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� Virtual screening based on machine
learning with multiple proteins was
developed.

� Discovery of a novel PI3Kc inhibitor
integrating virtual screening and bio-
assays.

� JN-KI3 selective inhibit PI3Kc
enzymatic activity and hematologic
malignancies.

� The selective c-inhibition mechanism
of JN-KI3 was highlighted using MD
simulation.
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Introduction: Phosphoinositide 3-kinase gamma (PI3Kc) has been regarded as a promising drug target for
the treatment of various diseases, and the diverse physiological roles of class I PI3K isoforms (a, b, d, and
c) highlight the importance of isoform selectivity in the development of PI3Kc inhibitors. However, the
high structural conservation among the PI3K family makes it a big challenge to develop selective PI3Kc
inhibitors.
Objectives: A novel machine learning-based virtual screening with multiple PI3Kc protein structures was
developed to discover novel PI3Kc inhibitors.
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Selective inhibitor
Hematologic malignancies
Virtual screening
Molecular dynamics simulation
JN-KI3
Methods: A large chemical database was screened using the virtual screening model, the top-ranked
compounds were then subjected to a series of bio-evaluations, which led to the discovery of JN-KI3.
The selective inhibition mechanism of JN-KI3 against PI3Kc was uncovered by a theoretical study.
Results: 49 hits were identified through virtual screening, and the cell-free enzymatic studies found that
JN-KI3 selectively inhibited PI3Kc at a concentration as low as 3,873 nM but had no inhibitory effect on
Class IA PI3Ks, leading to the selective cytotoxicity on hematologic cancer cells. Meanwhile, JN-KI3
potently blocked the PI3K signaling, finally led to distinct apoptosis of hematologic cell lines at a low con-
centration. Lastly, the key residues of PI3Kc and the structural characteristics of JN-KI3, which both
would influence c isoform-selective inhibition, were highlighted by systematic theoretical studies.
Conclusion: The developed virtual screening model strongly manifests the robustness to find novel PI3Kc
inhibitors. JN-KI3 displays a specific cytotoxicity on hematologic tumor cells, and significantly promotes
apoptosis associated with the inhibition of the PI3K signaling, which depicts PI3Kc as a potential target
for the hematologic tumor therapy. The theoretical results reveal that those key residues interacting with
JN-KI3 are less common compared to most of the reported PI3Kc inhibitors, indicating that JN-KI3 has
novel structural characteristics as a selective PIK3c inhibitor.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction pocket [24]. The conventional methods are difficult to reveal these
The extensive research conducted over the past decades has
implicated the role of various cell signaling events in numerous
malignant, inflammatory, autoimmune, and cardiovascular dis-
eases, out of which the phosphoinositide 3-kinase (PI3K) signaling
is one of the most relevant pathways because of its various vital
functions, such as cell survival, proliferation, differentiation, and
motility [1]. PI3Ks belong to a family of lipid kinases which cat-
alyze the phosphorylation of the inositol ring of phosphoinositide
and then transduce the signals as secondary messengers [2]. PI3Ks
are divided into three different classes (I, II, and III) based on their
primary structures and the preference of substrates [3]. Comparing
to the other two classes, class I PI3Ks have been extensively and
exhaustively studied. Class I PI3Ks are consist of two different sub-
classes, class IA and class IB, according to their signaling pathways
and regulating proteins [4]. There are three PI3K isoforms, PI3Ka,
PI3Kb, and PI3Kd, belonging to class IA, and PI3Kc is the only mem-
ber of class IB. Class IA are activated by receptor tyrosine kinases
(RTKs) and other tyrosine kinase coupled receptors [5–7], while
class IB accepts the signaling from G protein-coupled receptors
(GPCRs) through the interaction between PI3Kc regulatory subunit
and the b-subunits of GPCRs [8–10]. A large amount of research has
proved that the Class I PI3Ks play multiple crucial roles in a wide
variety of cellular processes [11–13], and that makes PI3K as a
promising drug target for the treatment of cancers, inflammations,
and immune disorders [3–7]. Nowadays, four PI3K inhibitors have
been pushed into the market, namely, Idelalisib in 2014 (PI3Kd
inhibitor) [14,15], Copanlisib in 2017 (pan-PI3K inhibitor) [16],
Duvelisib in 2018 (PI3Kd/c duel inhibitor) [17] and Alpelisib in
2019 (PI3Ka inhibitor) [18,19]. These achievements greatly stimu-
lated the development of novel PI3K inhibitors, especially PI3K
selective inhibitors.

Among the four isoforms, PI3Kc has been attracted more and
more attention for its restricted expression in the hematopoietic
systems, especially in leukocytes [20]. Thus, PI3Kc is considered
as a valuable target to treat not only advanced solid tumors, leuke-
mia and lymphoma, but also inflammatory and autoimmune dis-
eases [21–23]. However, the high structural and sequential
homology of these four PI3K isoforms is a huge hinder to acquire
specific PI3Kc inhibitor [24]. Some selective PI3Kc inhibitors have
been discovered with experimental methods and almost all of
those were identified through screening against a broad panel of
diverse kinases for each chemical scaffold [22 25,26]. It is known
that these traditional experimental approaches are expensive and
time-consuming [27]. Besides, it is reported that in the ATP-
binding pocket of PI3Kc, the side chains of the residues distin-
guished from other isoforms are always rotated away from the
2

structural features at a molecular level. Therefore, computer-aided
drug design (CADD) is an appropriate selection to aid in the discov-
ery or design of PI3Kc inhibitors with a high degree of selectivity
[28–30]. Thus, in this present study, a combined approach inte-
grated bioactive evaluation and computer simulation was con-
ducted to discover novel PI3Kc inhibitors. The whole workflow
was given in Fig. 1. First, a machine learning-virtual screening
(VS) model based on molecular docking with multi-PI3Kc confor-
mations was built to screen the ChemDiv database, and some
top-ranked inhibitors were purchased and submitted to bioassays.
As a result, some potential PI3Kc selective inhibitors were identi-
fied. Particularly, JN-KI3 exhibits a high degree of PI3Kc-selective
inhibition and specific anti-proliferative activity against hemato-
logic malignancies. In the end, a systematic computational analysis
utilizing molecular docking and molecular dynamic (MD) simula-
tions was performed to study the selective-PI3Kc inhibition mech-
anism of JN-KI3.
Material and methods

Construction of VS model

Preparation of PI3Kc complexes
The workflow of the VS protocol is illustrated in Fig. 1. A total of

