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Abstract

Target prediction and virtual screening are two powerful tools of computer-aided drug design. Target identification is of great signifi-
cance for hit discovery, lead optimization, drug repurposing and elucidation of the mechanism. Virtual screening can improve the hit
rate of drug screening to shorten the cycle of drug discovery and development. Therefore, target prediction and virtual screening are of
great importance for developing highly effective drugs against COVID-19. Here we present D3AI-CoV, a platform for target prediction
and virtual screening for the discovery of anti-COVID-19 drugs. The platform is composed of three newly developed deep learning-
based models i.e., MultiDTI, MPNNs-CNN and MPNNs-CNN-R models. To compare the predictive performance of D3AI-CoV with other
methods, an external test set, named Test-78, was prepared, which consists of 39 newly published independent active compounds
and 39 inactive compounds from DrugBank. For target prediction, the areas under the receiver operating characteristic curves (AUCs)
of MultiDTI and MPNNs-CNN models are 0.93 and 0.91, respectively, whereas the AUCs of the other reported approaches range from
0.51 to 0.74. For virtual screening, the hit rate of D3AI-CoV is also better than other methods. D3AI-CoV is available for free as a web
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application at http://www.d3pharma.com/D3Targets-2019-nCoV/D3AI-CoV/index.php, which can serve as a rapid online tool for
predicting potential targets for active compounds and for identifying active molecules against a specific target protein for COVID-19
treatment.

Keywords: D3AI-CoV, COVID-19, deep learning, target prediction, virtual screening

Introduction
COVID-19 caused by SARS-CoV-2 has become a global
pandemic [1–3]. As of 28 December 2021, there have
been more than 270 million fatalities caused by the
virus [4]. Although the vaccines against COVID-19 have
shown great success, immune escape is becoming a real
threat as new variants of the virus are emerging from
time to time [5, 6]. Besides, there are eight other coron-
aviruses regarded as potential health threats, viz., severe
acute respiratory syndrome coronavirus (SARS) in 2003,
Middle East respiratory syndrome coronavirus (MERS) in
2012, human betacoronavirus 2c EMC/2012, human coro-
navirus 229E, feline infectious peritonitis virus, human
coronavirus OC43, human coronavirus NL63 and human
coronavirus HKU1. Therefore, identifying effective drug
targets and developing effective drugs accordingly to
cure COVID-19 as well as other coronaviruses are of great
importance.

At the beginning of the COVID-19 outbreak, we devel-
oped a web server, namely D3Targets-2019-nCoV (http://
www.d3pharma.com/D3Targets-2019-nCoV/index.php),
for target prediction and virtual screening against
COVID-19. The server is composed of two modules, a
structure-based module named D3Docking [7, 8] and
a ligand-based module named D3Similarity [9]. Other
computational tools were also developed for combating
COVID-19 e.g., COVID-19 Docking Server [10], Shennong
[11], DockThor-VS [12], Virus-CKB [13], MolAICal [14] and
REDIAL-2020 [15]. However, structure-based approaches
are in general limited by the availability of their
three-dimensional structures, whereas ligand-based
approaches are usually hard to reveal the ligand–protein
interactions.

Artificial intelligence (AI), especially deep learning
(DL), has been applied successfully to drug discovery
and design, and it has shown its strength in improving
the accuracy. For example, Atomwise, the first DL-
based technology for discovering drugs [16], has been
successfully applied to discover hit compounds for more
than 80 targets. With IBM Watson [17], Pfizer carried
out its immuno-oncology drug discovery program at
high efficiency [18]. Stokes developed a DL-based model
that has identified eight antibacterial compounds from
the ZINC15 database [19]. Zhavoronkov developed a
deep model (GENTRL) for discovering potent inhibitors
of discoidin domain receptor 1 [20]. Likewise, DL also
played a key role during the COVID-19 pandemic. For
example, Deep Docking has been applied to discover
hits against SARS-CoV-2 Mpro from 1.3 billion com-
pounds [21]. COVIDVS-3 DL-based model was used to
screen 4.9 million drug-like molecules from the ZINC15
database, discovering a compound as the inhibitor of the
3C-like protease of SARS-CoV-2 [22]. Through DL and AI,
baricitinib, atazanavir and other antiviral agents against

hepatitis C have been identified as effective anti-COVID-
19 agents [23–25]. Apart from the compounds mentioned
above, Zhang et al. have discovered 26 herbal plants
containing anti-COVID-19 ingredients using molecular
docking and network pharmacology analysis [26].

