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In the management of human immunodeficiency virus (HIV) infection around the world,
chronic complications are becoming a new problem along with the prolonged life
expectancy. Chronic pain is widespread in HIV infected patients and even affects
those with a low viral load undergoing long-term treatment with antiviral drugs,
negatively influencing the adherence to disease management and quality of life. A large
proportion of chronic pain is neuropathic pain, which defined as chronic pain caused by
nervous system lesions or diseases, presenting a series of nervous system symptoms
including both positive and negative signs. Injury caused by HIV protein, central and
peripheral sensitization, and side effects of antiretroviral therapy lead to neuroinflammation,
which is regarded as a maladaptive mechanism originally serving to promote regeneration
and healing, constituting the main mechanism of HIV-related neuropathic pain. Gp120, as
HIV envelope protein, has been found to be the major toxin that induces neuropathic pain.
Particularly, the microglia, releasing numerous pro-inflammatory substances (such as
TNFα, IL-1β, and IL-6), not only sensitize the neurons but also are the center part of the
crosstalk bridging the astrocytes and oligodendrocytes together forming the central
sensitization during HIV infection, which is not discussed detailly in recent reviews. In
the meantime, some NRTIs and PIs exacerbate the neuroinflammation response. In this
review, we highlight the importance of clarifying the mechanism of HIV-related neuropathic
pain, and discuss about the limitation of the related studies as future research directions.
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INTRODUCTION

Combination antiretroviral therapy (cART) has opened a new age
in the treatment of HIV, in particular creating a new group of
patients known as people living with HIV (PLWH). However, in
addition to the immunodeficiency disease caused by HIV
infection, various complications influence the mortality and
treatment compliance among PLWH. According to the
International Association for the Study of Pain (IASP),
chronic pain is defined as pain that lasts or recurs for longer
than 3 months, which is one of the consistently encountered
symptoms in PLWH and is significantly associated with disability
in daily activities, unemployment, and reduced quality of life
(Ellis et al., 2010; Treede et al., 2019). Chronic neuropathic pain is
chronic pain caused by nervous system lesions or diseases.
Certain types of chronic pain are commonly identified as
neuropathic pain, including spontaneous pain (continuous or
episodic), hyperalgesia (exaggerated responses to normally
painful), and mechanical allodynia (a painful response to a
normally nonpainful stimulus) (Ji et al., 2003; Tsuda, 2018;
Scholz et al., 2019). On clinical examination, the symptoms
may present as positive signs (gain of somatosensory
function), such as “pins and needles” sensation, painful
ongoing sensation etc., or present as negative signs (loss of
somatosensory function), such as distal sensory loss, reduced
tendon reflexes, reduced temperature perception etc., but it is
required that a history of nervous system injury or disease and a
neuroanatomically plausible distribution of the pain to make the
diagnosis (Tagliati et al., 1999; Gierthmuhlen and Baron, 2016;
Scholz et al., 2019).

Neuroinflammation is a maladaptive mechanism responding
to tissue injury in neuron system with the recruitment of immune
cell and mediator releasing to promote regeneration and healing
(Ellis and Bennett, 2013; Sommer et al., 2018). The combination
and release of HIV-related glycoproteins (such as gp120) damage
neurons, inducing neuroinflammation by a series of downstream
alterations, increasing responses between neurons and glial cells
and resulting in central sensitization and/or peripheral
sensitization. These responses macroscopically present as
chronic neuropathic pain in patients or rat models. Nucleoside
analogue reverse transcriptase inhibitors (NRTIs) and protease
inhibitors (PIs) that are used in the treatment of HIV also have
neurotoxic effects, thereby exacerbating the neuropathic pain
symptoms in PLWH as well. Recent reviews make a great
introduction to the mechanism in chronic pain and clinical
care for PLWH with chronic pain indicating that the
inflammation response might play an important role in
development of pain (Addis et al., 2020; Madden et al., 2020).
In this review, we focus more on neuropathic pain and elucidate
the mechanism of neuroinflammation in HIV-related
neuropathic pain, for helping stimulate future researches about
new targets to relief this torturous problem in PLWH.

