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Early stages of type 1 diabetes (T1D) are characterized by local autoimmune inflammation and 

progressive loss of insulin-producing pancreatic β cells. We show here that exposure to pro-

inflammatory cytokines unmasks a marked plasticity of the β-cell regulatory landscape. We 

expand the repertoire of human islet regulatory elements by mapping stimulus-responsive 

enhancers linked to changes in the β-cell transcriptome, proteome and 3D chromatin structure. 

Our data indicate that the β cell response to cytokines is mediated by the induction of new 

regulatory regions as well as the activation of primed regulatory elements prebound by islet-

specific transcription factors. We find that T1D-associated loci are enriched of the newly mapped 

cis-regulatory regions and identify T1D-associated variants disrupting cytokine-responsive 

enhancer activity in human β cells. Our study illustrates how β cells respond to a pro-

inflammatory environment and implicate a role for stimulus-response islet enhancers in T1D.

In type 1 diabetes (T1D), early inflammation of the pancreatic islets (insulitis) by T and B 

cells contributes to both the primary induction and secondary amplification of the immune 

assault, with inflammatory mediators such as the cytokines interleukin-1β (IL-1β) and 

interferon-γ (IFN-γ) contributing to the functional suppression and apoptosis of β cells1-3.

Genome wide association studies (GWAS) have made a substantial contribution to the 

knowledge of T1D genetic architecture uncovering >60 regions containing thousands of 

associated genetic variants. Nevertheless, translating variants to function remains a main 

challenge for T1D and other complex diseases. Most of the associated variants do not reside 

in coding regions4, suggesting that they may influence transcript regulation rather than 

altering protein coding sequences. Recent studies showed a primary enrichment of T1D 

association signals in T and B cell enhancers4,5. A secondary5, or a lack of enrichment, was 

instead observed in islet regulatory regions. While such observation points to a major role of 

the immune system, we hypothesize that a subset of T1D variants may also act at the β-cell 

level but only manifest upon islet-cell perturbation and are thus not captured by the current 

maps of islet regulatory elements.

We have now mapped inflammation-induced cis-regulatory networks, transcripts, proteins 

and 3D chromatin structure changes in human β cells (Fig. 1a). We leverage these data to 

unmask functional T1D genetic variants as well as key candidate genes and regulatory 

pathways contributing to the β cell autoimmune destruction. Such analyses permit 

elucidation of the role of epigenetic gene regulation and its interaction with T1D genetics in 

the context of the autoimmune reaction that drives β cell death.

Results

Pro-inflammatory cytokines impact the β-cell chromatin landscape.

To characterize the effect of pro-inflammatory cytokines on the β-cell regulatory landscape, 

we first mapped all accessible or open chromatin sites in human pancreatic islets exposed or 

not to IFN-γ and IL-1β. We assayed chromatin accessibility by ATAC-seq and, in order to 

focus on the β-cell fraction and to decrease inter-individual variability, in parallel with 

human pancreatic islet assays, we performed ATAC-seq in the clonal human β-cell line 

EndoC-βH16, exposed or not to the pro-inflammatory cytokines (overall number of peaks 
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identified in human islets: 92,610-229,588; and in EndoC-βH1 cells: 52,735-110,715. 

Extended Data Fig. 1a). Such experiments unmasked an important remodeling of the β-cell 

chromatin resulting in ~12,500 high confident chromatin sites that gain accessibility (FDR 

adjusted P<0.05; log 2 FC>1) (Extended Data Fig. 1b) upon exposure to pro-inflammatory 

cytokines. Importantly, the changes observed in the human β cell line were concordant with 

those observed in the human islet preparations (Extended Data Fig. 1c).