Recently, we developed a multimodal drug–target
interaction (DTI) prediction model, ‘MultiDTI’ [27], which
projects drug, target, side effect and disease nodes in the
heterogeneous network into a common space. If a drug
and a target are connected by an edge, the Euclidean
distance between them in the common space is adjusted
to be closer. A prediction layer is designed to predict the
DTI score based on the distance between the drug and
the target in the common space. In addition, the graph
neural network performs well in analyzing graph- or tree-
like structures and can extract the contextual informa-
tion contained in graph neighborhoods. Molecules can
be regarded as molecular graphs, with atoms as nodes
and bonds as edges. As a kind of graph neural network,
Message Passing Neural Networks (MPNNs) outperform
fingerprint-based methods in predicting the properties
of small molecules [28, 29]. Therefore, MPNNs might be
a complementary approach to MultiDTI.

Considering both the limitations of the conventional
structure-based or ligand-based approaches and the
unique advantages of DL, we utilized the two approaches
in this study to construct MultiDTI and MPNNs-CNN
[29, 30] models for target prediction and MPNNs-CNN-
R for virtual screening against COVID-19. Together with
a validation using an external test, it was found that
the accuracy and the efficiency of target prediction and
virtual screening with the newly developed DL-based
models are tremendously improved in comparison with
existing methods.

Materials and methods
Preparation of database including all compounds
against pathogenic coronaviruses
Through literature search, a total of 842 molecules with
potential activity against nine pathogenic coronaviruses
are currently collected in our database. All molecules
and their related information in the database are
downloadable in sdf format from the http://www.d3
pharma.com/D3Targets-2019-nCoV/CoViLigands/index.
php webpage. The database will be continuously updated
in the future.

Preprocessing of small molecules and protein
targets
Firstly, all compound–target pairs collected in our
database were used as training set. The canonical simpli-
fied molecular-input line-entry system (SMILES) files of
all small molecules in the training set were prepared
by using Open Babel [31]. The sequence files of all
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target proteins in the training set were downloaded from
the uniprot website [32]. Secondly, all the compounds
and target proteins in the training set were indexed.
An interaction network was formed between all the
compounds and their targets. 0 and 1 were used to
represent the interaction between the compounds and
the targets in the network. In detail, 0 means there is
no interaction between the compound and the target,
1 means there is interaction. The interaction network
between the compounds and the targets in the training
set was used as the input data for model training.

MultiDTI model for target predicting
We constructed a DTI network, in which the compounds
were represented by SMILES and targets were repre-
sented by sequence. The drugs and targets were pro-
jected into a multimodal common space after obtaining
the embedding representation of SMILES and protein
sequence. Compound–target pair connected by an edge
in the DTI network would have smaller Euclidean dis-
tance in the multimodal common space. In detail, n-
gram embedding technology was used to obtain ‘words’
of SMILES and protein sequence. We constructed a com-
pound dictionary and a protein dictionary based on all
SMILES and protein target sequences in DrugBank and
DTI networks. SMILES and protein sequence were vector-
ized according to the dictionary. A three-layer convolu-
tional neural networks (CNN) was applicated to obtain
the regional embedding of each ‘word’ in SMILES and
protein sequence. Next, multiple down-sampling resid-
ual layers were used to extract more global information.
The multilayer perceptron was used to project the repre-
sentations of drugs and targets into the common space.
At last, the Euclidean distance between drug and target
in the common space was converted to predicting score.
The model continuously adjusts the Euclidean distance
between drugs and targets in the common space during
the training process based on the compound–target pairs
in the training set. The final model is the projection of
the DTI network in a multimodal common space. The
framework of MultiDTI model is illustrated in Figure 1A.
With the purpose of selecting the best architecture to be
used in MultiDTI, we tried to use CNN and RNN to extract
features for SMILES and FASTA, respectively. As shown in
Table S1, the accuracy of CNN (0.86–0.90) is significantly
better than that of RNN (0.47–0.52). Next, we also trained
and tested models for different CNN layers (Table S2).
At the end, we selected three-layers CNN and multiple
residual layers to extract features since its performance
was better than others.