Epidemiology
The prevalence of chronic pain ranges from 25 to 90% (Newshan
et al., 2002; Lee et al., 2009; Nair et al., 2009; Silverberg et al., 2009;
Aouizerat et al., 2010; Cervia et al., 2010; Harding et al., 2010;

Miaskowski et al., 2011; Merlin et al., 2012; Merlin et al., 2013;
Parker et al., 2014; Lawson et al., 2015; Merlin et al., 2018), and
some researches have highlighted the prevalence of neuropathic
pain. 32% to more than a half of the participants reported
neuropathic pain (Simpson et al., 2006; Nair et al., 2009;
Robinson-Papp et al., 2009; Ellis et al., 2010). This variability
can be partly attributed to different research methods,
participants and definition of the origins of pain. Non-
neuropathic pain, such as nociceptive pain, can be caused by
tissue injury resulting from inflammation (e.g., autoimmune
responses), infection (e.g., bacteria, other viruses, tuberculosis),
or neoplasia (e.g., lymphoma or sarcoma) (Bruce et al., 2017).
Considering the limitation of the questionnaire or self-report
data, it is difficult to distinguish whether chronic pain is due to
pathogen, neuropathy, or just cART induced. Additionally,
patients with HIV-associated neuropathy are more than twice
as likely to have other chronic pain disorders (Navis et al., 2018).
Regardless of the types of pain, in fact more than 50% of PLWH
have moderate to severe pain that affects daily life (Miaskowski
et al., 2011; Merlin et al., 2012).

Certain demographic variables are associated with pain
intensity, including female sex, non-Caucasian race, lower
education level, and a history of drug use (Breitbart et al.,
1996; Tsao et al., 2010; Miaskowski et al., 2011) (Table 1).
Jiao et al. analyzed 638 patients and showed that 38% were
affected by musculoskeletal pain, whereas 11% suffered from
neuropathic pain including peripheral neuropathy (Jiao et al.,
2016).

The Mechanism Leading to HIV-Related
Neuropathic Pain
Pathological pain in HIV patients is frequently associated with
peripheral sensory neuropathy, which is a form of the so-called
“dying-back” degeneration of sensory neurons (Hao, 2013). As
the reasons for non-neuropathic chronic pain in diversified sites
remain uncertain (e.g., musculoskeletal), the neuropathic pain
related to HIV infection has been shown to be caused by
neurotoxic effect of virus and the drugs applicated to treat
HIV (Madden et al., 2020). Tough there is no existence of
productive HIV infection in neurons, viral proteins do interact
with neurons, glial cells, and immune cells both in central and
peripheral nervous systems to inducing the development of
neuroinflammation, macroscopic hyperalgesia and allodynia, a
process that could be exacerbated by antiretroviral drugs.

Viral Protein gp120 Is the Major Toxin
Inducing the Neuropathic Pain
The HIV envelope glycoprotein gp120, together with gp41,
undergoes receptor-driven conformational changes upon
engaging the CD4 receptor and C-C chemokine receptor 5
(CCR5)/CXC chemokine receptor 4 (CXCR4) co-receptor
binding for fusion of viral and host cell membranes (Acharya
et al., 2015). As infection seldom occurs in neuronal cells, gp120
triggers hyperalgesia by directly activating the CXCR4 and/or
CCR5 chemokine receptors in dorsal root ganglion (DRG)
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neurons (Oh et al., 2001). There are some reports that other HIV
proteins such as Tat (transactivator of transcription) and Vpr
(viral protein R) could also induce neuropathic pain, but a more
convincing evidence suggests that gp120 is a major contributor to
neuropathic pain (Acharjee et al., 2010; Chi et al., 2011; Yuan
et al., 2014). Gp120 levels are about 10-fold higher in the spinal
cord dorsal horn of pain-positive HIV patients than in that of
pain-negative HIV patients. In contrast to gp120, Tat and Vpr,
were not significantly elevated in the spinal cord dorsal horn of
pain-positive HIV patients compared to pain-negative HIV
patients (Yuan et al., 2014). Evidence supports that gp120
plays a direct role in the induction of allodynia. Symptomless
HIV-1 infected patients who received an envelope subcomponent
vaccine (MNrgp120) by intramuscular injection monthly report
pain at the injection site in 1996 (Eron et al., 1996). Intrathecal
injection of gp120 exacerbates pain in a mouse model, inducing
robust thermal hyperalgesia and mechanical allodynia similar to
the pathological phenotypes of pain-positive HIV-1 patients,
followed by the expression of tumor necrosis factorα (TNFα)
in the spinal cord with the activation of microglia and astrocytes
(as discussed below) (Milligan et al., 2000; Milligan et al., 2001a;
Herzberg and Sagen, 2001; Zheng W. et al., 2011; Yuan et al.,
2014). Injection of TNFα induces neuropathic pain in humans
(Eron et al., 1996; Wagner and Myers, 1996; Sorkin and Doom,
2000). Yi et al. elucidates the pathway of TNFα/TNF receptor 1
(TNFR1) –mitochondrial superoxide–pCREB triggers pC/EBPβ
in HIV gp120-induced neuropathic pain state in rat model (Yi H.
et al., 2018). HIV gp120 upregulates phosphorylated cAMP