We reasoned that changes in chromatin accessibility may reflect the activation of non-coding 

cis-regulatory elements. We thus used chromatin immunoprecipitation coupled with next 

generation sequencing (ChIP-seq) to map cytokine-induced changes of H3K27ac (Extended 

Data Fig. 1a), a key histone modification associated with active cis-regulatory elements that 

was shown to be dynamically regulated in response to acute stimulation7. We observed 

genome-wide deposition of the active histone modification mark upon exposure to pro-

inflammatory cytokines in both EndoC-βH1 and human pancreatic islets (Extended Data 

Fig. 1b-c).

Integrative analysis of ATAC-seq and ChIP-seq indicates that changes in chromatin 

accessibility are strongly correlated with deposition of H3K27ac (P<2×10−16, r2=0.63) 

allowing the identification of ~3,800 open chromatin regions that gained H3K27ac (FDR 

adjusted P<0.05; ∣log2 FC∣>1) upon exposure to pro-inflammatory cytokines (Fig. 1b and 

Extended Data Fig. 1d). We found that this subset of open chromatin regions is 

preferentially located distally to gene transcription start sites (TSS) (Extended Data Fig. 1e), 

their sequence is evolutionary conserved (Extended Data Fig. 1f) and enriched for specific 

transcription factor (TF) binding sites (Extended Data Fig. 1g). We named these newly 

mapped regions IREs for “Induced Regulatory Elements” (Supplementary Table 1 and 

Supplementary Table 2).

Chromatin changes link to variation in transcription and translation.

We next explored whether the newly identified IREs were associated with changes in gene 

expression and protein translation. To identify β cell transcripts and proteins induced by the 

pro-inflammatory cytokines we assayed gene expression by RNA-seq (five replicates in 

EndoC-βH1 and five replicates in human pancreatic islets8, Extended Data Fig. 1a) and 

collected multiplex proteomics data for three EndoC-βH1 replicates after exposure or not to 

pro-inflammatory cytokines.

In line with the chromatin assays, that indicated extensive gene regulatory activation, we 

unraveled cytokine-induced transcriptional activation resulting in ~1,200 upregulated genes 

(FDR adjusted P<0.05; log 2 FC>1) (Extended Data Fig. 2a-b). By multiplex proteomics, 

after rigorous filtering, a subset of 10,166 proteins was confidently quantified and retained 

for significance testing. A total of 348 proteins displayed significant changes in abundance 

(FDR/Q-value <0.15 and ∣FC∣>1.5; ∣log2 FC∣>0.58) being 2.19% of the overall detected 

proteins upregulated (Extended Data Fig. 2c), 76% of which had induced mRNA levels at 

48h, confirming consistency between RNA-seq and protein changes (r2=0.72, P<2×10−16) 

(Fig. 1c). Protein-protein interactions inferred from β-cell cytokine-induced proteins resulted 

in a network more connected than expected by chance (P<10−3), significantly enriched for 

Molecular Signatures Database (MSigDB; http://software.broadinstitute.org/gsea/msigdb/) 
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pathways including IFN-γ signaling, antigen processing and presentation, apoptosis and 

T1D (KEGG T1D P=7.9×10−8, Extended Data Fig. 2d).

In line with our expectations we found that IREs were linked to up-regulation of the nearby 

gene/s as well as to an induced abundance of the corresponding protein (Fig. 1d-e and 

Extended Data Fig. 2e). Moreover, gene induction was highly correlated with the number of 

associated IREs, suggesting a cumulative effect of IREs on cytokine-induced changes in 

gene expression (Extended Data Fig. 2f).

Taken together these findings reveal that pancreatic β-cell response to pro-inflammatory 

cytokines is dynamic, involving extensive chromatin remodeling and profound changes in 

the regulatory landscape (Fig. 1f and Extended Data Fig. 2g). Such changes are associated 

with induction of transcription and protein translation including pathways implicated in the 

pathogenesis of T1D. Newly defined regulatory maps can be visualized online along with 

other islet regulatory annotations at www.isletregulome.org.

Primed and neo regulatory elements mediate cytokine response.