87 crystallographic structures of PI3Kc-inhibitor complexes were
gathered and retrieved from the RCSB protein data bank (PDB,
Table S1 in the supplementary information) [31]. All PI3Kc protein
structures were prepared with Protein Preparation Wizard module
of Schrödinger 9.0 to remove crystallographic waters, add hydro-
gen atoms, assign partial charges with the OPLS-2005 force fields
[32], assign the protonated state. The missing side chains and loops
were added using Prime module, and last, all protein structures
were minimized until the root-mean-squared-deviation (RMSD)
reached a maximum value of 0.3 Å, and other parameters were
set as default. Then the residues within 10 Å of each co-
crystallized ligand were reserved and structurally aligned with
STAMP algorithm in VMD [33]. Afterward, the phylogenetic tree
module in VMD was employed to calculate the phylogenetic tree
based on the RMSD values and the result was illustrated in
Fig. S1, all of them were divided into 10 categories and the com-
plex with the highest resolution within each category were chosen
and finally 10 representative complexes were selected to further
docking simulation. Firstly, the ‘‘docking power” of these chosen
complexes was evaluated with following steps: the co-
crystallized ligands were redocked into the active binding pocket
by Glide/SP (standard precision) and Glide/XP (extra precision)
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Fig. 1. The workflow of this study.
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molecular docking methods, and then the RMSD between the
docking results and the original conformations of inhibitors were
calculated. Generally speaking, RMSD � 2.0 Å represents the crite-
rion of successful docking prediction [34].

Inhibitor/non-inhibitor validation set
In order to evaluate the ‘‘screening power” of the 10 complexes

with the docking module, which represents the ability to distin-
guish the known PI3Kc inhibitors from non-inhibitors, 800 PI3Kc
inhibitors, as an ‘‘inhibitor set”, with definite biological activity
(IC50 < 10 lM) were extracted from BindingDB database [35] using
Find Diverse Molecules module of Discovery Studio 3.5 (DS3.5) soft-
ware. Besides, 16,000 compounds were randomly selected from
ChemDiv compound library with the Find Diverse Molecules in DS
3.5 to construct a ‘‘decoy set”, the ratio between inhibitors and
decoys was 1:20. Both ‘‘inhibitor set” and ‘‘decoy set” were mini-
mized under OPLS-2005 force field [2] using the LigPrep module
of Schrödinger 9.0 with the default parameters set.

Validation of molecular docking
10 prepared PI3Kc complex were then submitted to perform

molecular docking. the Receptor Grid Generation module of
Schrödinger 9.0 was employed to generate a bounding box of size
10 Å � 10 Å � 10 Å within each PI3Kc structure, and the center of
each box was defined through the co-crystallized ligand in the ATP
binding site. And all prepared compounds in the validation set
were then docked into the ATP binding site of these PI3Kc struc-
tures, and all docking poses were scored by the SP and XP scoring
modes. The best binding pose of each compound was saved for the
following analysis, and Student’s t-test was used to measure the
difference in the distribution of docking scores between inhibitor
and non-inhibitors.
3

Integrated docking with multiple PI3Kc proteins
Consequently, a machine learning approach, naive Bayesian

classification (NBC), based on these 10 PI3Kc structures was
employed to evaluate the screening accuracy. The docking scores
calculated by the Glide docking module were used as the indepen-
dent variable (X), and 1/0 (1 for PI3Kc inhibitor and 0 for non-
inhibitor) was used as the response variable (Y). Then, the predict-
ing classifiers for VS model were generated following the Create
Bayesian Model protocol in DS 3.5, and the ligand enrichment
was determined through the area under ROC (receiver operating
characteristic curve) value (AUC). The AUC represents the relation-
ship between the true positive rate (active inhibitors) and the false
positive rate (decoys), and a high AUC value indicates that the
developed model contains a strong power to discriminate the pos-
itive inhibitors from the negative non-inhibitors [36].

Multi-conformational virtual screening in a sequential manner
Firstly, about 2,000,000 compounds from ChemDiv database

were docking into the binding site of 10 PI3Kc structures with
the preferred docking precision, respectively, and 10,000 top-
ranked compounds were retained. And then, the best Bayesian
classifier was then utilized to re-score these 10,000 compounds,
and 2,000 compounds with top Bayesian scores were reserved.
Afterward, these compounds were assessed the drug-likeness by
Filter by Lipinski and Veber Rules module in DS3.5 [37] and the rapid
elimination of swill (REOS) rules in Canvas [38], and 200 compounds
were selected. Besides, to maintain structure diversity of screening
compounds, the 200 compounds were structurally clustered
through the Find Similar Molecules by Fingerprints module in
DS3.5, the compounds with similarity coefficients higher than 0.8
were clustered into the same group. And then, 100 compounds
with various scaffolds were chosen. The 2D-interactions patterns
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between these 100 compounds and PI3Kc following illustrated by
the Ligand Interactions module of Schrödinger. And the compounds
interacting with the ‘‘hot residues” within the ATP binding pocket,
which were identified by our previous work [39,40], were kept.
Finally, the top 49 compounds with required interactions were
selected as pro-hits for the following biological evaluations.
Promiscuity and ADMET assessment

The promiscuity of JN-KI3 was investigated by two online
programs, Badapple [41] (bioactivity data associative promiscuity
pattern learning engine, http://pasilla.health.unm.edu/tomcat/
badapple/badapple) and Hit Dexter 2.0 [42] (https://acm.zbh.
uni-hamburg.de/hitdexter/). For both tools, the SMILES (simplified
molecular input line entry specification) format of JN-KI3 was
entered into the input box and the results would be generated
automatically. In addition, the ADMET (absorption, distribution,
metabolism, excretion, and toxicity) properties were predicted
using QikProp module of Schrödinger. This module was carried
out in normal mode and predicted principal descriptors and
physicochemical properties of JK-KI3.
Bio-assay evaluation

