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Obesity-related data derived from multiple complex systems spanning media,

social, economic, food activity, health records, and infrastructure (sensors,

smartphones, etc.) can assist us in understanding the relationship between

obesity drivers for more efficient prevention and treatment. Reviewed literature

shows a growing adaptation of the machine-learning model in recent years

dealing with mechanisms and interventions in social influence, nutritional diet,

eating behavior, physical activity, built environment, obesity prevalence

prediction, distribution, and healthcare cost-related outcomes of obesity.

Most models are designed to reflect through time and space at the individual

level in a population, which indicates the need for a macro-level generalized

population model. The model should consider all interconnected multi-system

drivers to address obesity prevalence and intervention. This paper reviews

existing computational models and datasets used to compute obesity

outcomes to design a conceptual framework for establishing a macro-level

generalized obesity model.

KEYWORDS
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1 Introduction

Over the past two decades, there has been a significant rise in the prevalence of

obesity, which has gradually turned into a global epidemic. Obesity is a global public

health and economic issue that harms people’s physical and mental health, reduces their

quality of life and life expectancy, and significantly increases the cost of healthcare

systems (1). There are multiple causes and effects that contribute to obesity. Obesity is a

multidimensional, systemic issue that affects a variety of domains, including social

interactions, infrastructure, environment, and biology (2). Due to obesity’s global scope,

heterogeneous drivers interacting in non-linear ways, and the lack of a single solution for

variation in outcomes, a complex system is needed (3). A complex system model that can

explain inter-connections and correlations of drivers and can examine non-linear
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dynamics, time-delay effects, multiple interactions, and feedback

is required. Multiple authors used different system dynamic (SD)

techniques and methods to model, predict, classify, and explain

the prevalence of obesity and driver’s interconnection. Most

models are designed with a specific question and focus on the

limited number of links specific to a region or county. A holistic

model explaining the indirect drivers of obesity in complex food

system is missing. The multi-level sub-systems interconnections

of obesity drivers must be investigated to derive general model,

potentially able to clarify complex and indirect interconnections;

Modeling multi-level model can become confusing and complex

that results are no longer transparent, making validation

impossible. To model a comprehensive general model, the

multi-level sub-systems links of obesity should be explored,

which can become so unwieldy and complex that results are

no longer transparent, and validation becomes nearly

impossible. So, currently, there is a need for a global level

model, able to addresses the driver of interconnections and

multi- level sub-systems of the obesity system (2).

Vandenbroeck et al. (2) developed the qualitative obesity

system map to understand the complex systemic structure of

obesity using the causal loop model. The obesity system map can

be used as a reference framework to design a conceptual,

quantitative general obesity model. The obesity system map

includes a variety of drivers, some of which have quantified

causal relationships represented as mechanistic equations in the

literature and others for which there is no quantitative data, such

as environmental and social drivers. By using machine learning

models (4), one can approximate the missing causative

relationship and fill the gap to build a general complex obesity

system model. The obesity system model has implications for

future research aimed at early detection of obesity by hospitals

and health professionals as well as to assist policymakers in

testing interventions to analyze hotspots and where to intervene.

This review a) provides an overview of computational

obesity models present in the scientific literature, including

machine learning, agent-based, system dynamics, and

simulation models that can explain the interconnections and

non-linear dynamics between obesity drivers and b) analyzes the

studies which have datasets and were reproducible c) and

determines different modeling techniques strengths and

limitations. Such an analysis should determine the potential of

different models in defining and tracing the non-linear effects

of key drivers of obesity. The review is aimed at the development

of a conceptual framework for a global-level model by using and

combining strengths of different modeling techniques.

The study begins with a bibliographic search and selection of

literature for review, explaining the search terms and literature

selection criteria for reviewing different models. We then

examine the various modeling techniques of complex obesity

systems and analyze their purpose, outcome, and limitations
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using the selected studies. The selected models are reviewed and

discussed further, explaining the global level of a proposed

framework and future development and application potential.
2 Methods

A systematic literature review (SLR) is an accessible and

well-organized technique to define relevant research questions,

keywords, and search phrases and study (5). An SLR analyses the

research question and provides different methods for analyzing

the problem thoroughly and broadly. The summary of the

research methodology and SLR procedure is shown in

following sub-section.
2.1 Overview

In order to conduct the SLR research and disclose the

findings, this study adheres to the PRISMA guidelines (6). The

SLR includes following tasks: define the search strategy and

keywords and describe the inclusion and exclusion criteria. The

review consists of computational models of obesity (6) which

were written in English and published between January 1, 2002

and January 1, 2022 and had obesity-related search phrases and

computational models.