We next sought to gain insight into the dynamic activation of IREs. The relationship 

between chromatin openness and H3K27ac deposition upon exposure to pro-inflammatory 

cytokines allows the distinction of two classes of IREs (Fig. 1b and Fig. 2a-c): “opening 
IREs” (n=2,436) which gain both chromatin accessibility (log2 FC>1) and H3K27ac (log2 

FC>1); and “primed IREs” (n=1,362) which are already accessible chromatin sites prior to 

the treatment (ATAC-seq log2 FC<1) and gain H3K27ac (log2 FC>1) upon exposure to the 

stimulus. Primed and opening IREs are both associated to gene expression induction 

(Extended Data Fig. 3a), phylogenetically conserved (Extended Data Fig. 3b) and 

preferentially mapped distally relatively to gene TSS (Extended Data Fig. 3c). We further 

unmasked that 70% of opening IREs (n=1,716) are newly activated (i.e. undetectable in 

basal condition, see methods). We named the latter “neo IREs”. Neo IREs represent 45% of 

all IREs and may mirror “latent enhancers“ that were identified upon stimulation of mouse 

macrophages7.

Because chromatin openness, the feature discerning the two classes of IREs, is believed to 

reflect TF occupancy, we analyzed their sequence composition in search of recognition 

sequences of key TFs orchestrating the β cell response to pro-inflammatory cytokines. Even 

though IREs are mostly distal to TSS (Extended Data Fig. 3c), in order to reduce sequence 

biases, we excluded from this analysis all annotated promoters. The two classes of distal 

IREs predominantly mapped to enhancer chromatin state (Extended Data Fig. 3d) and 

showed clear differences in sequence composition. Newly induced enhancers were enriched 

for binding motifs of inflammatory-response TFs including Interferon-Sensitive Response 

Element (ISRE), STAT and NF-kB (Extended Data Fig. 3e). Primed enhancers instead were 

enriched for binding motifs of inflammatory-response TFs (ISRE, STAT), and unexpectedly, 

islet-specific TFs (HNF1A/B, NEUROD1, PDX1, MAFB, NKX6.1) (Extended Data Fig. 

3f). Importantly, we found that, in primed enhancers, inflammatory-response and islet-

specific TFs binding motifs mapped to the same genomic region, suggesting co-binding and 

possibly cooperation of the two classes of TFs (Extended Data Fig. 3g-h).
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Sequence composition bias per se does not imply TF occupancy. We thus took advantage of 

published ChIP-seq datasets of islet-specific TFs (MAFB, PDX1, FOXA2, NKX6.1 and 

NKX2.2) mapped in un-stimulated human pancreatic islets9 to measure TF occupancy in 

primed and neo enhancers prior to the pro-inflammatory stimulus. As expected from the 

sequence composition analysis, primed enhancers (unlike neo enhancers) are highly bound 

by tissue-specific TFs even before their activation (Fig. 2d and Extended Data Fig. 3i). TF 

occupancy can also be indirectly assessed by ATAC-seq, which assays the protection of the 

bound sequence to transposase cleavage (footprint). Footprint analysis is effective for TFs 

with a long residence time10 such as IRFs and STAT TF families. Our analyses revealed the 

emergence of footprint marks upon pro-inflammatory treatment in correspondence to ISRE 

motifs in both primed and neo enhancers (Fig. 2e) indicating cytokine-induced TF 

occupancy of IREs.

Gene regulation is orchestrated by different epigenetics mechanisms. DNA methylation is a 

relatively stable epigenetic mark contributing to maintenance of cellular identity11,12. 