Classification model for target predicting
Compared with MutiDTI model, we used MPNNs to
extract the features of small molecules, and then
used classification algorithms to explore the potential
relationship between all active compounds against
pathogenic coronaviruses and their targets. In detail, as
shown in Table S3, the atom characteristics including
the atom type, the number of atomic bonds, the formal

charge, chirality and aromaticity as well as the bond
characteristics including the bond type and cis–trans
isomerism were obtained by RDKit package [33] and
were mapped to tensors. The atoms in the molecule are
regarded as nodes and the bonds are regarded as edges.
Thereby, a molecule can be represented as a network
graph containing a lot of chemical information. In this
MPNNs model, after a message passing phase and a
readout phase, a molecule as a graph could be extracted
as a feature vector that can represent the molecular
structure. Meanwhile, as for target protein, we used
CNN to extract their feature vectors. Finally, multilayer
perceptron and logistic algorithm were constructed to
discover potential connections between the compounds
and targets. The framework of the MPNNs-CNN model is
illustrated in Figure 1B.

Regression model based on activity for virtual
screening
Target prediction of the compounds with known activity
is helpful for further structural modification, whereas
virtual screening is useful for hit discovery. Thereby,
we normalized the activity data of all compounds
with known targets in the database. We set 100 μM
as the threshold for compound–target interaction. The
normalized function was as follows:

score = 2– lg
(
activity

)
(1)

where activity represented the activity data of com-
pounds against pathogenic coronaviruses in the experi-
ment, the unit was μM. Similar to classification model for
target predicting, MPNNs and CNN were used to extract
features of small molecules and protein targets, respec-
tively. Multilayer perceptron and regression algorithm
were constructed to discover potential relationships
between compound–target pairs and their bioactivity.

System training and test procedures
For each model, all drug–target pairs in the interaction
network were used as the dataset for model training
and validation. Furthermore, due to the finding of there
being a drastic difference between the number of positive
drug–target pairs and negative pairs, we oversampled
the positive samples by 10 times so as to increase the
generalization ability of the models. Next, we carried
out 10-fold cross-validation on the prepared drug–
target pairs. In detail, 90% of sample pairs selected by
stratified sampling were used as training data, and the
remaining 10% of samples were used for validation. Each
model was optimized by mini-batch gradient descent
method. Backpropagation strategy was used to update
parameters of the models. Weight decay and dropout
method were used in all our models to prevent the neural
network from overfitting. To further test the generaliza-
tion performance of each model, we collected 39 active
compounds against COVID-19 and their targets informa-
tion from the latest published literatures. In addition, we
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Figure 1. Frameworks of D3AI-CoV. (A) The framework of MultiDTI model, a three-layer convolutional neural network and multiple down-sampling
residual layers is used to extract features of SMILES and protein amino acid sequence, and multilayer perceptron is used to project the representations
of drugs and targets into the common space. (B) The framework of MPNNs-CNN model, MPNNs and CNN is used to extract features of compound SMILES
and protein sequence, respectively. Multilayer perceptron and logistic algorithm were used to predict potential connections between compounds and
targets.

randomly selected 39 Food and Drug Administration
(FDA)-approved drugs from the DrugBank [34] based on
the molecular weight range of the 39 active compounds
and randomly paired them with the protein targets in
the database. Accordingly, a dataset, namely Test-78,
was constructed based on the 78 compounds for testing
the predictive ability of the MultiDTI model and the
MPNNs-CNN model, and for comparing D3AI-CoV with
other methods. The structures of the 78 compounds are
shown in Table S4. And Table 1 summarizes the training,
validation and testing datasets.

Performance test metrics
Six performance indicators, viz., area under the curve
(AUC), area under the precision-recall curve (AUPR), Acc,
Pre, Recall and F1, were used to evaluate the two models
for target predicting. Pearson correlation and concor-
dance index were used to evaluate the regression model
for virtual screening. AUC and AUPR were obtained based

on the area under the curve, and the other indicators are
defined as follows:

Acc = TP + TN
TP + FP + TN + FN

(2)

Pre = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

where TP (True Positive) and TN (True Negative) represent
the numbers of correctly predicted positive and negative
samples, respectively. FP (False Positive) and FN (False
Negative) represent the numbers of wrong predicted pos-
itive and negative samples.