response element binding protein (pCREB) on the cytosine-
cytosine-adenosine-adenosine-thymidine (CCAT)/enhancer
binding protein ß (a member of the C/EBP family) gene
promoter region via TNFR1 in neurons, which is a critical
transcriptional regulator of HIV associated with cyclin-
dependent kinase 9 (CDK9) and influences disease progression
(Mameli et al., 2007; Yi Z. et al., 2018).

TNFα also plays a critical role in the wingless-type mammary
tumor virus integration site family member 5 A (Wnt5a)/c-jun
N-terminal kinase (JNK) signaling pathway induced by
intrathecal injection of gp120. Wnt5a is upregulated in the
spinal dorsal horn of HIV patients who develop pain and
increased by intrathecal injection of HIV gp120 in rat
neuropathic pain models. Inhibition of Wnt5a by specific
antagonists blocks gp120-induced upregulation of interleukin-
1β (IL-1β), IL-6, and TNFα in the spinal cord. The Wnt5a/Ca2+/
Calmodulin-dependent Protein kinase II (CaMKII) pathway is
critical for the gp120-induced expression of IL-1β, whereas the
Wnt5a/JNK pathway is important for TNFα expression. The
expression of IL-6 is co-regulated by both pathways (Li et al.,
2013).

A gp120-Wnt5a-JNK-TNFα molecular axis is explored by the
same group, indicating that Wnt5a potentiates the activity of
spinal dorsal horn neurons via the JNK-TNFα pathway (Yuan
et al., 2015). Similarly, gp120 combines with CXCR4 that
increases cytomembrane outward K+ concentration by
activating neuronal voltage-gated potassium (Kv) channels.
Caspase-3 activation occurs downstream of the transient

TABLE 1 | Prevalence of pain, assessment method, and related factors in different chronic pain studies.

Articles Prevalence of
pain

Method of
assessment

Influence factors cART usage Drug regimens

Merlin et al.; Merlin
et al. (2018)

25% of 2,334
participants

Questionnaire (BCPQ Merlin
et al.(2014) and PEG Krebs et al.
(2009))

Long-term opioid therapy All participants
received HIV care
services

No detailed description

Lawson et al. Lawson
et al. (2015)

62.8% of 859 Questionnaire (Urwin Urwin et al.
(1998))

Age, diagnosis time, PI
regimen

76.5% on cART pI/NNRTI/NRTI based

Miaskowski et al.
Miaskowski et al.
(2011)

270 of 296 Questionnaire (BPI Cleeland and
Ryan, (1994) and PQAS Jensen et al.
(2006))

Gender, education 74.4% on cART No detailed description

Cervia et al. Cervia
et al. (2010)

39% of 41 Self-reported pain scale data cART 26% on cART 18 different kinds of
regimens

Harding et al. Harding
et al. (2010)

53.2% of 778 Questionnaire (MSAS) ( Chang et al.
(2000)

Education 67.4% on cART
currently

No detailed description

Aouizerat et al.
Aouizerat et al. (2010)