Moreover, high-resolution DNA methylation maps, obtained from multiple tissues, 

established that the vast majority of tissue-specific differentially methylated regions are 

located at distal, mostly non-coding, regulatory sites13. Consequently, characterization of the 

DNA methylome in the context of relevant stimuli is important for understanding the 

functional mechanisms of tissue-specific responses in human disease14. We thus explored if 

cytokine-induced chromatin remodeling is associated with changes in DNA methylation. We 

quantified DNA methylation changes by performing dense methylation arrays in EndoC-

βH1 exposed or not to IFN-γ and IL-1β. The Infinium MehtylationEPIC array was designed 

to interrogate with high precision and coverage >850,000 CpG sites (approximately 3% of 

all sites in the genome) selected primarily because of their location close to gene promoters 

and CpG-island regions. By focusing on the 1,230 IRE enhancers harboring one or more 

CpG sites interrogated by the array, we observed that primed enhancers overlap lowly 

methylated CpGs (median β-value 0.12±0.08), that did not vary significantly upon cytokine 

exposure. Such observation is in sharp contrast with neo enhancers that were highly 

methylated under control condition (median β-value 0.77±0.10) but underwent a significant 

loss of DNA methylation (Two-sided Wilcoxon test, P=4.13×10−4) upon the treatment (Fig. 

2f). While we did not observe cytokine-induced methylation, we found that ~70% of the 

significantly demethylated probes (FDR adjusted P≤0.05; βcyt–βctrl<−0.20) mapping to IRE 

were located at neo enhancers (Extended Data Fig. 3j,k)

These results suggest that neo enhancers are enriched for methylated CpGs that undergo 

preferential demethylation upon cytokine treatment whereas primed enhancers are enriched 

for unmethylated CpGs that do not change their methylation status upon the cytokine 

exposure.

Taken together these analyses lead to a model, in which pro-inflammatory cytokines elicit a 

regulatory response in β cells characterized by: 1) new induction of distal regulatory 

elements coupled with reduction of DNA methylation and binding of inflammatory response 

TFs and 2) activation of regulatory elements pre-bound by islet-specific TFs and induced by 

inflammatory response TFs (Fig. 2g).
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Collectively, these results allow reconstructing cis-regulatory networks activated in human 

pancreatic β cells upon exposure to the pro-inflammatory cytokines IFN-γ and IL-1β 
(Extended Data Fig. 4a-c and Supplementary Table 1).

Changes in the islet 3D chromatin structure.

Regulatory regions can exert control over genes at megabase distances through the formation 

of DNA loops. These loops are often confined within structures known as topologically 

associating domains (TADs)15-17. TADs are largely conserved upon evolution, are invariant 

in different cell types and have their boundaries defined by the regulatory scope of tissue-

specific enhancers18-19. Our knowledge regarding the general characteristics and 

mechanisms of loops is improving20-23, but much less is known regarding mechanisms and 

functional significance of dynamic looping events during biological processes.

We took advantage of promoter capture Hi-C (pcHi-C) performed in human pancreatic 

islets24 to explore long-range interactions between gene promoters and cytokine-induced 

and invariant distant regulatory elements. Interestingly, we observed that the interaction 

confidence scores captured between IRE enhancers and gene promoters in untreated islets 

were significantly reduced compared with SREs enhancers (P=1.8×10−11) (Extended Data 

Fig. 5a). As this finding points to potential dynamic properties of the interaction maps, we 

next sought to investigate if cytokine-induced regulatory changes are linked to modification 

of the 3D chromatin structure and if induction of β-cell cytokine-responsive regulatory 

elements is coupled with the formation of novel DNA looping interactions.

Hi-C profiles are limited in sequencing coverage and library complexity, resulting in maps of 

reduced resolution relative to regulatory maps of functional elements. On the other hand, 4C 

approaches are difficult to interpret quantitatively mainly due to potential amplification 

biases. We thus applied targeted chromosome capture with unique molecular identifiers 

(UMI-4C), a recently developed method25, to quantitatively measure interaction intensities 

in human islets before and after exposure to pro-inflammatory cytokines. We centered the 

conformation capture viewpoint to the promoter of 13 genes (TNFSF10, GBP1, CIITA, 

among others) whose expression was strongly induced by the cytokine exposure.

