite 5 method
(MAS 5.0) normalization algorithm [36], which is em-
bedded in R package ‘affy’ available in Bioconductor
(http://bioconductor.org). We then applied a Quantile
Normalization for all expression samples to reduce the
batch effect. Finally, all values are Log2 transformed and
ready for analysis.

CRISPR-Cas9 gene essentiality
In CRISPR-Cas9 screening data, each single-guide RNA
(sgRNA) in one gene has its unique expression fold
change (before knockout versus after knockout), indicat-
ing its importance to cell survival. Each gene might have
multiple sgRNAs. Since we were looking for drug targets
on the gene level, we converted sgRNA level fold-change
to gene level fold-change so that each gene will be dir-
ectly linked to cell survival. The conversion scheme can
be described as: For genes that are targeted by only one
guide-RNA, we simply used its fold change value as fold
change for this gene. For genes that are targeted by mul-
tiple sgRNA, we took the average of fold changes of
these sgRNAs to represent the overall expression fold
change of each gene. We defined gene level expression
fold change as ‘gene essentiality value’ in this study. For
all 22 pancreatic cell-lines, we calculated the average
gene essentiality values among all cell-lines to represent
the average gene essentiality values.

Results
Overlapping 15,664 common genes among 263 gene ex-
pression profiles for tumor tissue, normal tissue and
cell-line are included for SCNrank analysis, among
which 7376 genes are significantly dysregulated by non-
paired t-test with a p-value less than 0.05. 4584 genes
out of 7376 genes are significantly over-expressed in the
tumor tissues group compared to the normal tissue
group. We then mapped the 4584 genes onto the
STRING human PPI network. Four thousand one hun-
dred forty-four genes have overlapped with the PPI net-
work. 367 out of 4144 are drug targets of FDA approved
drugs. In total, 4141 genes and associated 931,288 pairs
of gene-gene interaction of network with 367 FDA ap-
proved drugs’ targets (which includes 90 cancer drug
targets) are inputs into the SCNrank algorithm to seek
potential targets for PDAC patients.

Potential target subnetworks and targets ranked by
SCNrank
In target ranking process, we selected the top 40 eigen-
values for further K-means clustering, which led to 198
clusters (subnetworks) for PDAC patients. One hundred
ninety-eight complete clusters and their members can be

Table 2 Gene expression data used in this study along with
their session Number in GEO database

Human pancreatic
cancer cell line

Human PDAC
tumors

Human normal
pancreas tissues

GSE36133 (43) GSE42952 (33) GSE46385 (3)

GSE46385 (7) GSE51978 (2) GSE16515 (16)

GSE21654 (22) GSE16515 (36) GSE15471 (39)

GSE17891 (20) GSE15471 (39)

GSE23952 (3)

92 samples 113 samples 58 samples
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found in Additional file 1. All 367 targets are scored and
ranked by SCNrank system. Table 3 shows the top ten
targets and two well-known PDAC drug targets ranked
by ‘SCNrank’, of which POLE2 and DHFR are known
cancer drug targets. ERBB2 and MTOR are PDAC drug
targets. A complete ranked list can be found in
Additional file 1.
The 12 selected genes are all highly expressed in

tumor tissue compared to normal tissue. Moreover, the
loss of all 12 genes cause reduced cell survival. Among
them, two widely accepted targets ERBB2 and MTOR in
treating PDAC are caught by SCNrank algorithm. PGK1,
POLE2 and HMMR are the top three ranked targets.
PGK1 is in a cluster of 41 genes. POLE2 and HMMR are
together in a cluster of 67 genes. Figure 3 shows the ex-
pression level of two clusters containing the top three
ranked targets in tumor tissue, normal tissue and cell
lines. It can be observed that these genes show a con-
cordant high expression pattern in cell-line and tumor
groups than in the normal group.
Glycolytic enzyme phosphoglycerate kinase 1 (PGK1)

is a gene that codes for a glycolytic enzyme that cata-
lyzes the synthesis of 3-phosphoglycerate. Its functions
and mechanisms are not yet completely understood. As
an inhibitor, PGK1 inhibits the secretion of vascular
endothelial growth factor (VEGF) and interleukin-8, thus
inhibiting Angiogenesis [37]. However, multiple studies
have suggested that in metastatic tumor cells, PGK1
plays a completely contrary role. Overexpression of
PGK1 facilitates not only tumor growth and interaction
with microenvironment, but tumor invasion and metas-
tasis in liver, gastric and prostate cancer [38, 39]. In this

study, PGK1 has been identified as the target that can
cause the highest influence towards its cluster (shown in
Fig. 4a). It interacts not only with the greatest number of
genes, but also with the greatest number of other targets
in the cluster. Most of its correlations with its neighbors
are positive.
DNA Polymerase Epsilon 2, Accessory Subunit