After removing duplicate results, the potential studies were

identified using relevant terms and keywords in electronic

databases. Prior to text screening, the titles and abstracts of the

records were first checked for inclusion and exclusion criteria for

inclusion in the review.
2.2 Electronic searches

We searched scientific databases PubMed/Medicine (US

National Library of Medicine) and Google Scholar (Google)

for potential articles. We used a “backward and forward” search

to determine the study references. To “go on” and find the

articles cited in particular reviews, the google search engine was

employed. The chosen studies serve as a starting point for

finding articles that were relevant for our investigation. The

logical search strategy based on Medical Subheading terms from

PubMed: MeSH terms “obesity”, “overweight”, “obese”,

“model”, “simulation model”, “system dynamics”, “agent-based

model”, “ABM”, “machine learning” using query [(obesity

[MeSH Terms] OR obese[MeSH Terms] or overweight[MeSH

Terms]) AND (model[MeSH Terms] OR simulation model

[MeSH Terms] OR system dynamic [MeSH Terms] OR agent-

based model[MeSH Terms] or ABM[MeSH Terms] ORmachine
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learning [MeSH Terms])]. The following were the chosen

keywords for databases and Google scholar engine:
Fron
•(“Obesity” OR “Overweight” OR “Obese” OR “Adiposity”)

AND (“Simulation model” OR “Simulation”)

•(“Obesity” OR “Overweight” OR “Obese” OR “Adiposity”)

AND (“Agent based model” OR “ABM” OR “Agent-

based model”)

•(“Obesity” OR “Overweight” OR “Obese” OR “Adiposity”)

AND (“Machine learning” OR “Prediction”)

•(“Obesity” OR “Overweight” OR “Obese” OR “Adiposity”)

AND (“Sys tem dynamics” OR “Model” OR

“Computational model”) AND (“model”)
The search strategy included the databases, limiting research

to 20 years (from May 2012 to May 2022). The studies were

selected using a systematic and logical search strategy based on

Medical Subheading terms from PubMed, IEEE, and query for

Google Scholar engine as explained in Figure 1. After eliminating

ten duplicates, the total articles examined on 6, Jan 2022 for the

year (2002–2022) generated 136 hits.
2.3 Inclusion and exclusion criteria

To assure the relevance of the chosen articles to the study

purpose of the research, inclusion comprises the characteristics

that qualify the studies for inclusion, and exclusion includes

the characteristics that disqualify the studies for inclusion.

First, the article’s abstract and title was carefully reviewed

to evaluate its suitability for the current SLR. After that,

each study was examined to determine if it met the exclusion

or inclusion criteria.

For this review, only articles about obesity and obesity

computational models published in English from January 2002
tiers in Endocrinology 03
and January 2022 were taken into consideration. The explicit

inclusion and exclusion criteria used in the study summarized

in Table 1.
2.4 Study selection process

The primary goal of the selection procedure is to find

relevant articles. Using the keywords provided above, an

electronic search resulted in 353 articles. After deleting 10

duplicate articles with Mendeley’s reference management tool

(Elsevier, UK), the results were narrowed down to 343 articles.

We eliminated 185 studies from consideration by carefully

reading abstracts, title and conclusions of studies and applying

inclusion and exclusion criteria.

Exclusion criteria were used to assess the relevance of the

remaining 136 articles to the research objectives. The manual

and electronic search yielded 41 different computational models.

Genetic factors and infant studies were not considered.
3 Modeling techniques for obesity

For simulating the complexity of obesity, there are a variety of

methodologies available. Because of the depth and scale of the

obesity epidemic, the model should be able to capture multi-level

analysis when modeling the obesity complex system (7–9).

Modeling at a single level does not allow to identify links and

feedback loops between different levels (individual, population,

national, and global levels) and its degree of influence on obesity

outcomes. Second, the model should be able to capture individual

heterogeneity as well as variation in adaptation over time. Finally,

the model explains the problem and its mechanism to slow or

reverse the epidemic (10). Given these requirements, computational

and simulationmodels taken from the literature on obesity research

and complexity science offers a set of useful tools.
TABLE 1 Inclusion and exclusion criteria.