Pearson correlation = N
∑

xiyi − ∑
xi

∑
yi√

N
∑

x2
i − (∑

xi
)2

√
N

∑
y2

i − (∑
yi

)2
(6)
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Table 1. Summary of datasets used for training, validation and
testing

Training and validation dataset (10-fold cross-validation)

Number of the data Percentage of the data

Training 24 336 90%
Validation 1352 10%
Test-78

Number of the data Percentage of the data
Positive test set (from
literatures)

39 50%

Negative test set
(from DrugBank)

39 50%

where N represents the number of all samples. xi and
yi represent the labels and predicted values of samples,
respectively.

Concordance index =
∑

i,j 1Tj<Ti
· 1ηj>ηi

· δj∑
i,j 1Tj<Ti

· δj
(7)

where ηi represents the risk score of a unit i, 1Tj<Ti
means

1Tj<Ti
= 1 if Tj < Ti else 0, 1ηj>ηi

means 1ηj>ηi
= 1 if ηj > ηi

else 0.
To evaluate the virtual screening abilities of various

methods, we proposed the concept of hit rate. For exam-
ple, the Test-78 contains x compounds targeting 3C-like
protease, and the number of 3C-like protease inhibitors
among the top x in the virtual screening result is y.

hit rate = y
x

(8)

The workflow
Based on all active compounds against the nine patho
genic coronaviruses in the database, we trained three DL-
based models for target prediction and virtual screen-
ing. For the MultiDTI model, n-gram was used to obtain
‘words’ of SMILES. A three-layer CNN and multiple down-
sampling residual layers were used to extract features of
SMILES. The SMILES was then projected to the trained
multimodal common space by using multilayer percep-
tron. Target prediction was achieved by calculating the
Euclidean distance between the molecule and all tar-
gets in the multimodal common space. For classification
model, we used MPNNs to extract the features of small
molecule submitted by user. The features were used as
classification model input for target prediction.

For user convenience, we developed a webserver,
named D3AI-CoV. By submitting small molecules, canon-
ical SMILES files will be generated with Open Babel, and
the predicted target proteins of the submitted molecules
will be displayed on the web page. The workflow was
illustrated in Figure 2.

Results and Discussion
Expanded database of the active compounds
against nine pathogenic coronaviruses
Many active compounds against various coronaviruses
have been reported since the SARS outbreak in 2003. As
for COVID-19, numerous active compounds at the cellu-
lar level or in vivo have been discovered but their targets
are still unknown. For example, clofazimine, which has
been approved as an antileprosy drug by the US FDA,
has been found active in treating COVID-19 cases when

Figure 2. The workflow of D3AI-CoV for target prediction.
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Figure 3. Overview of the database CoViLigands. (A) The interactive diagram categorizes the database according to virus types. (B) Enlarged view of (A).
(C) Interactive fan diagram based on all targets in the database.

combined with remdesivir [35]. Rosenke et al. reported
that an orally administered nucleoside analog, MK-4482,
can inhibit SARS-CoV-2 in vivo [36]. The experiment data
of MK-4482 in animals indicate that it is a promising
drug to cure COVID-19. 25-Hydroxycholesterol has been
reported as a potent SARS-CoV-2 inhibitor [37], its EC50

and the ideal safety profile show potential for further
clinical development for COVID-19 treatment. Jan et al.
have screened >3000 agents, 15 of which have been
identified as inhibitors of SARS-CoV-2 in concentrations
ranging from 0.1 nM to 50 μM [38], but no clear target
information is available for the 15 inhibitors. Besides,
some other drugs such as AT-527 [39], X-206 [40] and
ACA [41] are also promising for the treatment of COVID-
19, but without clear target information. Apart from
chemical drugs, extracts of Ganoderma lucidum (RF3), Per-
illa frutescens, and Mentha haplocalyx have been found
effective against SARS-CoV-2 infection [38]. Glycyrrhizin,
a common Chinese herbal medicine, is an efficient and
safe natural compound to inhibit SARS-CoV-2 and SARS
[42, 43], but without target information either.

After careful review of the literature, we found
842 bioactive molecules and 29 targets against the 9

pathogenic coronaviruses. We collected the information
of the 842 compounds, including molecular structures,
bioactivities, target proteins, coronavirus types and crys-
tal structures. As shown in Figure 3A, we classified all the
active compounds in CoViLigands according to the virus
types and made an interactive interface for easy view on
the webserver. As shown in Figure 3C, all compounds
were classified according to their targets. Details of
ligand structures and the associated information of all
compounds are provided on the webpage.