(POLE2) is highly involved in DNA repair and replica-
tion. It has been previously reported to have a high asso-
ciation with colorectal cancer [40]. In this study, POLE2
is ranked as the second highest target. Even though its
cluster is much larger than the cluster of PGK1 (shown
in Fig. 4b), the influence of POLE2 towards the whole
cluster is not as strong as the influence of PGK1.
Hyaluronan Mediated Motility Receptor (HMMR),

which is the target with the third highest score, is highly
involved in cell motility. HMMR forms a complex with
BRCA1 and BRCA2, thus it has been identified as a
high-risk factor in multiple cancer types such as breast
cancer and fibrosarcoma [41, 42]. Interestingly, HMMR
is in the same cluster with POLE2 (shown in Fig. 4b).
Their degrees and ranks are very similar, implying their
equal influence towards the whole cluster.

Pathway enrichment analysis for the top three ranked
targets and their clusters
For all 198 clusters, we performed pathway enrichment
analysis with ‘Gene Set Enrichment Analysis’ GSEA [43].
We selected ‘C5 go gene sets BP GO biological process’
database version 6.2, which contains 4436 gene sets an-
notated by GO term with their functions, as a reference
and performed functional analysis for each cluster with

Table 3 Statistics of top-ranked drug targets. Column 2: Ranks by SCNrank Column. 3: cancer drug target information. Column 4:
average expression values in tumor tissue samples. Column 5: average expression values in normal tissue samples. Column 6: log2
fold change of expression differences between tumor group and tissue group. Column 7: T value from T-test between tumor and
normal group. Column 8: P-value from T-test between tumor and normal group. Column 9: gene essentiality value (cell survival rate
at T3 versus at T0). Positive values and negative values indicate an enhanced and reduced cell survival rate respectively in vitro

Name RANK Cancer drug
target (Y/N)

Tumor gene expression
(Log2 average)

Normal gene expression
(Log2 average)

T_v_N
Log2 FC

T-value p-value Gene essentiality
in CRISPR

PGK1 1 N 10.18 9.28 0.90 8.03 < 0.01 −1.84

POLE2 1 Y 5.87 4.83 1.04 5.31 < 0.01 −1.31

HMMR 2 N 6.83 5.06 1.77 4.31 < 0.01 −0.96

VDAC1 4 N 9.53 8.83 0.70 6.30 < 0.01 −1.85

PPP2CA 5 N 8.61 8.40 0.21 3.98 < 0.01 −1.94

DARS2 6 N 5.63 5.16 0.47 3.02 < 0.01 −0.54

TK1 7 N 6.56 5.95 0.61 3.37 < 0.01 −0.42

VARS 8 N 5.52 5.14 0.38 3.01 < 0.01 −2.13

DHFR 9 Y 7.09 6.45 0.64 3.75 < 0.01 −1.06

MMP14 10 N 7.40 6.51 0.89 4.37 < 0.01 −0.21

ERBB2 13 Y 6.65 5.58 1.07 3.23 0.01 −0.20

MTOR 32 Y 5.45 5.04 0.44 3.74 < 0.01 −1.24
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significance level P < 0.05. GSEA analysis required a
ranked gene list to perform such analysis, so we used log
fold change of tumor vs normal tissue as their weights
and ranked them. Complete enriched pathway results
and related gene lists can be found in Additional file 1.
Our top-ranked gene, PGK1 with its cluster, has sig-

nificantly enriched ‘CARBOHYDRATE_CATABOLIC_
PROCESS’. The second and third gene, HMMR and
POLE2, with their clusters, have significantly enriched
multiple pathways such as ‘CELL CYCLE’ and ‘MI-
TOSIS’. These pathways are all highly related to cell
cycle and cell division, suggesting these two genes along
with their cluster members, are critical components in
regulating cell cycles. Moreover, HMMR and POLE2
enriched 8 pathways of 11 total enriched pathways that
are enriched by the entire cluster, suggesting common
functional activities.

Ranked targets validation by clinical outcomes
We performed survival analysis for differentially
expressed PGK1, HMMR and POLE2 from public
database ‘GEPIA’ (http://gepia.cancer-pku.cn/). GEPIA
[44] is a public database containing 9736 tumors and
8857 normal samples from TCGA [45] and GTEx
[46] projects. In Fig. 4c, d, e), all three targets showed
a significant difference (Hazard ratio P-value< 0.01) in
patients’ survival. Low expression of these three genes
provides significantly higher survival than high
expression. Survival curves of all three genes show a
similar pattern at around 20 months, at which low ex-
pression curves start to have clear segregation from
high expression curves.