Criteria Principle

Inclusion Studies published between January 2002- January 2022

Studies written in English

Studies that are complete and models have been validated on datasets

Studies related to computational and machine learning models of obesity

Studies explaining the relation of obesity drivers, prediction, trends, and prevalence of obesity

Exclusion Duplicate studies

Studies conducted in languages other than English

Studies in which models were not validated against datasets

Studies that did not explain the relation between obesity drivers using model

Studies related to infants and genetic concepts

Studies based on simulation model software
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3.1 System dynamics

System dynamics (SD) (11, 12) is a modeling technique in

which a system is modeled using key drivers, flows and feedback

loops to investigate the dynamics of a system under a set of

scenarios, assumptions and datasets. The simulated computer

model helps us determine under what conditions and how a part

of the systemmight fail and identify the gaps in current knowledge.

A simulation model has the following properties: a) stochastic and

deterministic behavior, b) static and dynamic time series, and c)

discrete and continuous data. Many simulation models based on

food, physical activity, social environment, and economic trends

have been implemented in the literature, as shown in Table S1.

3.1.1 Mechanistic models of obesity
Hodgkin and Huxley (13) proposed the mechanistic modeling

paradigm. It typically involves generating simplified mathematical

equations of the causal mechanism by establishing a causal

relationship between inputs and outputs based on observations

of the phenomenon of interest (14). The mechanistic model can

be implemented at both individual and population levels. Frerichs

implemented the micro-level mechanistic model to assess the

sensitivity of childhood obesity and social transmission rates.

Fallah Fini et al. (15, 16) explored micro-level dynamics of Body
Frontiers in Endocrinology 04
Mass Index (BMI) distribution and prevalence to quantify the

energy gap responsible for obesity in gender and racial population

using mechanistic models and statistics.
3.1.2 Markov simulation models of obesity
Markov models are stochastic models that can capture the

distribution of attributes and model their dynamics (17, 18).

Markov simulation model can recognize patterns, make

predictions and learn the statistics of sequential data. Basu

(19) forecasted BMI using Medical Expenditure Panel Survey

(MEPS) data and a micro-simulated probabilistic population-

level model. The model was validated using the National Health

and Nutrition Examination Survey (NHANES) to project that

obesity growth will continue in children aged 6-9, while overall

obesity prevalence will remain constant. Individual-level

Markov models explain how BMI trends differ across cohorts

by taking demographics (age, race, height, BMI), socioeconomic

and dietary composition, and individuals at household

parameters. Ball et al. (20) created an individual-level dynamic

discrete-time Markov micro-simulation model for estimating

lifetime healthcare costs for healthy, obese, and smoker cohorts.

The economic burden and productivity loss brought on by

obesity were predicted by Lightwood et al. (21) using Discrete-

time Markov cohort macro model.
FIGURE 1

PRISMA diagram of identification and selection of studies for the review.
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3.1.3 Statistical simulation models of obesity
Statistical modeling uses mathematical models and

assumptions to study complex systems with arbitrary event

flows at the inputs and distributions of time intervals of

events. Sassi et al. (22) used the Log-Linear model to show

BMI trends and the prevalence of obesity and overweight to

access associated social gradients. In order to investigate the

dynamics of obesity by body mass index (BMI), nutritional stage

dynamics and trends in obesity by gender and socioeconomic

status at the national, regional and sector level, Meisel et al. (23)

developed a statistical model. Vreeman et al. (24) implemented a

mathematical simulation model to understand better how food

advertising and television contribute to obesity and determine

the conditions under which changes in price and income affect

body weight. Schroeter et al. (25) developed a micro-simulation

economic model to explore eating behavior, food environment,

and obesity interventions. The scalable mobility model based on

the maximum utility and mobility framework can simulate

individual-level weight change to show population-level weight

change (26). Chen et al. (27) used a population-level model to

see how population weight status and socioeconomic dispersion

in longitudinal data projected the potential impact of

socioeconomic interventions on obesity prevalence.