55% of 317 Questionnaire (MSAS) CD4+ T-cell count, race, sleep
disturbance

71% on cART
currently

No detailed description

Nair et al. Nair et al.
(2009)

24.5% of 98 out-
patients

Questionnaire (BPI) cART Partially usage No detailed description

Lee et al. Lee et al.
(2009)

55% of 317 Questionnaire (MSAS) AIDS diagnosis, race, gender,
cART

70% on cART Include NRTI/PI based, or
other combination therapy

Silverberg et al.
Silverberg et al. (2009)

41.4% of 1,574
women

Self-report data Race/ethnicity, age,
depression and AIDS
diagnosis

83.1% on cART of
women

43.1% PI-containing of
women

43.1% of
955 men

90.8% on cART
of men

50.1% PI-containing
of men

Newshan et al.
Newshan et al. (2002)

46% of 484 Clinic symptom checklist None No detailed
description

No detailed description

Breitbart et al.
Breitbart et al. (1996)

62% of 438 Questionnaire (BPI and MSAS) HIV-related conditions,
antiretroviral medications, age,
and race

No detailed
description

No detailed description
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outward K+ currents, leading to neuronal injury (Chen et al.,
2011). Gp120 triggers intracellular calcium alterations through a
CXCR4-dependent mechanism to induce neuronal damage
(Catani et al., 2000; Marchionni et al., 2012) (Figure 1).

Central Sensitization and Peripheral
Sensitization in HIV-Related Neuropathic
Pain
Triggered by nerve damage, including infection, inflammation or
drug toxicity, neuropathic pain is involved in both central
sensitization, increased responsiveness of nociceptive neurons
in the central nervous system (CNS) to their normal or
subthreshold afferent input, and peripheral sensitization,
increased responsiveness and reduced threshold of nociceptors
to stimulation of their receptive fields in the peripheral nervous
system (PNS), inducing the development and maintenance of
hyperalgesia and allodynia (Loeser and Treede, 2008; Gao and Ji,
2010). Driven by the release of cytokines, chemokines and
neurotransmitters, the activation of non-neuronal cells such as
immune cells and glial cells in both CNS (e.g., microglia and
astrocytes) and PNS (e.g., macrophages, Schwann cells and
satellite cells) plays an important role in neuropathic pain
progressing (Huang et al., 2013; Silva et al., 2017; Lee et al.,
2018; Liu et al., 2019). Macrophages and microglia express high
levels of CD4 and CCR5 and are therefore a prime target for HIV
infection, forming a reservoir for reactivation of virus replication.
Noteworthy, Intact HIV and its viral protein gp120 could cross
the blood-brain-barrier (BBB) via transcytosis or paracellularly,
infecting both microglia and astrocytes while in this process,
gp120 might be a key in determining whether free virus can cross
the BBB (Banks et al., 2001; Hong and Banks, 2015). Noxious
factors released from immune-activated, HIV-infected, or gp120-
stimulatedmacrophages andmicroglia may damage peripheral or
central pain transmission neurons directly or through an
associated cascade in proinflammation pathways, both of
which induce hypersensitivity and allodynia related to
neuropathic pain. Here we will mainly discuss the mechanism
of central and peripheral sensitization induced by HIV infection
leading to neuropathic pain.

Central Sensitization
There are accumulating evidences supporting the critical role of
microglia in central sensitization. Microglia are CNS-resident
macrophages described as “neuroimmune sentinels” that
orchestrate the immune response to invading pathogens,
toxins, and cellular debris. Microglial activation exhibits
morphological changes from “resting microglia” state and can
assume neurotoxic or neuroprotective priming states that
determine their responses to danger (Hickman et al., 2013;
Qin et al., 2019). Evidences support that microglia act as a key
mechanism in the development and maintenance of neuropathic
pain, not only in HIV-related neurological injury, but in spinal or
sciatic nerve injury and trigeminal neuropathic pain (Ji et al.,
2013; Inoue and Tsuda, 2018; Xin, 2019). In response to HIV
infection, the rapid activation of microglia may also release
neurotoxic factors, including proinflammatory cytokines such