PI3K kinases activity in cell-free assays
The PI3K inhibitory activities of these pro-hits were all deter-

mined by ADP-Glo assay (Promega) [39]. For the initial screening,
the compositions and optimized concentrations of the assay were
listed as below: PI3Kc 0.625 lg/mL, PIP2:PS 50 lg/mL, compounds
10 lM, ATP 25 lM, IPI-145 and LY294002 [43] were used as posi-
tive controls. For the JN-KI3 kinases activity assays, the composi-
tions and optimized concentrations were listed as follows: PI3Ka
0.625 lg/mL, PI3Kb 0.625 lg/mL, PI3Kd 0.625 lg/mL, PI3Kc
0.625 lg/mL, ATP 25 lM, PIP2:PS 50 lg/mL, PI-103 and
LY294002 were used as positive controls. JN-KI3 and all positive
compounds were serially diluted into required concentrations. In
all cases, except for the control wells and background wells, the
solution of PI3K enzymes was incubated with testing compounds
in 384 plate for 45 min. 2.5 lL ATP/substrate mixture was added
into the wells to initiate kinase reactions and incubated at room
temperature for 1 h. Then, the reactions were stopped by addition
of 5 lL ADP-Glo reagent and incubation for 120 min at room tem-
perature. Before reading the luminescence signals of each well,
10 lL kinase detection buffer was added and incubated for
30 min at room temperature.
Cell lines and cell culture
The human cancer lines, MDA-MB-231, Patu8988, HepG2,

A2780, LOVO, H1299, A549, HCT-8, SW480, 3AO, and MGC-803
were saved by the lab of Dr. Jian Jin, Jiangnan University. MCF-7
was purchased from the American Type Culture Collection (ATCC).
Human malignant blood tumor cells, HL-60, U266, OPM2, OCI-
My5, RPMI-8226, NCI-H929, Jurkat, LP-1, CCRF-CEM, K562, and
U937, were provided by Dr. Xinliang Mao, Soochow University.
MDA-MB-231, Patu8988, HepG2, A2780, LOVO, H1299, A549,
HCT-8, SW480, 3AO, MGC-803, and MCF-7 were cultured in
Dulbecco’s Modified Eagle Medium (DMEM, Gibco); U266, RPMI-
8226, OPM2, OCI-My5, NCI-H929 and LP-1 were cultured in
Iscove’s Modified Dulbecco’s Medium (IMDM. Gibco). The rest of
cell lines were cultured in RPMI-1640 medium (Gibco). All medi-
ums were supplemented with 10% fetal bovine serum (FBS, Gibco),
100 lg/mL penicillin and streptomycin, and all cells were main-
tained in a cell incubator with 5% CO2 at 37℃.
4

Cell proliferation assay
All cells were incubated in 96-well culture plates with 100 lL

medium in each well. The concentration of solid cells (MDA-MB-
231, MCF-7, Patu8988, HepG2, A2780, 3AO, LOVO, HCT-8,
SW480, A549, H1299, and MGC-803) was 3,000/well and the con-
centration of suspension cells (HL-60, U266, OPM2, OCI-My5,
RPMI-8226, NCI-H929, Jurkat, LP-1, CCRF-CEM, K562, and U937)
was 7,500/well. Cells were then treated with 5 lL compounds
and positive inhibitors, IPI-145 and LY294002, diluted in the
required concentration for 72 h. The viability of the cancer cells
was evaluated by Thiazolyl Blue (MTT) assay. 10 lL of 5 mg/mL
MTT was added to each well and the plate was incubated at 37℃
for 4 h. Then, 100 lL MTT buffer was added to each well. After
incubating the plate overnight, the absorbance of each well was
measured at 550 nm by a microplate reader. All data were normal-
ized to control groups (5 lL DMSO) and converted into the percent
of living cells. All results were represented as the mean and stan-
dard deviation (SD) of the three independent measurements.

Western Blot assay
K562 and RPMI-8226 cells were cultured in 6-well plates with

1 � 106 cells per well and then treated with various concentrations
of JN-KI3: 0, 2.5, 5, 10, and 20 lM. After 24 h, the cells of each well
were collected and washed by PBS 3 times. The sedimentary cells
were then incubated in an ice bath with 80 lL RIPA lysis buffer
(Beyotime) for 20 min and then centrifuged at 12,000 rpm for
20 min. The supernatant was collected and its total concentration
of protein was quantified using the BCA protein assay kit
(Biosharp). Loading buffer (5 �) was added to all protein samples
prepared for Western Blot assays and boiled at 100℃ for 5 min.

The inhibitory situation of PI3K/AKT (Protein kinase B) signaling
pathway was then determined by Western Blot assays. The SDS-
polyacrylamide gel electrophoresis (PAGE) was used to separate
the proteins. All protein samples and Protein Marker (Proteintech)
were loaded onto an acrylamide gel and ran for 30 min at 80 V
within the staking gel and for 1 h at 100 V with the separating
gel. Then, the protein was electro-transferred onto an NC mem-
brane at 100 V for 1 h. After that, the membrane was blocked in
5% skim milk diluted in TBST (1 �) for 2 h and then the membrane
was incubated with relevant primary antibody overnight at 4℃:
Phospho-AKT (Thr308) (1: 1000, cat# 13038 T; Cell Signaling
Technology), Phospho-AKT (Ser473) (1: 1000, cat# 4060 T; Cell
Signaling Technology), AKT (pan) (1: 1000, cat# 4691 T; Cell
Signaling Technology), caspase-3 (1: 1000, cat# sc-56053; Santa
Cruz Biotechnology), PARP (1: 1000, cat# 9542S; Cell Signaling
Technology). GAPDH (1: 5000, cat#60004–1-Ig; Santa Cruz
Biotechnology), After 10-min washing in TBST (1 �) for 3 times,
the membrane was incubated with relevant secondary antibody
at room temperature on a shaker for 1 h. And the membrane was
washed for 4 times in TBST again before being imaged.

Flow cytometry assay
After being treated with JN-KI3 for 24 h, K562 and RPMI-8226

were stained with Annexin V-FITC/PI detection kit (Beyotime)
and the apoptosis of the cells were detected using a flow cytometer
(FACSCalibur, BD) following the instructions.

Theoretical studies on the PI3Kc selective inhibition mechanism of JN-
KI3

Docking studies. The crystallographic structures with high reso-
lutions of PI3Ka (PDB ID: 6PYS) [44], PI3Kb (PDB ID: 2Y3A) [45],
PI3Kd (PDB ID: 6PYR) [44] and PI3Kc (PDB ID: 4ANV) [46] were
stretched from the RCSB PDB. All structures were prepared in the
Protein Preparation Wizard module of Schrödinger 9.0. The 3D-
structures of Cpd5, Cpd36, Cpd38, and JN-KI3 were generated by

http://pasilla.health.unm.edu/tomcat/badapple/badapple
http://pasilla.health.unm.edu/tomcat/badapple/badapple
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maestro and minimized in the LigPrep module. Then, a bounding
box was generated on the ATP binding site of each complex with
the center of crystallized ligand by using the Receptor Grid Genera-
tion module. Cpd5, Cpd36, and Cpd38 were docked into PI3Kc,
while JN-KI3 was docked into the binding site of each complex,
all docking programs were performed using Glide SP method.