Dual inhibitors in the database
Pathogenic coronavirus invasion is a very complex bio-
chemical process, which involves interactions between
multiple viral proteins and human proteins. For example,
the interactions between the spike protein of SARS-CoV-2
and the angiotensin-converting enzyme 2 of human cells,
together with the cell surface serine protease TMPRSS2,
play an important role in virus invasion. RNA synthesis
of coronaviruses is performed by RNA-dependent RNA
polymerase. 3C-like protease and papain-like protease
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Table 2. Dual inhibitors in D3AI-CoV database

Mol ID Structure Target and Activity PMID

ICV361 3C-like protease (3CLpro/Mpro)
SARS 3CL(IC50 = 24.8 μM)

Papain-like protease (PLpro)
SARS PL(IC50 = 10.7 μM)

22 884 354

ICV362 3C-like protease (3CLpro/Mpro)
SARS 3CL(IC50 = 21.1 μM)

Papain-like protease (PLpro)
SARS PL(IC50 = 9.2 μM)

22 884 354

ICV363 3C-like protease (3CLpro/Mpro)
SARS 3CL(IC50 = 38.7 μM)

Papain-like protease (PLpro)
SARS PL(IC50 = 8.8 μM)

22 884 354

ICV364 3C-like protease (3CLpro/Mpro)
SARS 3CL(IC50 = 14.4 μM)

Papain-like protease (PLpro)
SARS PL(IC50 = 4.9 μM)

22 884 354

ICV365 3C-like protease (3CLpro/Mpro)
SARS 3CL(IC50 = 21.1 μM)

Papain-like protease (PLpro)
SARS PL(IC50 = 30 μM)

22 884 354

ICV366 3C-like protease (3CLpro/Mpro)
SARS 3CL(IC50 = 9.35 μM)

Papain-like protease (PLpro)
SARS PL(IC50 = 24.1 μM); MERS
PL(IC50 = 14.6 μM)

29 289 665
32 272 481

ICV368 3C-like protease (3CLpro/Mpro)
MERS 3CL(IC50 = 36.2 μM)

Papain-like protease (PLpro)
MERS PL(IC50 = 42.1 μM)

28 112 000

(Continued)
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Table 2. Continued

Mol ID Structure Target and Activity PMID

ICV371 3C-like protease (3CLpro/Mpro)
SARS 3CL(IC50 = 30.2 μM) MERS
3CL(IC50 = 34.7 μM)

Papain-like protease (PLpro)
MERS PL(IC50 = 48.8 μM)

28 112 000

ICV403 Spike protein (S protein) Membrane protein
(M protein)

17 704 516
17 560 666

ICV646 PI3K
SARS-CoV-2
(IC50 = 0.014 μM) Caco2

mTORC1/2 SARS-CoV-2
(IC50 = 0.014 μM) Caco2

32 877 642

ICV648 RAF
SARS-CoV-2
(IC50 = 0.6 μM) Caco2

MEK
SARS-CoV-2
(IC50 = 0.6 μM) Caco2

32 877 642

ICV693 p-glycoprotein 1 TMEM16 33 248 195
21 573 958
33 452 205
33 827 113

(Continued)
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Table 2. Continued

Mol ID Structure Target and Activity PMID

ICV729 3C-like protease
(3CLpro/Mpro)
SARS-CoV-2
3CL(Kd = 1.1 μM,
IC50 = 13.4 μM)

TMPRSS2
SARS-CoV-2
TMPRSS2(Kd = 1.77 μM,
IC50 = 2.31 μM)

33 415 017

ICV734 3C-like protease
(3CLpro/Mpro) SARS-CoV-2
3CL (IC50 = 19.2 μM)

Papain-like protease
(PLpro) SARS-CoV-2 PL
(IC50 = 15.3 μM)

33 526 482

ICV735 3C-like protease
(3CLpro/Mpro) SARS-CoV-2
3CL (IC50 = 10.4 μM)

Papain-like protease
(PLpro) SARS-CoV-2 PL
(IC50 = 14.2 μM)

33 526 482

are necessary for the reproduction and release of the
coronavirus.