as TNFα, IL-1β, IL-6 (Milligan et al., 2001a; Schoeniger-Skinner
et al., 2007; Liu et al., 2016), chemokines such as monocyte
chemoattractant protein-1 (MCP-1), fractalkine (FKN) (Zhao
et al., 2017; Ru et al., 2019), excitatory amino acids (Porcheray
et al., 2006; Tian et al., 2012), nerve growth factors such as brain-
derived neurotropic factor (BDNF) (Wang et al., 2017), and
reactive oxygen species (Patrizio and Levi, 1994; Holguin
et al., 2004). These factors modulate neuroinflammation,
which plays an important role in neuropathic pain
maintenance compared with systemic inflammation (Ji et al.,
2016). In an HIV-1SF162 infected primary human microglial
model, El-Hage et al. showed the secretion of IL-8, IL-6, MCP-1,
TNFα, and CCL5 is increased in cell culture supernatants (El-
Hage et al., 2015). P2X7, a subtype of ionotropic P2X receptors, is
stimulated by extracellular ATP signals and involved in
neuropathic pain. After nerve injury, P2X7 mRNA is
predominantly expressed in spinal microglia (Kobayashi et al.,
2011). The release/production of IL-1β by microglia may be
related to overexpression of the purinergic P2X7 receptor,
which is associated with microglial activation and proliferation
(Monif et al., 2016). These cytokines collectively shape the
inflammatory response to HIV infection, form a persistent
pathological change, and then promote the occurrence of
central sensitization in neuropathic pain underlying PLWH.

PLWH suffering from neuropathic pain may have a decrease
in the epidermal nerve fiber density as well as neurodegenerative
changes (Phillips et al., 2014; Yuan et al., 2014; Mawuntu et al.,
2018). Synapse loss often occurs in pain-positive HIV patients.
Intrathecal injection of gp120 in the spinal dorsal horn causes a
significant decrease of synapse markers such as synapsin I (Syn I),
postsynaptic density-95 (PSD-95), and NMDA receptor subunit 1
(NR1). These results suggest that synaptic degeneration is closely
connected with HIV-related neuropathic pain (Yuan et al., 2014).
Microglia modulate the formation of neuronal synapses and
regulate neuronal activity via phagocytosis (Paolicelli et al.,
2011; Hong et al., 2016). FKN/CXC3R1 (an FKN receptor
predominantly expressed in microglia) signaling-mediated
neuron-microglia cross-talking plays a critical role in HIV
infection-induced synaptic degeneration (Ru et al., 2019). In
gp120-treated primary cortical cultures, the expression of the
FKN protein in neurons was gradually upregulated over time.
Knockout of CX3CR1 restored gp120-induced alteration in
synaptic proteins such as PSD-95 and Syn I. This process was
triggered by the Wnt/β-catenin pathway. Gp120 induces FKN
expression and synapse loss viaNMDA receptor activation which
is often thought to participate in the procedure of presynaptic
inhibitory (Lotankar et al., 2017). The NMDAR antagonist APV,
Wnt/β-catenin signaling suppressor DKK1, or knockout of
CX3CR1 alleviates gp120-induced mechanical allodynia in
mice, suggesting that the Wnt/β-catenin-FKN/CX3CR1
pathway mediates synaptic degeneration associated with HIV
neuropathic pain (Ru et al., 2019). The FKN/CX3CR1 pathway is
also discussed in recent review of Huang et al. toughly (Huang
et al., 2020).