MD simulations. Four PI3Ks/JN-KI3 complexes with the best con-
formations generated by molecular docking were used as initial
structures to perform MD simulations by Desmond [47]. Each com-
plex system was immersed in a solvent model with TIP3P water
molecules and the boundary of the infiltration volume was
extended to 10 Å in each direction. Then, each system was neutral-
ized with Na+/Cl- counter ions andminimized under the OPLS-2005
force field [2]. Afterward, four complexes were submitted to MD
simulations following the default NPT and NVT ensemble protocols
in Desmond program, a 200-ns MD simulation at the pressure of
1 atm maintained by Martyn-Tobias-Klein pressure bath [48] and
at the temperature of 300 K maintained by Nose- Hoover Chain
thermostat [49] was performed for each system. The Smooth Par-
ticle Mesh Ewald method [50] was used to analyze the electrostatic
interaction forces between the complexes. And the RMSDs of the
PI3Ks protein backbones and the RMSF (root-mean-squared-
fluctuation) value of each atom in JN-KI3 were calculated.

MM/GBSA free energy calculation. The binding free energy
(DGBind) for each system was calculated by using Prime MM/GBSA
(Molecular Mechanics/Generalized Born Surface Area) module
employing an equation:

DGBind ¼ Gcomplex � ðGProtein þ GligandÞ
Where Gcomplex, Gprotein and Gligand are the prime energies of the

optimized complex, free receptor and free ligand, respectively [51].
Results and discussion

Performance of the VS model

Accumulative studies have shown that multi-conformational
virtual screening, which could mimic the induced-fit effect of the
protein, in a sequential or parallel manner could be the most
appropriate to balance efficiency and precision of VS than the con-
ventional VS, which usually uses single one protein with ‘‘rigid”
structure to guarantee the optimum efficiency of VS. Therefore,
87 PI3Kc crystallographic structures from PDB were collected
and then divided into 10 conformational types after the clustering
analysis. The complex with the highest resolution in each class was
chosen and finally 10 representative complexes were selected,
namely, 2A5U (Resolution: 2.70 Å) [22], 2V4L (2.50 Å) [52], 3DBS
(2.80 Å) [53], 3ML8 (2.70 Å) [54], 3R7Q (2.50 Å) [55], 4FJY
(2.90 Å) [56], 4FLH (2.60 Å) [57], 4PS7 (2.69 Å) [58], 4WWO
(2.30 Å) [59] and 5G2N (2.68 Å) [60] (PDB ID). In order to estimate
the precision and stability of these docking model systems, the
‘‘docking power” and ‘‘screening power” were evaluated, respec-
tively. The ‘‘docking power”, which is a vital criterion of the relia-
bility of molecular docking, presents the accuracy of poses
prediction. For each PI3Kc complex, the crystallized ligand was
re-docked into the binding site and the RMSD between the docking
pose and its original conformation was calculated. The results were
tabulated in Table 1, the RMSD of ten PI3Kc complexes were
all<2.0 Å, which means that all of them contain remarkable pre-
dicting power through both Glide/SP or Glide/XP molecular dock-
ing methods.

On the other hand, the ‘‘screening power” was investigated,
which exhibits an ability of the docking methods to distinguish
the active PI3Kc inhibitors from non-inhibitors. Herein, 800 PI3Kc
inhibitors with definite bio-activity and 16,000 non-inhibitors
5

were chosen to make up a validation set. All compounds in the
dataset were all docked into ten PI3Kc proteins with SP and XP
modes, respectively. The distributions of two docking scores of
each protein were illustrated, and the T-test was carried out to
evaluate the discrimination capacity of each protein with
P-value. As shown in Table 1, both SP and XP could accurately dis-
tinguish the inhibitors from non-inhibitors for ten PI3Kc proteins
(P-value < 0.05), but overall, the performance of SP shows better
than XP in each system, except 4WWO (Fig. 2). Take 2A5U as an
example, the P-value of SP mode is 1.612 � 10-158, which is
much<9.675 � 10-128, the P-value of XP. Some studies have demon-
strated that even though XP is the extra precision mode of the Glide
module and considered to be more accurate, the performance of SP
is not always worse than it. Therefore, in our studied PI3Kc sys-
tems, except 4WWO, SP mode with superior ‘‘screening power”
would be adopted.

Next, the data matrix consisting of the docking scores from the
above validation protocols was utilized to build the NBC model.
The capability to distinguish between inhibitors and non-
inhibitors for the NBCmodel was measured through the AUC value.
Firstly, ten NBCmodels were constructed based on a single docking
score for each complex, as summarized in Fig. 2K. The NBC model
of 3DBS_SP (both inhibitors and non-inhibitors were docked into
protein following Glide/SP protocol) shows the best predicting
power and the AUC value is 0.814. The AUC value of each system
is 0.768 (2A5U_SP), 0.766 (2V4L_SP), 0.775 (3ML8_SP), 0.803
(3R7Q_SP), 0.789 (4FJY_SP), 0.811 (4FLH_SP), 0.799 (4PS7_SP),
0.729 (4WWO_XP) and 0.807 (5G2N_SP), respectively (Fig. 2K).
Generally, the AUC value > 0.7 indicates that the model contains
a satisfactory prediction power, thus a novel NBC model based
on the combined docking scores of the ten PI3Kc proteins was built
up, as shown in Fig. 2L, the AUC value of this model is as high as
0.906, showing an excellent prediction for PI3Kc inhibitors.