3.1.4 Dynamic microsimulation models
of obesity

Dynamic microsimulation models have a bottom-

up approach and individual-level focus property. The

microsimulation model assumes no assumptions about agents’

interaction. Using metabolic micro-simulated model one can

achieve health goal by adjusting energy intake and physical

activity (28). Using data from NHANES and British and Foreign

School Society (BFSS) surveys, the network-based simulation

model simulates how behavioural and social influences

contribute to the spread of obesity and forecasts the efficacy of

weight-loss interventions (29). To estimate how long will it take to

reach the government’s goal of reducing the prevalence of obesity,

Abidin et al. (30) simulated changes in children’s eating behavior

using sub-models of food and energy intake, energy expenditure,

and body composition.
3.2 Agent-based models of obesity

The complex dynamics are modeled in the agent-based

model (ABM) by replicating the agent’s interactions and

actions in the system’s environment in software code. The

agents are positioned in a spatial environment with

predetermined rules and initial conditions. At the individual

systemic levels, interactions and decisions determine the

outcomes. Complex systems can benefit from the computer

simulation since it shows macro-level trends and patterns

utilizing individual level outcomes and a bottom-up
Frontiers in Endocrinology 05
methodology (31). Different agent-based model studies are

present in the literature on obesity. The studies were

categorized according to characteristics, use cases, and

variables involved, as shown in Table S2, with individual

advantages and limitations. An ABM approach would enable

the simulation of various systems at various scales while taking

unique diversity into account (32).

3.2.1 Mechanistic models
Different agent-based mechanistic models are present in the

literature to understand the food decision-making process, food

environment relation, and activity environment’s effects on

obesity. Food costs, diet composition and food budget all

factors that influence food decisions. Food inequalities can

persist at the national level as a result of residential

segregation, social networks, group preferences, and complex

networks of social influence (33, 34). Food prices and store

locations can influence low-income households’ diet quality, and

food store spatial segregation promotes disparities in diet quality

across income levels (35). The agent-based theoretical

framework presented by Burke et al. (36) investigates the

effects of decreasing food prices on weight gain, human

metabolism, and social interaction. Rational addiction and

variation in the self-control framework quantitatively predict

the disproportionate growth in weight distribution using the

discrete-time mechanistic model. Agents in the model a)

compare their weight to the group’s averagely desired weight

b) interactively and incrementally change their diets until they

are less expensive than agent’s food budget (37). The

relationship between the food reward environment and eating

behavior and obesity can be explained by food reward hypothesis

(38). To better comprehend how families, make restaurant

se lec t ions based on soc ioeconomic , demographic ,

environmental, and nutritional characteristics, Li et al. (39)

applied agent-based Huff model. to understand better how

families, choose restaurants based on. Body weight can be

affected by physical activity, location accessibility, leisure-time

physical activity (LTPA), and obesity (40). The impact of social

networks on adolescent body size, BMI, screen time, and sports

participation are not well demonstrated (41).

Agent-based policy intervention model offers distinct

insights into the dynamics of different obesity combat policy

interventions. Zhang et al. (42) investigated the effects of societal

norms, food price policies, and regulations influence on people’s

eating behavior. Sugar-sweetened beverage warning labels and

taxes can lower sugar-sweetened beverage consumption and

body mass among youth (33, 43). Environmental and

nutritional characteristics and proximity to food outlets (44)

affect dietary habits. The food environment influences

aggregated consumption habits and, food outlets open or

closed, household income (45). The proximity of a walking

destination encourages low-income neighbors to do physical

activity, and the social context influences energy balance and
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obesity (46, 47). Increasing the community’s availability of

neighborhood healthy food outlets, improving physical activity

infrastructure, and higher school quality policies can help reduce

body mass index disparities (48). Li et al. (49) looked at how

mass media and nutrition education campaigns influence dietary

habits and food intake. Household income, neighborhood

income, school quality, food availability (neighborhood food

environment), and exercise opportunity are the critical variables

of complex obesity systemic structure. The key outcomes include

educational attainment, socioeconomic status, social influence,

physical activity, body mass index, cardiovascular health, and

morbidity (50).
3.3 Machine learning models of obesity

By utilizing sensors, smartphone apps, electronic medical

health records, and digital data, machine learning (ML) uses

computer algorithms to automatically learn from experience and

categorize risks and outcomes associated with obesity. As shown

in Table S3, machine learning offers a novel approach to

examining multivariate data and predicting the complex inter-

relationships likely to cause obesity risks.