Astrocytes are numerous CNS glial cells, contributing actively
to the formation and maintenance of BBB, and form an intricate
crosstalk with neurons and immune cells by neurotransmitters,
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inflammatory cytokines or chemokines. (Rothhammer and
Quintana, 2015; Ben and Rowitch, 2017; Linnerbauer et al.,
2020). Similarly, astrocyte infected by HIV is generally non-
productive but of which reaction is more persistent and occurs
in more painful conditions in spinal cord compared with the
rapid and dramatic microglial reaction (Gorry et al., 2003; Ji et al.,
2018). Astrocytes are activated by gp120 and Tat to produce
inflammatory cytokines such as TNFα, IL-1 and IL-6, the
chemokine CCL5, and constitutive nitric oxide synthase
(cNOS), which is a mediator for the production of pain
facilitation (Togashi et al., 1997; Milligan et al., 2001b; Shah
et al., 2011a; Shah et al., 2011b; Zheng X. et al., 2011; Sanchis et al.,
2020). These chemicals facilitate neuropathic pain via influencing
the microenvironment that is essential for neuronal and glial
function. The process could be bilateral. For instance, increased
TNFα induced MCP-1 expression in spinal cord astrocytes in a
JNK-dependent manner, and its production could promote
astrocyte glutamate release, both indicating the development of
mechanical allodynia (Bezzi et al., 2001; Gao et al., 2010).
Reciprocally, astrocytes control the transcriptional programs of
microglia and CNS-infiltrating monocytes in a non-cell
autonomous manner by regulating granulocyte-macrophage
colony-stimulating factor (GM-CSF) (Mayo et al., 2014).

Oligodendrocytes are generally considered as myelinating cells
of providing continuous metabolic and trophic support to
neurons, believed to be simply victims of the inflammatory
reaction (Nave and Trapp, 2008; Zeis and Schaeren-Wiemers,
2008). However, a growing body of evidence suggests that
oligodendrocytes take a more active part in
immunomodulatory process. It has been reported that
oligodendrocytes express cytokines (IL-17A, IL-18, IL-6)
(Cannella and Raine, 2004; Tzartos et al., 2008; Ramesh et al.,
2012), chemokines (MCP-1, CCL5) (Balabanov et al., 2007;
Moyon et al., 2015), complement (C2, C3) (Hosokawa et al.,
2003) to participate the communication network between
microglia and astrocytes. A study indicates that activation of
microglia is followed by astrocyte activation which contributes to
oligodendrocyte cell death. This tri-glial dysregulation is
dependent on microglia (Gibson et al., 2019). In pain-positive
HIV patients, cell markers of the oligodendrocyte lineage,
including NG2, PDGFRα, and Olig2, are significantly
increased (Shi et al., 2016). These evidences reveal that the
activation of the network among microglia, astrocytes
and oligodendrocytes is the important neuropathic pain
mechanism (Figure 2).

Peripheral Sensitization
Peripheral nerves are the origin of almost all forms of neuropathic
pain (Ramesh et al., 2013). In response to viral infection or
peripheral nerve injury, resident macrophages and peripheral glia
cells are early activated prior to central ones, exhibiting diverse
mechanisms that lead to peripheral sensory neurons sensitization
(Ji et al., 2016). As discussed by Addis et al., macrophages traffic
to DRG and shape the peripheral neuron inflammatory milieu
after HIV infection. By recruiting T helper type 1 (Th1) cells or
Th2 cells, macrophages display pro-inflammatory (M1) or pro-
resolution (M2) phenotype (Addis et al., 2020). M1 macrophages

are characterized by high expression of pro-inflammatory
cytokines such as TNFα, IL-6, IL-1β, which induce local
neuro-inflammation, leading to the establishment of
neuropathic state. Reversely, M2 macrophages produce anti-
inflammatory cytokine IL-10. The enhancement of IL-10
expression or inhibition of M1 macrophages could attenuate
or abolish the neuropathic pain state (Kiguchi et al., 2017;
Fonseca et al., 2019; Iwasa et al., 2019). Schwann cells are
important glial cells in the peripheral nervous system, which
act as insulators of axons. Not only Schwann cells provide
metabolic and trophic support for peripheral nerve, but also
modulate response to nerve injury (Kim et al., 2018; Sasaki et al.,
2018). Though previous works about gp120 interacts with
Schwann cells inducing subsequently release of chemokines,
resulting in apoptosis of DRG via CCR5 (Keswani et al., 2003;
Melli et al., 2006). Recent studies have aroused interests in the
function of Schwann cells in HIV-related neuropathic pain from a
new perspective. After T-cell line tropic X4 strain gp120
application (infects T-cell lines via CXCR4 but not
macrophages), circulating macrophage infiltration into the
peripheral nerves induces neuropathic pain. This phenomenon
could be caused by the expression of CXCL1, a chemoattractant
of macrophages and neutrophils, which is derived from gp120-
treated cultured Schwann cells but not neurons (Ntogwa et al.,
2020). Furthermore, gp120 increases lysosomal exocytosis and
enhances release of ATP in primary human Schwann cells by the
activation of P2X4 cationic channels. As a consequence, gp120-
induced lysosomal exocytosis of ATP in Schwann cells elevated
intracellular Ca2+ in DRG neurons, leading to HIV-related
neuropathic pain (Datta et al., 2019). Satellite glial cells
(SGCs) surround the bodies of DRG neurons and form close
shells via gap junctions (Hanani, 2005; Costa and Moreira, 2015).
SGCs contribute to neuropathic pain in a way that produce
cytokines like IL-1β, matrix metalloprotease-2 (MMP-2)
(Kawasaki et al., 2008) and modulate the expression of
ionotropic P2X receptors and metabotropic P2Y receptors like
P2X4, P2X7, P2Y12 (Chen et al., 2008; Yi H. et al., 2018; Zhao
et al., 2019).