Dual inhibitors can target two targets in the virus
life cycle, thereby inhibiting the coronaviruses more
efficiently in principle. So the development of dual
inhibitors is a novel strategy for the treatment of
COVID-19. There are also some dual inhibitors against
pathogenic coronaviruses in our database as shown
in Table 2. For example, Wang et al. identified ICV729
as a potent dual inhibitor of both SARS-CoV-2 3C-
like protease and TMPRSS2 [44], with IC50 values of

13.4 μM and 2.31 μM, respectively. ICV693 is effective
against SARS-CoV-2 by inhibiting TMEM16 proteins [45],
whereas previous research reported that p-glycoprotein
was also the target of ICV693 [46]. So ICV693 may be a
dual inhibitor against COVID-19. Besides, growth factor
receptor (GFR) signaling is a central pathway necessary
for SARS-CoV-2 replication. The dual phosphatidylinos-
itol 3-kinase (PI3K)/mammalian target of rapamycin
(mTOR) inhibitor ICV646 and dual rapidly accelerated
fibrosarcoma (RAF)/mitogen-activated protein kinase
kinase (MEK) inhibitor ICV648 can prevent SARS-CoV-
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Table 3. Introduction of active compounds against SARS-CoV-2 in vivo in D3AI-CoV database

Mol ID Structure Activity PMID

ICV487 MERS(EC50 = 7.42 μM) Vero E6
SARS(EC50 = 15.55 μM) Vero E6
SARS-CoV-2(IC50 = 3.2 μM) Vero E6

24 841 273
33 452 205

ICV494 SARS(EC50 = 0.048 μM) Vero
SARS-CoV-2(IC50 = 3.3 μM) Vero E6

15 144 898
33 452 205

ICV619 SARS-CoV-2(EC50 = 3.68 μM) Vero 32 811 977

ICV732 SARS-CoV-2 (IC50 = 1.62 nM)
Pneumocyte-like cell SARS-CoV-2
(IC50 = 0.7 nM) Vero E6

33 495 306

ICV745 Clinical trials
(NCT04405570/NCT04405739)

33 273 742

(Continued)
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Table 3. Continued

Mol ID Structure Activity PMID

ICV754 SARS-CoV-2 3CL (IC50 = 15.2 nM)
SARS-CoV-2 (EC50 = 35.3 nM) Huh7 cell 33 602 867

ICV775 SARS-CoV-2 3CL (IC50 = 17.2 nM)
SARS-CoV-2 (EC50 = 31 nM) Huh7 cell

33 602 867

ICV835 SARS-CoV-2 TMPRSS2 (IC50 = 0.19 μM) 33 844 653

ICV841 SARS-CoV-2 (EC50 = 0.31 μM) Vero E6 33 727 703

2 replication by inhibiting GFR signaling [47]. ICV403 can
target the spike protein and membrane protein so as to
prevent the virus from invading. ICV361-ICV366, ICV368
and ICV371 can inhibit 3C-like protease and papain-like
protease.

Active compounds against SARS-CoV-2 in vivo in
D3AI-CoV database
Compounds that are active in vivo are more likely to
be promising as drug candidates for the treatment

of COVID-19, which are shown in Table 3. Jan et al.
found that ICV484, ICV497 and extracts of some herbal
medicines were effective in vivo in the hamster model
[38]. In vivo antiviral tests in a mouse model [37] showed
that ICV619 is potent against SARS-CoV-2. ICV732
possessed anti-SARS-CoV-2 activity (IC90 = 0.88 nM) in
vitro [48]. The in vivo efficacy in two mouse models of
SARS-CoV-2 infection and limited toxicity in cell culture
of ICV732 indicate that it is a potential drug for the
treatment of COVID-19. Besides, Cox et al. launched
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Figure 4. Model training and evaluation. (A) ROC curve of MultiDTI model by 10-fold cross-validation method. (B) ROC curve of MPNNs-CNN model by
10-fold cross-validation method. (C) Performance of the three DL-based models by 10-fold cross-validation method. (D) ROC curve of MultiDTI model
on Test-78. (E) ROC curve of MPNNs-CNN model on Test-78. (F) Performance of MultiDTI and MPNNs-CNN models on Test-78.

a series of studies on ICV745, which is currently in
phase II trials (NCT04405739) [49]. Qiao et al. designed
and synthesized many 3C-like protease inhibitors [50].
ICV754 and ICV775 could reduce lung viral loads and
lung lesions in a transgenic mouse model of SARS-
CoV-2 infection. In addition, ICV835 and ICV841 could
also inhibit SARS-CoV-2 infection in animal models
[35, 51].