The machine learning algorithms provides a distinct picture

of the current state of machine learning algorithms and data

analysis. The learning algorithms can be used to characterize,

adapt, learn, predict, and analyze data, thereby enhance our

understanding of obesity and our ability for precise prediction.

Nowadays, there is a massive amount of big data in the literature;

gadgets, surveys, and data points alone have no value. Machine

learning can decipher enormous amount of contradictory

information and acquire new knowledge. Researchers used

machine learning techniques like regression, Random Forest,

Decision Tree, Convolution Neural Networks (CNN), and SVN

to find connections between many causes of obesity. The

inability of such models to explain the causal connection

between the drivers is a major drawback for obesity modeling.

To function with deep neural networks requires big data; the

model will exaggerate biased outcomes due to its reliance on

survey data.

Obesity levels can be detected using obesity-causing

parameters, caloric intake, energy expenditure, physical

activity, dietary and genetic disorders, socioeconomic factors,

and anxiety or depression. Using computational intelligence

methods, supervised (Decision Tree and SVN) for comparative

analysis and classification, and unsupervised techniques like K-

Means for clustering and validation of models (51). Using low-

dimensional (Decision Tree, Random Forest, etc.) and high-

dimensional ML approaches (SVN, CNN, etc.), statistical, and

data visualization methodologies, we can identify potential risks

associated with obesity models using different learning models.

Regression analysis and data visualization approaches were used

with publicly accessible health datasets from Kaggle, UCI, and
Frontiers in Endocrinology 06
Physio Net (52, 53) to comprehend how identified risk factors

relate to weight change (54). Using food sales data, a population/

country level model can be used to estimate the prevalence of

obesity and identify the food categories that are most important

for obesity prediction (55). Gender, age, and race/ethnicity were

only marginally significant predictors of weight status, while

physical activity was the most important factor (56). Different

machine learning regression techniques can estimate the relative

predictive relevance of BMI demographics and psychological,

behavioral, and cognitive traits. Adolescent Brain Cognitive

Development (ABCD) study (57) explained the role of fixed

and potentially modifiable variables of the obesity system map

and BMI datasets.

According to the study, social problems and screen time

correlated significantly linked with BMI and modifiable therapy

targets (58). Country-level demographics, socioeconomic,

environmental, and healthcare factors explain the heterogeneity

in country-level obesity prevalence better than conventional

epidemiological techniques, which consider only small number

of preselected variables. The basis of interpretation can be greatly

explained by machine learning models (59). Conditional Random

Forests were used to find diverse set of social, physical activity, and

food characteristics that make up the obesogenic environment.

Geographically co-occurring risk variables can be accessed using

machine learning approach that is data-driven yet non-parametric

(60). Using deep learning Convolution neural networks with

Google Static Maps API images, one can analyze the link

between features and obesity incidence based on built

environment information. These algorithms extract relevant

environment features, and regression can be used for

quantifying the association (61).
4 Discussion

Computational models enable system-level thinking,

modeling techniques, and tools to be used to study obesity as an

integrated system and to explicitly model the complex system’s

dynamics as well as non-linear and circular causality. Several

reviews and studies available in the literature discuss the possible

techniques for developing an obesity system model. According to

Hammod et al. (62), complex systems and system modeling

methodologies offer a promising field for researching complex

dynamics of obesity. Levy et al. (63) summarize existing

simulation models of obesity and the strengths and weaknesses

of these models to suggest future research directions. Xue et al.

(64) study the applications of system modeling in obesity. To

address all essential aspects of obesity and highlight the most

significant gaps and overlaps, Morshed et al. (65) summarize

system dynamics and agent-based models. The machine learning,

ABM, and SM models can predict childhood and adolescent

obesity to assess obesity as a worldwide epidemic (2, 4, 65, 66).

DeGregory et al. (66) review provides a unique overview of data
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analysis and machine learning methods explicitly applied to

obesity. Vandenbroeck et al. (2) provide the casual loop system

dynamic that explains all the possible drivers of obesity and their

interconnections but is qualitative in nature with no real datasets

for validation. In this review, we made an attempt to identify the

majority of recent computational models that function on real-

world data sets and provide quantified output to quantify the

energy surplus that causes obesity.