JN-KI3 selectively inhibit PI3Kc

The 49 pro-hits identified from VS were numbered as Cpd1 to
Cpd49. The cell-free PI3Kc inhibitory activities of these hits were
firstly validated by ADP-Glo assay. The reported inhibitors,
IPI-145 and LY294002, were tested as positive controls. The
PI3Kc-inhibitory activity of each hit was primitively validated at
the concentration of 10 lM and the results were shown in
Fig. 3A. At first glance, the marketed drug, IPI-145, showed the
strongest inhibitory activity but it is encouraging that there are
four hits with the inhibitory percent exceeding 50%, namely,
Cpd5, JN-KI3 (Cpd14), Cpd36 and Cpd38. Among these four com-
pounds, JN-KI3 has the most satisfying activity with almost 60%
inhibitory percent to PI3Kc, the 2D structure of JN-KI3 is illustrated
in Table 2. The molecular docking results between these four com-
pounds and PI3Kc show that these compounds all form hydrogen
bonds (H-bond) with Val882 of PI3Kc (Fig. S2), Val882 have been
identified as a core residue, which could form characteristic
H-bond in almost all of the PI3Kc/inhibitors complexes. Therefore,
these four compounds all cause varying degrees of PI3Kc inhibi-
tion. The alignment of the four compounds in the binding pocket
shows JN-KI3 could form stronger hydrophobic interaction with
PI3Kc because of its chlorine phenyl group (Fig. S2A). The model-
ing results also reveal that JN-KI3 contains a novel scaffold differ-
ent from the classical propeller-shaped core structure, like IPI-549.
Then, the selective inhibition of JN-KI3 on other PI3K isoforms was
evaluated and the potent pan-PI3K inhibitor, PI-103, was used as
the positive control, the results summarized in Table 2. The IC50

value of JN-KI3 against PI3Kc is 3,873 nM, whose inhibitory
potency is near to LY294002. Though JN-KI3 shows lower bio-
activity on PI3Ks than PI-103, encouragingly, it exhibits a signifi-
cant specificity to PI3Kc, as shown in Table 2, the IC50 values of



Table 1
The docking power, screening power, and crucial interactions of ten PI3Kc crystal structures.

PDB ID RMSD (Å) P value Interactions

SP XP SP XP

2A5U 0.776 0.746 1.612 � 10-158 9.675 � 10-128 Asp964, Asp836
2V4L 0.789 0.779 2.740 � 10-193 3.007 � 10-163 Val882, Lys833
3DBS 0.830 0.816 1.961 � 10-227 3.239 � 10-208 Val882, Tyr867
3ML8 0.810 0.801 4.483 � 10-199 4.384 � 10-195 Val882, Asp964
3R7Q 0.818 0.803 1.868 � 10-205 7.619 � 10-191 Val882, Tyr867
4FJY 0.793 0.753 8.318 � 10-183 5.004 � 10-125 Val882
4FLH 0.824 0.799 2.158 � 10-212 2.889 � 10-164 Val882, Lys833
4PS7 0.816 0.798 1.970 � 10-198 3.452 � 10-178 Val882, Tyr867
4WWO 0.721 0.171 4.909 � 10-84 7.920 � 10-103 Val882
5G2N 0.849 0.835 3.441 � 10-255 6.537 � 10-253 Val88, Lys833

Fig. 2. (A-J) Distributions of the docking scores of the inhibitor (red)/noninhibitor (green) for each PI3Kc protein with the best discrimination power; (K) the ROC curve of the
naive Bayesian classifier based on every single docking score; (L) the ROC curve of the naive Bayesian classifier based on the combined docking scores.
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JN-KI3 against other three isoforms are all>20,000 nM. Comparing
to JN-PK1, which is an effective hit identified from our previous
traditional VS work, JN-KI3 appeared not only a more significant
PI3Kc inhibitory activity, but also a higher selectivity against
PI3Kc. This result strongly proves that the VS integrated a machine
learning based on multi-conformational PI3Kc could effectively
discover novel selective PI3Kc inhibitors.

The promiscuity and ADMET assessments for JN-KI3

Pan-assay interference compounds (PAINS) analysis was used to
investigate how far JN-KI3 could be flagged as a PAINS compound.
PAINS refer to a series of promiscuous compounds specifically
binding to different macromolecular targets and leading to mis-
leading false-positive results in experimental assays. Therein, two
available promiscuous predicting algorithms, Hit Dexter 2.0 and
Badapple, were utilized to examine whether JN-KI3 could be cate-
gorized as PAINS. The detailed promiscuity analysis result of JN-KI3
using Hit Dexter 2.0 is available on the website (https://nerdd.zbh.
uni-hamburg.de/hitdexter/result/c1ac770f-753e-455b-8c66-
6

a5ed2337dbfd). JN-KI3 is predicted as non-promiscuous by the PSA
(primary screening assays) classifier with a probability of 0.90 and
the CDRA (confirmatory dose–response assays) classifier with a
probability of 1.00 at moderate confidence. Besides, JN-KI3 shows
the low promiscuous probability values even at high confidence,
0.26 for PSA, and 0.17 for CDRA (Fig. S3). It demonstrates that
JN-KI3 would be a specific compound rather than a promiscuous
one. Promiscuity screening data of Badapple are listed in Table 3.
Scaf1, the indolyl group of JN-KI3, is found to have a pScore value
higher than 300, accompanied with a ‘‘True” result inDrug data-
base. The other scaffold, Scaf2, 1-phenyl-indole, presented a mod-
erate pScore value with a ‘‘True” result inDrug database. These
results suggest both promiscuity and drug-likeness probability of
JN-KI3. However, no pScore was generated for Scaf3 and Scaf4,
and the inDrug values are both ‘‘False”, indicating the absence of
the scaffolds in the drug database.

Besides, in silico ADMET of JN-KI3 were calculated to predict the
pharmacochemical properties. Table 3 shows that almost all prop-
erties are within the acceptable range. For instance, all the logP val-
ues are within the optimal range, the human oral absorption

https://nerdd.zbh.uni-hamburg.de/hitdexter/result/c1ac770f-753e-455b-8c66-a5ed2337dbfd
https://nerdd.zbh.uni-hamburg.de/hitdexter/result/c1ac770f-753e-455b-8c66-a5ed2337dbfd
https://nerdd.zbh.uni-hamburg.de/hitdexter/result/c1ac770f-753e-455b-8c66-a5ed2337dbfd


Fig. 3. (A) The cell-free PI3Kc inhibitory activities of 49 hits and two positive inhibitors, IPI-145 and LY294002; (B) the anti-proliferation effects towards multiple tumor cells
of 49 hits and two positive inhibitors, IPI-145 and LY294002; (C) the anti-proliferation effects towards multiple tumor cells of JN-KI3 and IPI-145; (D) the anti-proliferation
effects towards multiple malignant tumor cells of JN-KI3 with the gradient of concentrations.

Table 2
The 2D-structures and the cell-free inhibitory activity values (IC50) of JN-KI3 and the positive reference compounds JN-PK1, PI-103, and LY294002.