UMI-4C showed marked changes in the 3D chromatin structure at the analyzed loci. 

Promoters of the induced genes gained chromatin interactions with distal genomic regions 

reflecting the formation of new DNA looping events (Fig. 3a-b and Extended Data Fig. 5b-

d). Importantly, such new contacts were preferentially engaged with newly mapped human 

islet cytokine-responsive IREs (Fig. 3c).

These results demonstrate that cytokine exposure induces changes in human islet 3D 

chromatin conformation including the formation of novel enhancer-promoter interactions. 

Such changes allow the newly activated distal IREs to contact their target gene promoters.

Islet cytokine enhancers are implicated in T1D genetic susceptibility.

GWAS have identified ~60 chromosome regions associated with T1D26 with many of the 

association signals having been assigned to candidate genes with immunological functions. 

Consistent with this notion, several studies reported a primary enrichment of T1D risk 
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variants in T and B cell regulatory elements4,5. Furthermore, there is a substantial lack of 

statistical significant overlap of T1D associated variants in islet enhancers, while such 

regulatory elements are instead enriched for GWAS signals for T2D and fasting glucose9,27. 

Nonetheless, the molecular mechanisms linking T1D association signals to cellular functions 

remain poorly described for most of the regions of association identified.

We hypothesized that a subset of T1D genetic signals may reflect an altered capacity of the 

β cells to react to an inflammatory environment. We thus sought to explore to what extent 

genetic signals underlying T1D susceptibility act through pancreatic islet regulatory 

response to pro-inflammatory cytokines.

Causal cis variants are expected to lie in sequences that act as regulatory regions in state-

specific and disease-relevant tissues. We thus examined non shared loci with genome-wide 

significant association to T2D and T1D in European populations and considered all variants 

in high LD (1000 Genomes Project phase3 EUR R2>0.8) with a lead SNP reported in the 

NHGRI-EBI GWAS catalog26. In line with previous observations4,9, we found that T2D but 

not T1D risk variants overlap human islet non cytokine-responsive regulatory elements (i.e. 

SREs) more than expected by chance (T2D SNPs in SREs P<2×10−16, Z=5.47). In contrast, 

we uncovered that human islet IREs are enriched for T1D but not T2D risk variants (T1D 

SNPs in IREs P=3×10−6, Z=4.61) (Fig. 4a). This result was reproduced when using 

regulatory elements detected in EndoC-βH1 cells (Extended Data Fig. 6a). Such findings 

unmasked 9 T1D associated regions (13% of the total) containing at least one islet cytokine-

induced regulatory element directly overlapping a T1D associated variant (Supplementary 

Table 3 and Extended Data Fig. 6b-f).

We noticed that the two T1D lead SNPs at 1q24.3 and 16q13.13 loci (rs7803797728,29 and 

rs1937784 respectively) were directly overlapping IREs in islets. We used GWAS 

genotyping data from a cohort of 14,575 individuals (5,909 T1D cases and 8,721 controls, 

see methods) to confirm their association with T1D. Both variants were included in the 99% 

credible set of their respective locus and displayed strong association P-values (rs78037977 

P=6.94e−10; rs193778 P=1.33e−7
; see Supplementary Table 4 for posterior probability of 

association and variant ranking in the credible set), indicating that they could potentially be 

causal.

At the 1q24.3 locus, rs78037977 (NC_000001.10:g.172715702A>G) overlaps an islet 

cytokine-induced chromatin site (Fig. 4b) which is pre-bound by islet-specific TFs and is a 

predicted enhancer in other cell types (Extended Data Fig. 6g). We created allele-specific 

luciferase reporter constructs and measured enhancer activity in the EndoC-βH1 line before 

and after cytokine exposure. The sequence exerts enhancer activity exclusively after 

cytokine exposure which is disrupted by the rs78037977, T1D associated, G allele (One-way 

ANOVA, F=26, P=4.34×10−5) (Fig. 4c and Extended Data Fig. 6h) consistent with a causal 

role of the variant at this locus. In order to identify the gene target of this T1D-susceptible 

enhancer, we reconstructed the 3D chromatin structure by chromatin capture experiments. 