Our review of the literature generated several key findings.

First, during the past 20 years, obesity research mostly relied on

SM and ABM. Most of the models implemented in SM and ABM

were designed to answer specific question. Machine learning

models can emerge as a valuable tool to deal with high-

dimensional data (66–68), due to their high predictive power,

ability to model complex, non-linear relationships between

variables, and capacity. The application of computational

models can cover multiple domains of obesity ranging from

human metabolism to behavior, environment, activity, and

social influence, allowing for a general view instead of focusing

on individual pieces of the system. The SM based Markov

simulation (16, 19–21, 62, 69, 70) statistical, network-based

(29) and mechanistic (22, 23, 26) simulation models have been

used in the literature to estimate the healthcare cost due to

obesity outcomes; to predict the BMI distribution; and to
Frontiers in Endocrinology 07
stimulate metabolism, eating behavior, environment

relationship, to quantify the energy balance responsible for

obesity. An agent-based model (ABM) provides a platform to

model interactions between agents to simulate social behavior,

network structure, and interventions.

Second, computational models were implemented at the

individual-level and population level. The individual-level

models were used to understand the spatial-temporal

dynamics of the epidemic. In contrast, the population level

models were mechanistic models that relate individual-level

responses to population density and structure, to study

population dynamics. Seven of the 41 studies used empirical

data to reproduce real-world scenarios at the country level, while

the others were carried at the individual-level.

Third, most of the included studies used data from

government sources such as National Health and Nutritional

Examination Survey (NHANES 1971-2010) for studies based in

the United States (US), the health survey for England (HSE),

Longitudinal Cost and Medicare Current Beneficiary Survey

(MCBS 1992-2001), Medical Expenditure Panel Survey (2001-

2005) datasets, World Bank Data and country-specific health,

and nutritional statistics.

This review demonstrated that analyzed methodologies have

limits as shown in Table 2, and can be addressed by
TABLE 2 Advantages and limitations of simulation modeling techniques of a complex system.

Model Advantages Limitation

Markov
simulation
model

Markov models can capture attribute distributions and model their
dynamics

Presume typically low-dimensional data space, which make them less versatile

Straightforward to implement in standard software packages Unable to deal with complex state transition such as path dependence and
individual learning

Mechanistic
model

Logic principles combined with deductive reasoning allow
extrapolation to predict behavior that is not present in data

Data that span multi-space and time scales cannot be handled

Establish a causal relationship between inputs and outputs Can handle only small datasets

No consideration of patterns and non-predictive in nature

It is challenging to incorporate information from multiple spaces and times

Statistical model Can understand any pattern in data Applicable to quantitative data and results might be misleading

Comprehensive statistical analysis is less subject to bias Cannot apply to homogeneous data

Results inform better decision making Deals with groups and aggregates only

Microsimulation
model

Using computer simulation, macro-level trends and patterns can be
generated, making them suitable for complex system modeling

Microsimulation assumes no interaction between components

Individual-level focus property allows substantial diversity and
heterogeneity among agents

It is challenging to measure social influence and transmission

Agent-based
model

Using computer simulation, the bottom-up approach can generate
macro-level trends and patterns

Not beneficial when dealing with homogeneous data as ABM focuses on the
individual difference and how this difference contributes to system patterns

Allow substantial diversity and heterogeneity among agents Computationally expensive

Capable of incorporating spatial contexts and feedback dynamics The model must be built at the proper degree of description and with the
appropriate level of details to serve its purpose

Can examine non-equilibrium dynamics and focus on mechanisms The general-purpose model cannot work

Machine
learning model

Inductive capability- from past data, one can identify patterns in the
data

Require large datasets

Can tackle multiple spaces and time scales Can only predict based on patterns in the provided data
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symbiotically combining their strengths and techniques into a

viable solution for bridging the gaps. We can implement the

quantified causal system that can explain the interconnection

and causation between the drivers and can explain the indirect

drivers (emergence properties) linked to the physical

phenomenon of obesity.
4.1 Limitations of the studies

System modeling techniques have certain limitations as

shown in Table 2. Firstly, while building a detailed and

comprehensive obesity system map framework, the model can

become so sophisticated that the results will no longer be

transparent, and validation will become almost impossible. To

overcome this limitation, the whole complex system can be

divided into sub-systems (2). Obesity interventions vary across

populations and regions and are sensitive to assumptions and

settings. As a result, SD has limitations in guiding global future

intervention development.