Compounds Structures Cell-free inhibitory IC50 (nM)a

PI3Kc PI3Ka PI3Kb PI3Kd

JN-KI3 3,873 >20,000 >20,000 >20,000

JN-PK1 7,490 11,300 >20,000 >20,000

PI-103 50 3.8 10 5.1

LY294002 2,980 1,660 2,580 780

a Average of triple tests.
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(PHOA) of JN-KI3 is close to the highest recommended values,100%.
All these predictions indicate that JN-KI3 exhibits optimum drug-
like properties.
JN-KI3 selectively anti-proliferate against hematologic cancer cells

At the same time, the anti-proliferative activity of each hit
towards different human cancer cells was evaluated, including
breast cancer cells (MDA-MB-231, MCF-7), pancreatic cancer cell
(Patu8988), liver cancer cell (HepG2), ovarian cancer cells
(A2780, 3AO), colon cancer cells (LOVO, HCT-8, SW480), lung
cancer cells (A549, H1299), gastric cancer cell (MGC-803), and
hematologic malignancies cells (HL-60, U266, OPM2, PRMI-8226,
NCI-H929, Jurkat, LP-1, CCRF-CEM, K562, U937). IPI-145 and
LY294002 were still used as positive controls. The anti-
proliferative activity of each hit was shown as the livability of
the cells. Fig. 3B shows that there are three hits considerably
inhibiting the proliferation of some cancer cell lines. To be specific,
Cpd5 could suppress the proliferation of acute promyelocytic leu-
kemia (HL-60), Cpd13 could inhibit chronic myelogenous leukemia
(K562). It is a pity that the results from the cellular experiments
are not in good agreement with those of above cell-free assays,
such as Cpd36 and Cpd38, which show little anti-tumor effect.
But luckily, JN-KI3 show potently suppressed proliferation in some
cell lines and more interestingly, JN-KI3 seems to prefer to inhibit
the proliferation of hematologic cancer cell lines, such as K562 and
multiple myeloma cell lines (RPMI-8226 and U937), and the inhi-
bition effect is even stronger than IPI-145 (Fig. 3C). As discussed
above, PI3Kc is mainly distributed and expressed in the
hematopoietic systems, that may lead to the specific inhibition
against hematologic cancer cell lines. To test this hypothesis, more
hematologic tumor cell lines were treated with JN-KI3, including
four human leukemia cells (HL-60, Jurkat, CCRF-CEM, K562), four
multiple myeloma cells (OPM2, OCI-My5, LP-1, RPMI-8226) and
one lymphoma cells (U937). As shown in Fig. 3D, the proliferation
of all cells was decreased in a concentration-dependent manner,
especially K562, which show significant sensitivity to JN-KI3 at a
low concentration.
JN-KI3 induce apoptosis of hematologic cancer cells with selective
inhibition on PI3K/AKT signaling pathway

As it has been widely reported that PI3Kc/AKT signaling path-
way play central roles in regulating the survival and proliferative
activities in hematologic malignancies. To investigate the
inhibition of JN-KI3 to PI3K at the cellular level, immunoblotting
assays were performed with the two sensitive cell lines, K562, and
RPMI-8226 (8226). AKT is a node protein downstream of the PI3K
signaling pathway. The inhibition of PI3Kc kinase activity can sup-
press the phosphorylation of AKT at Thr308 and Ser473 sites. Thus,
the inhibitory activity against PI3K of JN-KI3 at a cellular level was
verified using AKT phosphorylation as a readout. As shown in
Fig. 4A & B, after treating with the increasing concentration of
JN-KI3 for 24 h, AKT phosphorylation at Thr308 and Ser473 sites
in K562 and 8226 cell lines were both markedly decreased, and
the inhibition was caused even at a concentration as low as
2.5 lM, while the expression of total AKT (t-AKT) was not affected.
In addition, both K562 and 8226 cell lines were treated with 20 lM
JN-KI3 for the indicated time periods. As shown in Fig. 4C & D, the
phosphorylation level of AKT at both sites was significantly inhib-
ited with the prolongation of the time of JN-KI3 action. Similarly,
t-AKT was not markedly affected. All the above results indicated
that JN-KI3 would effectively inhibit PI3K/AKT signaling with a
concentration- and time-dependent manners in hematologic
cancer cells.
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Those above results suggested that JN-KI3 could specifically
inhibit PI3Kc both at the cell-free and the cellular level, and it
selectively suppressed hematologic cancer cells. To further demon-
strate whether JN-KI3 could induce the apoptosis of hematologic
cells with the inhibition of PI3Kc, K562 and 8226 were treated
with JN-KI3 with increased duration or concentrations, and the rel-
ative levels of two apoptosis biomarkers, PARP (poly ADP-ribose
polymerase) and caspase-3 were detected and the results were
illustrated in Fig. 4. Caspase-3 belongs to the caspase family of cys-
teine proteases, which are the key mediators of cell apoptosis.
Caspase-3 cleaves the death substrate PARP to a specific 89 kDa
form observed during apoptosis. Fig. 4A & B show that after incu-
bating with the increasing concentrations of JN-KI3, the cleavage
levels of PARP and caspase-3 in K562 and 8226 cell lines were obvi-
ously increased and showing in the dependent manner of concen-
tration. Then, a time-course study was conducted, and both K562
and 8226 treated with 20 lM JN-KI3 activated the PARP and
caspase-3 following increased incubation time (Fig. 4C & D). The
results demonstrated that the cleavage level of Caspase-3 and
PARP in both cell lines significantly increased after a short time
(6 h) of incubation with JN-KI3.

To further observe the induction of apoptosis by JN-KI3,
Annexin V-FITC/PI double staining was performed to K562 and
8226 treated with increasing concentrations of JN-KI3 for 24 h,
and then flow cytometry was utilized to observe the apoptotic can-
cer cells. As shown in Fig. 4E, JN-KI3 could induce the apoptosis of
K562 at considerably low concentration, there was 41.2%, 47.5%
and 65.7% of K562 cells occurring apoptosis after treating with
2.5, 5 and 10 lM JN-KI3 for 24 h, respectively. Comparing to
K562, 8226 presented moderate cellular apoptosis, about 20.43%
of 8226 cells occurred definite apoptosis at a JN-KI3 concentration
up to 10 lM (Fig. 4F). These results are good agreement with those
in cell proliferation bioassay. To sum up, JN-KI3 could induce apop-
tosis of hematologic cancer cells in association with its potent
PI3Kc inhibition.
Theoretical studies on the PI3Kc selective inhibition mechanism of JN-
KI3

In order to reveal the mechanism of selective inhibition of
PI3Kc by JN-KI3 at a molecular level, a computational strategy
integrating molecular docking, MD simulation and free energy
calculations was employed. JN-KI3 was firstly docked into the
ATP-binding pocket of four PI3K isoforms and the docking scores
were listed in Table 4. It is delighted to find that the docking scores
are consistent with the experimental inhibitory activities. The
docking score of PI3Kc/JN-KI3 is �7.841 kcal/mol, which is higher
than those of PI3Ka/JN-KI3 (-6.730 kcal/mol), PI3Kb/JN-KI3
(-6.640 kcal/mol) and PI3Kd/JN-KI3 (-6.018 kcal/mol). It roughly
demonstrated that JN-KI3 has a stronger binding affinity to PI3Kc
than the other three PI3K isoforms.