Training and testing of models
We developed two models, namely MultiDTI model
(Figure 1A) and MPNNs-CNN model (Figure 1B), for
target prediction, and one regression model based on
MPNNs-CNN approach, namely MPNNs-CNN-R model,
for virtual screening. About 10-fold cross-validation
method was performed to train all our models. And
the loss curves and accuracy curves during model
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Figure 5. (A) The five performance indicators (AUC, AUPR, Acc, Pre, Recall and F1) of five methods for target prediction on Test-78. (B) The hit rate of the
five methods for virtual screening against 3C-like protease and papain-like protease on Test-78.

training are shown in Figures S1–3. Finally, the model
trained with all the drug–target pairs was used as the
website backend of D3AI-CoV. The ROC curves are shown
in Figure 4A and B. The AUCs of the two models for
target prediction are 0.93–0.96 and 0.97–0.98. Other
performance indicators, including AUPRs (0.88–0.95
and 0.95–0.98), accuracy (Acc) (0.86–0.9 and 0.92–0.94),
precision (Pre) (0.79–0.91 and 0.89–0.93), recall (0.81–0.99
and 0.93–0.97) and F1 score (F1) (0.86–0.91 and 0.92–
0.95) suggested the strong target prediction ability of
the MultiDTI model and MPNNs-CNN model (Figure 4C;
also see Table S5). Pearson correlation and concordance
index of MPNNs-CNN-R model for virtual screening by
10-fold cross-validation method are 0.8–0.84 and 0.87–
0.88, respectively (Table S6).

The external dataset, namely Test-78, was used to fur-
ther test the generalization performance of the MultiDTI
model and MPNNs-CNN model against COVID-19. The
ROC curves are shown in Figure 4D and E. The AUCs
of the two models trained by 10-fold cross-validation
method for target prediction are 0.82–0.89 and 0.82–0.87.
Other performance indicators, including AUPRs (0.75–
0.89 and 0.72–0.79), Acc (0.72–0.82 and 0.74–0.85), Pre
(0.72–0.83 and 0.81–0.9), Recall (0.64–1.00 and 0.64–0.85)
and F1(0.7–0.84 and 0.71–0.85) values of the MultiDTI
and MPNNs-CNN models suggested their strong target
prediction ability (Figure 4F; also see Table S7). In addi-
tion, the models trained with all data have stronger
predictive performance ( Table S7). Accordingly, the DL-
based models have a strong predictive ability for target
prediction and virtual screening against COVID-19.

Comparison of D3AI-CoV with other methods
There are three webservers publicly available for target
prediction against COVID-19, which are D3Docking,
D3Similarity and Virus-CKB, whereas there are four
websites for virtual screening, which are D3Docking,
D3Similarity, DockThor-VS and COVID-19 Docking Server.
We used the external dataset Test-78 to evaluate all the
webservers for target prediction and virtual screening
against COVID-19. Figure 5A and B summarizes the
comparison results between our newly constructed DL-
based models and other methods (Tables S8 and S9).

For target predicting, a prediction is regarded as
correct if the top 10 predicted targets contain the
real target. In our DL-based models, a prediction is
correct if the predicted probability is greater than 0.5.
Next, we compared MultiDTI, MPNNs-CNN, D3Docking,
D3Similarity and Virus-CKB for target prediction. All
ligands of Test-78 were used for these five methods for
target prediction. Based on the prediction results, we
counted the correct and incorrect numbers of prediction
and calculated the AUC, AUPR, Acc, Pre, Recall and F1,
which were used to compare various methods. After
testing, the AUCs (0.93 and 0.91), AUPRs (0.88 and 0.9),
Acc (0.88 and 0.85), Pre (0.81 and 0.8), Recall (1 and
0.92) and F1 (0.9 and 0.86) of the two DL-based models
outperform those of D3Docking (0.59, 0.56, 0.59, 0.65,
0.38 and 0.48), D3Similarity (0.74, 0.7, 0.74, 0.83, 0.62 and
0.71) and Virus-CKB (0.51, 0.51, 0.51, 0.56, 0.13 and 0.21)
(Figure 5A; also see Table S8). Besides, DL-based models
are much faster than D3Docking, D3Similarity and Virus-
CKB. More importantly, the MultiDTI model correctly
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Figure 6. Graphical interface for input and output of D3AI-CoV. (A) Graphical interface for input of the target prediction module of D3AI-CoV. (B)
Graphical interface for output of the target prediction module of D3AI-CoV. (C) Graphical interface for input of the virtual screening module of D3AI-
CoV. (D) Graphical interface for output of the virtual screening module of D3AI-CoV.