Antiretroviral Drugs Lead to Neuropathic
Pain
The development and increased availability of HAART have
dramatically reduced HIV-related morbidity and mortality,
restricting HIV as a chronic, inflammatory disease. The
prolonged use of cART is associated with the development of
neurological disorders despite decreased HIV loads (Brew et al.,
2009; Madden et al., 2020). One common neurological disorder
induced by side-effect of cART is neuropathic pain.

Certain NRTIs including stavudine (d4T), zidovudine (AZT),
didanosine (ddI), and zalcitabine (ddC) are neurotoxic and
pivotal for inducing neuropathic pain (Manji, 2000; Yuan
et al., 2018). D4T and ddC are notorious among these
NRTI drugs and their toxicity has been studied both
in vitro and in vivo. D4T is widely used as the first-line
regimen in low-income countries with limited resources
(Loubiere et al., 2010; Asgedom et al., 2020). D4T-based ART
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increases the risk of peripheral neuropathy, hyperlactatemia,
and other diseases (Menezes et al., 2011). Intraperitoneal
injection of d4T or ddC in rat induced mechanical allodynia
and cold allodynia (Wallace et al., 2007; Zheng W. et al., 2011;
Sanna et al., 2016). Recent study reveals that the expression of 135
genes in mice given injection of ddC has significant changes
mainly enriched in regulation of transcription, multicellular
organism development, and cell differentiation via
transcriptome sequencing (Wu et al., 2021). Exposure to ddC
upregulates the pro-nociceptive chemokine MCP-1, stromal cell-
derived factor-1 (SDF-1), and TNFα in DRG (Bhangoo et al.,
2007; Wallace et al., 2007; Zheng X. et al., 2011). AZT/
lamivudine/d4T administration in mice increased TNFα, IL-1β
and IL-6 in various CNS regions via a Wnt5a-dependent
mechanism (Wu et al., 2017). A direct evidence reported by
Yuan et al. suggests that ddC induces neuroinflammation in the
spinal cord, with the up-regulation of TNFα and IL-1β. It
activates astrocytes and microglia, resulting in allodynia in
mice model, which is regulated by spinal Wnt5a (Yuan et al.,
2018).

PIs are another cause of neuropathic pain. In HIV seropositive
patients, indinavir, saquinavir, and ritonavir are associated
with neuropathic pain, and indinavir shows selective
cytotoxicity to macrophages in DRG, inducing neuronal
atrophy and neurite retraction (Pettersen et al., 2006). Adult
rats treated with indinavir develop hind paw mechanical
hypersensitivity independent of HIV infection. Treatment with
PI activates microglia in the lumbar spinal dorsal horn by
inducing the phosphorylation of p38 in microglia, which
mimics the clinical features of PI-treated HIV patients (Huang
et al., 2017).