To further estimate the dynamic behavior of PI3Ks after binding
to JN-KI3, the MD simulations were implemented and the docking
poses from molecular docking studies (Fig. S4) were served as ini-
tial structures. The backbone RMSD values of four complexes were
illustrated in Fig. S5,which indicated each system reached equilib-
rium in a short time after the simulations began. When the sys-
tems were stable, MM/GBSA method was utilized to calculate the
binding free energy of each system. All results are listed in Table 4.
The binding free energies of PI3Ka/JN-KI3, PI3Kb/JN-KI3, PI3Kd/
JN-KI3, and PI3Kc/JN-KI3 are �42.832, �36.875, �49.441 and
�64.981 kcal/mol, respectively. The predicted binding free energy
of PI3Kc/JN-KI3 is greatly lower than the other three systems,
which suggest that JN-KI3 binds to PI3Kcmost tightly and it agrees
with the above experimental and docking results.



Table 3
The pScore and inDrug values from Badapple data base, and the predicted ADMET properties of JK-KI3.

Compound Scaffold Number Scaffold Structure pScorea inDrugb

JN-KI3 Scaf1 370 True

Scaf2 186 True

Scaf3 None False

Scaf4 None False

ADMET Prediction

Propertiesc Value Optimal range Properties Value Optimal range

CNS 1 �2 - +2 polrz 51.04 13.0–70.0
logPC16 16.27 4.0–18.0 logPoct 23.54 8.0–35.0
logPw 11.51 4.0–45.0 logPo/w 5.53 �2.0–6.5
logS �6.31 �6.5–0.5 CIlogS �6.67 �6.5–0.5
logHERG �7.53 concern below �5 PCaco 364.52 <25 poor,>500 great
logBB �0.37 �3.0–1.2 PMDCK 453.07 <25 poor,>500 great
logKp �3.08 �8.0 - �1.0 logKhsa 1.05 �1.5–1.5
PHOA 92.20 >80% is high<25% is poor rtvFG 0 0–2

a pScore values advisory: <100 (low), means no indication; 100–300 (moderate), means weak indication of promiscuity; >300 (high), means strong indication of
promiscuity.

b inDrug results: true, means it was found in the drug data base; false, means not found.
c properties: CNS, predicted central nervous system activity on a �2 (inactive) to + 2 (active) scale; Polrz, predicted polarizability in cubic angstroms; logPC16, predicted

hexadecane/gas partition coefficient; logPoct, predicted octanol/gas partition coefficient; logPw, predicted water/gas partition coefficient; logPo/w, predicted octanol/water
partition coefficient; logS, predicted aqueous solubility; CIlogS, conformation-independent predicted aqueous solubility; logHERG, predicted IC50 value for blockage of HERG
K+ channels; PCaco, predicted apparent Caco-2 cell permeability in nm/sec; logBB, predicted brain/blood partition coefficient; PMDCK, predicted apparent MDCK cell
permeability in nm/sec. logKp, predicted skin permeability; logKhsa, prediction of binding to human serum albumin; PHOA, predicted human oral absorption on 0 to 100%
scale; rtvFG, Number of reactive functional groups.
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To further uncover the interaction modes between JN-KI3 and
PI3Ks in a dynamic process, the dominant interactions, including
H-bond, hydrophobic, ionic interactions (Ionic) and hydrogen
bonds through water molecular bridge (Water Bridge), between
key residues of each PI3K isoform and JN-KI3 were elucidated. As
shown in Fig. 5, the carbonyl group of JN-KI3 formed an H-bond
with Val residue in all four PI3K isoforms, namely, Val851a,
Val848b, Val828d, and Val882c. After a sequence comparison and
structural alignment, it suggested that these Val residues were
conserved and located at the similar position at the hinge region
within the ATP-binding pocket in all four isoforms. The hinge
region is one of the four well-depicted regions in the
ATP-binding pocket playing a significant role in determining the
binding affinities between PI3Ks and small molecular inhibitors.
As for PI3Ka/JN-KI3, there were hydrophobic interactions between
Trp780/Ile800/Ile932 and JN-KI3 (Fig. 5A). As for PI3Kb/JN-KI3,
Glu852 and Asp856 formedWater Bridge interactions with the free
hydroxyl group and the secondary amino group of JN-KI3, respec-
tively. Moreover, Ile930 formed a hydrophobic interaction with
JN-KI3 (Fig. 5B). As for PI3Kd/JN-KI3, Trp760 formed a Pi-Pi interac-
tion with the indole ring of JN-KI3, which almost dominated the
nonpolar contribution in PI3Kd. In addition, there was a Water
Bridge between Asp832 and JN-KI3 (Fig. 5C). As for PI3Kc/JN-KI3,
except for Val882, Thr887 formed an H-bond with the free hydro-
xyl group of JN-KI3, and Thr886 formed another H-bond with the
9

free amino group of JN-KI3. As far as we know, these characteristic
H-bonds are less common compared to most of the reported PI3K
inhibitors. Besides, there were two strong hydrophobic interac-
tions between Met953/Ile963 and JN-KI3 (Fig. 5D). Thus, the extra
H-bonds and the stronger hydrophobic interactions between JN-
KI3 and PI3Kc were deemed as the critical reason for the PI3Kc
selective inhibition of JN-KI3.