Targets accordance comparison between clinical drug
treatment in pancreatic cancer and selection by SCNrank
algorithm
Amanam and Chung systematically investigated all cur-
rently available targeted therapies and drug targets for
pancreatic cancer [47]. Many studies have reported
HER2 overexpression in up to 45% of patients with
PDAC [48]. This is due to the fact that HER2 amplifica-
tions often occur in PDAC [49]. We mapped the known
drug targets to our ranks system and listed result in
Table 4.
In this study, HER2 is ranked 14th by SCNrank.

SCNrank covered five commonly used targets in the
clinical setting, of which ERBB2 and MTOR are highly
ranked (rank 14 and rank 32 respectively). All the miss-
ing targets are not included in 4414 genes for construct-
ing integrated networks at the start.

Discussion
Research in pancreatic cancer target selection
Recently, drug target selection has been extensively stud-
ied and various methods have been developed. For
instance, the ‘Connectivity map’ project (C-map) curated
expression profiles of human cells exposed to thousands
of drugs, which can be served for drug repositioning [17].
Ma et al. developed an algorithm named ‘Met-express’
that combines a gene co-expression network with the hu-
man metabolic network to predict drug targets for pancre-
atic cancer. However, these methods only utilize
expression data as fundamental knowledge and incorpor-
ate other biological knowledge to predict targets. How-
ever, most drugs function on protein level eventually. And
expression level regulation might not eventually reflect on

Fig. 3 Heatmap of PGK1 and POLE2-HMMR clusters in three different expression profiles. Cluster 1 and 2 refer to PGK1 cluster and POLE2-HMMR
cluster respectively. Tumor, Normal and Cell-line indicate tumor samples, normal samples and cell-line samples respectively. Red and Blue color in
the panel label indicate over-expression and under-expression of genes respectively

Liu et al. BMC Medical Genomics 2020, 13(Suppl 5):50 Page 11 of 15

http://gepia.cancer-pku.cn/


protein level. Secondly, their analysis lacks the support of
cell survival phenotypes that directly reflect the effects of
gene knockdown/knockout experiment. To our know-
ledge, SCNrank is the first algorithm that can incorporate
expression data, PPI data and gene perturbation data
(CRISPR or RNAi) for selecting and ranking drug targets.
The novelty of the SCNrank algorithm mainly reflects in:

i. SCNrank is the first algorithm that takes advantage of
dimension reduction methods to integrate three different
types of omics data into a comprehensive network for
drug target selection; ii. SCNrank ultilized CRISPR data to
benefit the target selection. The CRISPR data can mimic
the real drug response of drugs; iii. SCNrank uses spectral
clustering to reduce data dimensions to capture features

Fig. 4 Top three ranked drug targets with their interactions with other nodes in corresponding clusters in cell-line integrated network and the
survival analysis on them. In (a) and (b), cube nodes indicate known targets while the circle nodes indicate other genes. Red and blue lines
indicate positive and negative correlations respectively. Line shade indicates correlation intensity. Nodes are placed in a clockwise order by their
degrees. a Top rated Drug targets ‘PGK1’ and the subnetwork of its cluster. PGK1 is the node that has the highest number of connections. b
Second and third rated Drug targets ‘POLE2’, ‘HMMR’ and the corresponding subnetwork of their common cluster. Yellow highlighted genes are
common genes between HMMR and POLE2. RAD51 is the node that has the highest number of connections. c High expression of PGK1 versus
Low expression of PGK1 survival curves. d High expression of HMMR versus Low expression of HMMR survival curves. e High expression of POLE2
versus Low expression of POLE2 survival curves
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on tissue-based omics-data and ranks drug targets on cell-
line omics-data, which makes the target selection process
more reliable. Spectral clustering was initially introduced
to cancer biology for identifying novel subtypes of Triple
Negative Breast Cancer (TNBC) [50]. To our knowledge,
it has never been used for selecting genotypic features
from an integrated network. Despite the advantages, there
is still room for SCNrank to improve. The possible future
might include i. incorporate pathway information into tar-
get selection process for PDAC. Pathway information pro-
vides a different perspective in understanding the
progression and treatment of PDAC [45, 51, 52]. Target-
ing cancer related pathways can be a highly effective strat-
egy for treating PDAC. Thus, it is necessary to incorporate
pathway information into the drug target ranking and se-
lection process; ii. Incorporate functional information into
the target selection process. SCNrank algorithm ranked
drug targets mainly based on differential expression,
protein-protein interaction and tissue-target concordance.
However, different proteins might have different docking
capacities, which directly affects their potential to become
a druggable target. Unfortunately, SCNrank algorithm
doesn’t take this information into account for ranking tar-
gets. Integrating this information into the whole process is
necessary.

Clinical targets of drug in pancreatic cancer
Tumor cells prefer glycolysis to oxidative phosphoryl-
ation for providing energy during proliferation and me-
tastasis. This phenomenon is called the ‘Warburg Effect’
[53] and often occurs in certain tumor types such as
brain cancer, liver cancer and pancreatic cancer. PGK1
is an important enzyme in the metabolic pathways.