predicts two completely new protein targets and their
molecules, which indicates MultiDTI model has great
expandability.

For virtual screening, inhibitors for the 3C-like and
papain-like proteases account for the two largest propor-
tions in Test-78, so we used the Test-78 to perform virtual
screening against the two targets for comparison. The
hit rate was used as a criterion for evaluating the per-
formance of different virtual screening methods. After
testing, the results indicate the hit rates of MPNNs-CNN-
R are 0.96 and 0.89 for 3C-like protease and papain-like
protease, respectively, whereas that of other methods are
0.22–0.92 and 0.11–0.78, indicating that the new MPNNs-
CNN-R model is in general much better than other meth-
ods (Figure 5B; also see Table S9).

In summary, D3AI-CoV shows great predictive per-
formance both on the validation set and on a com-
pletely independent external test set. More importantly,
when compared with other anti-COVID-19 webservers,
the prediction accuracy of D3AI-CoV is much higher

than other docking-based or similarity-based methods.
And the efficiency of D3AI-CoV is also higher (5–10 s
for a job by D3AI-CoV versus 5–15 min for a job by
D3Similarity and 1–2 h for a job by D3Docking). All the
results demonstrated that D3AI-CoV has great advantage
in comparison with other webservers in terms of predic-
tion accuracy and prediction speed.

Input and output
D3AI-CoV is provided free of charge for users via the web
server. For target prediction, as shown in Figure 6A, the
users can set the task title and select a prediction model
in the target prediction interface. And then they can
submit a small molecule in sdf or mol2 file format. The
small molecule will be converted to canonical SMILES.
Two DL-based models will be used to predict the target
of the input molecule according to the SMILES. Usually,
predicting process will last for a few minutes after the
beginning of the calculation before the output result is
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returned. Therefore, D3AI-CoV is faster than the conven-
tional structure- and ligand-based approaches. Finally,
as shown in Figure 6B, the top-ranked targets will be
provided on the webpage.

For virtual screening, as shown in Figure 6C, the users
can upload a small molecule library in sdf or mol2 file for-
mat and select one or two target(s). All small molecules
in the library will be converted to canonical SMILES. The
regression model will perform the virtual screening for
the small molecule library. After finishing the task, as
shown in Figure 6D, the top-ranked ligands and their
scores will be presented on the webpage.

Conclusion
Target prediction and virtual screening are two impor-
tant issues for discovering new drugs and lead opti-
mization. Based on protein structure and ligand infor-
mation, we have developed and continuously updated
a webserver, D3Targets-2019-nCoV, for target prediction
and virtual screening since the COVID-19 outbreak. In
this work, with the latest updated databases of both
active compounds and target proteins, we developed
two classification DL-based models for target pre-
diction and a regression DL-based model for virtual
screening for discovering hits against COVID-19. The
results showed that the predictive abilities of the DL-
based models on the external test set are significantly
stronger than D3Docking, D3Smilarity and other meth-
ods. The prediction speed of the DL-based models is
also much faster than other methods. We hope D3AI-
CoV will be helpful to the development of anti-COVID-19
drugs.

Key Points

• Identifying effective drug targets and developing effec-
tive drugs accordingly to cure COVID-19 are of great
importance.

• We developed D3AI-CoV, a DL-based platform for target
prediction and virtual screening for discovering anti-
COVID-19 drugs.

• The MultiDTI model and The MPNNs-CNN model can be
used to predict targets for active compounds.

• The MPNNs-CNN-R model can be used to perform virtual
screening.

• D3AI-CoV is available at free as a web application
at http://www.d3pharma.com/D3Targets-2019-nCoV/D3
AI-CoV/index.php
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