Finally, the RMSF value of each atom of JN-KI3 was calculated,
the atoms forming potent interactions with PI3Ks would be imped
to fluctuate and thus show extremely low values. As a whole,
JN-KI3 exhibited less fluctuate in PI3Kc system (Fig. 6B), and it
indicated JN-KI3 preferred to bind to PI3Kc. Specifically, the
carbonyl group (atom index: 11 and 12), the indole ring (atom
index: 1–9), P-methylphenyl at 9 position (atom index: 14–20)
were all bind to PI3Ks with almost same interacted effect (green
colored in Fig. 6A). Comparing the binding poses before and after
the MD simulation, these groups show little fluctuation in the
PI3Kc binding region (Fig. S6). The H-bond was always maintained
between Val882 and the carbonyl group, while Met953 and Ile963
still form strong hydrophobic interactions with JN-KI3 (Fig. 6C &
D). Therefore, this motif of JN-KI3 is vital for the satisfactory bind-
ing affinity to PI3Kc. However, the motif colored in red of JN-KI3
presented weak interactions with class IA PI3K isoforms, especially
the chlorine phenyl (atom index: 26–32 and 34). Interestingly, the
RMSF values of these atoms in PI3Kc/JN-KI3 were far lower than



Fig. 4. JN-KI3 inhibited PI3K/AKT signaling pathway and induced apoptosis of (A) K562 and (B) RPMI-8226 cell lines at different concentrations from 0 to 20 lM after 24 h
incubation. JN-KI3 inhibited PI3K/AKT signaling pathway and induced apoptosis of (C) K562 and (D) RPMI-8226 cell lines at different times from 0 to 24 h for 20 lM
concentration. JN-KI3 induced apoptosis of hematologic malignancies illustrating by flow cytometry. Apoptosis of (E) K562 and (F) RPMI-8226 cell lines treated with different
concentrations of JN-KI3 (from 0 lM to 10 lM) for 24 h.

Table 4
The docking scores and predicted binding free energies of JN-KI3/PI3Ks, and the inhibitory activities against PI3Ks of JN-KI3.

JN-KI3 PI3Kc PI3Ka PI3Kb PI3Kd

Docking Scores (kcal/mol) �7.841 �6.730 �6.640 �6.018
Binding free energy (kcal/mol) �64.981 �42.832 �36.875 �49.441
IC50 (lM) 3.873 ＞20 ＞20 ＞20
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the values in other systems. On the other hand, the H-bond
between JN-KI3 and Ala885 lost after MD simulation (Fig. 6C),
the motif including chlorine phenyl (atom index: 21–34) had
10
significant ligand torsions (Fig. S6C), that made the motif prefer
to bias Thr886 and Thr887, and lastly formed two strong
H-bonds with these two residues (Fig. 6D). Thus, all these results



Fig. 5. 2D interaction patterns and protein–ligand occupancy histogram of (A) PI3Ka/JN-KI3; (B) PI3Kb/JN-KI3; (C) PI3Kd/JN-KI3; (D) PI3Kc/JN-KI3 complexes.

Fig. 6. (A) the 2D-structure labeled with atomic numbers; (B) the ligand RMSF value of JN-KI3; (C) the 3D-interaction diagrams between JN-KI3 and PI3Kc before MD
simulation (H-bond colored in green); (D) the 3D-interaction diagrams between JN-KI3 and PI3Kc after MD simulation (H-bond colored in green).
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are supposed to be responsible for the PI3Kc selective inhibition of
JN-KI3.

Conclusion

In the present study, a machine learning-based VS with multi-
ple protein structures was developed to screen against a large
chemical library. This integrated VS model exhibits more precision
prediction through mimicking the induced-fit effect of drug target
than conventional VS, and the sequential manner during this
protocol could be more appropriate to balance the efficiency and
precision of VS. The developed NBC model integrating ten PI3Kc
11
proteins showed a satisfactory prediction power against PI3Kc
inhibitors with the AUC value as high as 0.906, indicating that
the VS with multiple PI3Kc structures would get much better per-
formance and higher enrichment rate than that based on any single
PI3Kc structure. After the evaluation of drug-likeness with the Lip-
inski and Veber rules and REOS, 49 VS-hits interacting with the
‘‘hot residues” within the ATP binding pocket of PI3Kc were
screened out, and then, all compounds were submitted to a series
of bio-assay studies. Firstly, the PI3Kc inhibitory activities of these
hits were preliminarily validated by the cell-free assay, and four (4
in 49) compounds show over 50% inhibitory percent at a concen-
tration of 10 lM. Among them, JN-KI3 exhibits the most potent
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selective PI3Kc inhibitory bioactivity, the IC50 against PI3Kc is
3,873 nM. And, even more crucially, JN-KI3 shows a significant
specificity to PI3Kc, while there is no inhibitory effect on Class IA
PI3Ks even at concentrations higher than 20,000 nM. It suggests
that the novel integrated VS strongly manifests the robustness to
find new PI3Kc inhibitors. Meanwhile, the in silico PAINS and
ADMET assessments indicated that JN-KI3 contains appropriate
drug-like properties. Subsequently, dozens of common human
cancer cell lines were treated with JN-KI3, respectively, and it is
interesting that JN-KI3 prefers to inhibit the proliferation of hema-
tologic cancer cell lines, the inhibition effect on some hematologic
cancer cells is even stronger than IPI-145, which is consistent with
the main distribution and expression of PI3Kc in the hematopoietic
systems. Therefore, PI3Kc would be a suitable therapeutic target
for hematologic cancers. Immunoblotting analysis revealed that
JN-KI3 would effectively inhibit PI3K/AKT signaling with
concentration- and time-dependent manners in hematologic
cancer cells even at a low concentration. The further studies at
the cellular models show that JN-KI3 could significantly induce
apoptosis of hematologic cancer cells. The potent selective inhibi-
tion on PI3Kc of JN-KI3 resulted in the significant cleavage of
two apoptosis biomarkers, PARP and caspase-3, and finally led to
distinct apoptosis of the cell lines with dose- and time-
dependent manners. Lastly, the selective inhibition mechanism of
JN-KI3 against PI3Kc was uncovered by a theoretical study com-
bining molecular docking, MD simulation, and free energy calcula-
tions. The results reveal that JN-KI3 contains the highest binding
free energy against PI3Kc than Class IA isoforms, which is in good
agreement with the experimental bioactivities. In addition, some
key residues influencing c isoform-selective inhibition of JN-KI3
were highlighted, such as Val882, Thr886, Thr887, Met953, and
Ile963, these key interactions are less common compared to most
of the reported PI3Kc inhibitors, indicating that JN-KI3 has novel
structural characteristics as a selective PI3Kc inhibitor. On
the other hand, some structural features of JN-KI3 critical to the
c-isoform preferred binding affinity were outstood, the chlorine
phenyl of JN-KI3 formed stronger interactions with PI3Kc than
Class IA isoforms, which makes a favorable contribution for specific
inhibition on PI3Kc. All results could provide some significant
guidance for the further rational design of JN-KI3.
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