Recent studies have revealed that PGK1 can promote
cell proliferation and tumorigenesis by enhancing the
Warburg effect. For instance, Li et al.’s study reveals that
PGK1 functions as a protein kinase to phosphorylate
PDHK1, which further promotes the Warburg effect in
brain tumorigenesis [54]. Hu et al. recently reported that
acetylation of PGK1 can promote cell proliferation and
tumorigenesis in liver cancer via glycolysis pathways
[55]. Xie et al.’s study has pointed out that PGK1 is
highly involved in MYC-induced metabolic reprogram-
ming, which further causes a reinforced Warburg effect
[56]. From the pathway analysis result from section 3.3,
we also observed a significantly enriched ‘cellular meta-
bolic process’ pathway, which implies the activated War-
burg effect in our PDAC samples. So far, there are
studies that focus on targeting the Warburg effect to
treat pancreatic cancers. Rajeshkumar et al. has selected
a small molecule called ‘FX11’, which inhibits a lactate
dehydrogenase-A (LDH-A), a critical enzyme in metab-
olizing pyruvate, to block the Warburg effect [57]. They
observed that for TP53 mutant cells, their approach can
significantly increase tumor cell apoptosis. These studies
provide the possibilities of targeting the Warburg effect
to treat PDAC. Hence, together with the survival ana-
lysis result shown in Fig. 4a, our findings suggested that
PGK1 is a potential target that alternatively targets the
‘Warburg Effects’ and thus is worth further experimental
validation.
‘DNA polymerase epsilon 2’ (POLE2) and ‘Hyaluro-

nan-mediated motility receptor’ (HMMR) have been
previously reported as significantly hyper-expressed in
both PDAC tissues and cell-line expression profiles
[58]. Studies have linked HMMR and its product ‘Re-
ceptor for Hyaluronan Mediated Motility’ (RHAMM)
to a variety of hematological malignancies and other
solid tumors [59–61]. This is because RHAMM,
working in concert with BRCA1 and BRAC2, can sig-
nificantly promote tumor growth and metastasis for
pancreatic cancer [62] in vivo, and multiple other
cancer types such as basal-like breast cancer [63] and
glioma [64] in vivo. Hence, Willemen et al. pointed
out of HMMR/RHAMM being a considerable poten-
tial target for cancer immunotherapy [65]. Moreover,
Li, Ji and Wang have targeted HMMR via long non-
coding RNA (lncRNA) and successfully suppressed
Glioblastoma in mouse xenograft model [66]. This
evidence suggests that HMMR and its product
RHAMM is worth further study in its potential to be
used as a PDAC drug target. POLE2 is highly in-
volved in DNA repair and replication. However, tar-
geting POLE2 to treat cancer is rarely reported. Li
et al. used β-elemene, which is a type of elemane ses-
quiterpenoids, to suppress POLE2 expression and re-
strain lung adenocarcinoma cell malignant in vitro

Table 4 Currently available drugs and drug targets for
pancreatic cancer comparing associated target ranks from
SCNrank algorithm

Targets Drug Targets and their ranks

tyrosine kinase

EGFR Erlotinib+Gemcitabine NA

HER2 Trastuzumab ERBB2 (14)

MAPK trametinib MAP2K1 (233)

MTOR everolimus MTOR (32)

IGF-IR Ganitumab IGF2R (87)

JAK Ruxolitinib NA

Angiogenesis

VEGF Bevacizumab PGK1 (1)

Others

KRAS Gemcitabine+nab-paclitaxel NA

DNA repair Niraparib NA

Tumor Vaccine GVAX NA
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[67], which could be used as evidence of treating pan-
creatic adenocarcinoma (PDAC) by targeting POLE2.

Conclusion
In this study, we developed an algorithm called ‘SCNrank’
that links cell lines CRISPR technology with gene expres-
sion profiles and the PPI network to score and rank drug
targets for PDAC. We utilized cutting edge dimension re-
duction methods and network analysis methods to identify
the potential targets. We disclosed the molecular mechan-
ism of potential disease genes in PDAC and roles system-
atically by performing pathway enrichment analysis. We
validated our top-ranked genes by comparing them with
existing pancreatic cancer drug targets and performing
survival analysis on top-ranked targets to predict their
clinical outcomes. We showed that the top-ranked target,
PGK1, plays a key role in tumor cell glycolysis in PDAC
and has high potential as a target for treating PDAC. Our
second and third-ranked targets, POLE2 and HMMR have
been proven to promote PDAC and various other cancer
types. Moreover, HMMR has been extensively studied as a
target for treating lung adenocarcinoma and glioma. This
might serve as evidence of using HMMR as a novel drug
target for PDAC. Taken together, the results provide new
guidance for future clinical treatments.
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