Future Perspective
The prevalence of neuropathic pain varies widely among HIV
populations. Take those influence factors described in the
chronic pain research into consideration, including gender,
race, PI or neurotoxic NRTI drugs usage and cART regimens,
high stand of screening criteria and methods should be
established to obtain a more accurate epidemiology data. As
most works are done by intrathecal injection of gp120 in rat

FIGURE 1 |Gp120 binds to the CXCR4 receptor, and then triggers a series of downstream cellular signaling events involving TNFα/CREB/NMDAR,Wnt/β-catenin/
FKN,Wnt5a/JNK/CAMKII and PLC/PKC/caspase 3 signal pathway. The interaction between neurons andmicroglia in response to infection induces neuropathic pain via
different mechanisms. A. Stimulated by gp120, microglia up-regulate TNFα in a way of paracrine, TNFα/TNFR1 signal results in the accumulation of reactive oxygen
species in mitochondria, which induced the phosphorylation of CREB triggering the pC/EBP (Zhang et al., 2004). C/EBP promotes recycling of NMDAR regulating
the concentration of Ca2+ intracellularly (Wang et al., 2013; Hansen et al., 2018). B. FKN specifically expressed in neurons is upregulated by gp120, which activates
microglia through CX3CR1. C. Transcription of Wnt5a is increased after gp120 application, stimulate the production of inflammatory cytokines in a paracrine fashion.
Wnt5a/JNK is critical for TNFα expression, whereas Wnt5a/CaMKII is necessary for IL-1β and P2X7R is another factor predominant in driving IL-1β release. The
expression of IL-6 is co-regulated by both pathways. D. Exposure of neurons to gp120 produces transient outward K+ currents in a PKC-dependent manner. The
alteration of intracellular K+ homeostasis leads to neuronal apoptosis by activation of caspase-3. PLC, phospholipase C; DAG, diacylglycerol; PKC, protein kinase C;
Casp 3, caspase 3; Fzd2, Frizzled family receptor 2; Ror2, receptor tyrosine kinase-like orphan receptor 2.
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model to simulate the neuropathic pain state in PLWH, which is
an exogenous stimulus originated from HIV envelope proteins,
whether this method could actually present the
neuroinflammation occurs in pain-positive patients is still
remain discussion. Actually, immune cells express
inflammation modulatory factors (e.g., IL-10 and IL-27)
during different phases of HIV infection (Soare et al., 2019).
IL-27 receptor, expressed by macrophage, microglia, and
astrocytes of the sensory ganglia and spinal cord, its
activation has the function of counteracting neuropathic pain
(Fonseca et al., 2019). Therefore, both pro-inflammation and
anti-inflammation are processing simultaneously between
immune cells. It is interesting to investigate the crosstalk
between microglia, astrocytes and oligodendrocytes during
HIV infection resulting neuropathic pain, which microglia
could play a center role of the neuroinflammation. The
cellular tropism of HIV strains applicated in the experiment is
neglected in the early work. But the study of Ntogwa et al. raises
an important question that the signal pathway activated by X4
gp120 between Schwann cells and macrophages is not involved
in the development of R5 gp120-induced neuropathic pain. The

role of macrophage in X4 gp120-induced neuroinflammation is
not yet fully understood (Ntogwa et al., 2020). It will be critical to
do more researches about the neuroinflammation during HIV
infection, and identify important targets to design related
medication for blocking the progression of neuropathic pain.

AUTHOR CONTRIBUTIONS

HL and YF wrote this review manuscript. QW and ZZ designed
and supervised this manuscript.

FUNDING

This study was supported by the National Natural Science
Foundation of China (Grant Nos. NSFC 31970938, 81571070),
and the Natural Science Research Program of Jiangsu Province
(Grant No. BK20191448), the Qing Lan Project, and the Innovation
and Entrepreneurship Training Program for College Students in
Jiangsu Province (Grant No. 201810304029Z).

FIGURE 2 | Schematic diagram for the interaction between microglia, astrocytes and oligodendrocytes in neuroinflammation. Stimulated by pathogen or injury, the
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neuroinflammation in CNS, leading to central sensitization. Conversely, there are some factors (e.g., TGF-β, IL-10) that attenuate the development of neuroinflammation,
serving the function of neuroprotection. TGF-β: transforming growth factor-β; INFγ: interferon γ.
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