Second, the models depended on survey data, prone to bias

due to self-reported datasets. Only a few model results are

reproducible and documented in selected studies (26, 35, 43,

46, 54, 55, 71), the remaining studies were either slightly or

moderately reproducible. Available models were created with a

single or a few questions in mind and occasionally could not

incorporate demographic data directly. They cannot scale to

other variables and sub-populations, as described in system

dynamics limitations and machine learning techniques Tables

S1–S3. The global system model simulated counterfactual

comparison, and the lack of empirical data and uncertainty of

assumptions remains a significant challenge.
4.2 Matching existing models to the
theoretical framework of current study

One of the most significant challenges in developing and

implementing the obesity model is the complexity of the systems

and the scarcity of datasets for all the drivers). One feasible option

for modeling obesity’s complex structure is to use a modular

approach. When studying multi-level feedback and interactions, a

modular approach allows for separate analysis of each system and

level, allowing easy integration. Each sub-system (for example,

physical activity patterns, food intake and production, social and

individual psychology, environment, and physiology) would have

its module, with mechanisms theory and impact paths

incorporated (3). We can use both machine learning and the

SM technique to investigate the system dynamics of obesity. SM

allows for the integration of data from wide range of disciplines,

including statistics, epidemiology, biology, nutrition, and so on.

Data-driven machine learning approaches can investigate the

driver’s relationship and trends (72). Mechanistic model
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equations (7) can interpolate food production and consumption

drivers (purchasing power, nutritional value, alcohol intake,

portion size) to energy balance. Some drivers in the model’s

psychology sub-system, such as social tolerance of fatness and

food literacy, are not quantitative, and data-driven machine

learning models (73) can be used to approximate the

relationship between the drivers.

These models are proposed to be combined to form a

framework (Figure 2) to model the quantitative obesity systemic

map (74). To implement the framework, the complex obesity

system model needs to be divided into sub-systems of Food

production and consumption, Psychology, Physical and

Environment activity. Then, collected data from the available

databases and literature would be used to define the level of

importance of drivers related to obesity sub-systems along with

the mechanistic mathematical equations that explain the causal

relations between the drivers. Using the available datasets from

NHANES andMPES etc. and mechanistic equations, new datasets

can be generated and can be a part of a knowledge-based system.

The machine-learning models will be included in the

framework as the certain driver’s causal relation connections are

missing. Machine learning techniques can fill the gap. Mechanistic

models supply the causality that machine learning methods lack,

and machine learning models supply inductive capability and

handle multi-space and time scale data to approximate the

relationships between drivers using past observations.

The knowledge-based system consists of discrete and

continuous data of obesity can be used to train and analyze

the machine learning model. The ensemble mechanistic machine

learning model allow to quantify the correlation between

the drivers and predict the obesity emergence dynamics and

the driver’s role in the prediction which can be possible using the

application of Rule based explanations of machine learning and

knowledge graphs (75). Machine learning can overcome the

scalability limitation of mechanistic model. The predicted values

will act as a behavioral description of the model, which can then

be used to identify hotspots to intervene and predict future

scenarios and assist policymakers in testing policies in the

complex food system.
Conclusions

Obesity is a multi-dimensional system problem. To design full

capacity model to enhance obesity research and intervention,

theoretical and practical issues with current computational

models must be taken into consideration. Due to obesity’s non-

linear dynamics and complex system effect, there is a need for

emergence-focused design in complex system simulations to

reproduce the multi-level emergence seen in the real world. The

analysis of the literature indicated that both population-level data

(weight status, socioeconomic position, physical activity, behavior

and social network, and so on) and longitudinal data are required
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to assess the global level effect. Despite the limitations of individual

simulation model, agent-based and machine learning models can

fill missing gaps and function together symbiotically to model

individual-level models. These individual-level models can be

aggregated to global levels and estimate individual and

population-level obesity dynamics. The complex hybrid system

framework based on a synergetic combination of mechanistic,

machine learning, and simulation model components may provide

an innovative systematic approach to determine the complex

interactions between obesity factors and fight the obesity epidemic.
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