UMI-4C in human islets identified a cytokine-induced interaction of the enhancer with 

TNFSF18 a gene activated in islets upon cytokine exposure (Fig. 4d-e). TNFSF18 encodes 

for a cytokine, ligand of the TNFRSF18/GITR receptor, known to modulate inflammatory 
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reaction and regulation of autoimmune responses30. Interestingly, we noticed that cytokine 

exposure results in upregulation of TNFSF18 in human islets but not in the EndoC-βH1 β-

cell line, suggesting differences in gene regulatory dynamics in primary tissue or the 

activation of an islet cell sub-population.

At the 16q13.13 locus, rs193778 (NC_000016.9:g.11351211A>G) maps to a 

phylogenetically conserved, cytokine-responsive regulatory element (Fig. 4f). This sequence 

displays enhancer activity in both treated and untreated β cells. However, exclusively in 

cytokine-exposed β cells, the T1D-associated G allele exerts significantly higher enhancer 

activity than the protective variant (One-way ANOVA, F=12.34, P=1.23×10−3) (Fig. 4g and 

Extended Data Fig. 6i). The locus includes several up-regulated genes (SOCS1, DEXI, 
CIITA, RMI2), that could represent potential targets of this IRE. Recent works point to 

DEXI as a T1D candidate gene in immune cells and β cells31,32. By performing UMI-4C 

experiments in human islets we observed a strong chromatin contact between the promoter 

of DEXI and the regulatory element bearing the rs193778 T1D-associated variant (Fig. 4h). 

Such data points to DEXI as a potential causal gene in pancreatic islets.

Altogether these results illustrate how unraveling cytokine-induced chromatin dynamics in 

human islets can guide the identification of cis-regulatory variants that are strong candidates 

in driving T1D-association signals.

Discussion:

Our work illustrates the human pancreatic β cell chromatin dynamics in response to an 

external stimulus that may be relevant in the context of T1D. We here show that exposure to 

pro-inflammatory cytokines causes profound remodeling of the β-cell regulatory landscape 

coupled with changes in gene expression and protein production. The degree of the 

regulatory network remodeling was comparable to that previously shown for macrophages 

or mouse dendritic cells exposed to similar stimuli7. We unveil the activation of ~3,600 

cytokine-responsive distal cis regulatory elements and reveal a lack of homogeneity in their 

molecular mechanism of activation. We observed that the induction of a subset of novel 

regulatory regions (neo IREs) require TF binding and chromatin opening while other 

chromatin sites are “primed” to their activation being pre-bound by islet-specific TFs. Our 

observations suggest a model in which binding of tissue-specific TFs may facilitate 

chromatin accessibility at a subset of chromatin sites that can then be promptly activated by 

the induction of inflammatory-response TFs. Such model is supported by very recent 

findings33 and consistent with observations in murine macrophages7,34 and murine dendritic 

cells35, but thus far had not been demonstrated in a highly differentiated and non-immune 

related tissue such as the pancreatic islets. Even though our model suggests that exposure to 

proinflammatory cytokines causes predominantly induction of gene transcription rather than 

transcript down-regulation, we cannot exclude that a more prolonged stimulus could induce 

loss of critical β cell processes resulting from the reduction of β cell cis-regulatory networks 

activity.

Importantly, we show that such regulatory changes are coupled with 3D chromatin 

remodeling, allowing the newly activated regulatory elements to contact their target genes. 
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Several reports described 3D chromatin dynamics properties in the cell developmental 

context36,37, upon loss of cell fate38,39, senescence40,41 or in response to hormonal 

exposure42. Our observations indicate that the capacity of enhancer loop formation is 

maintained in a highly-differentiated tissue such as the islets and it is coupled with 

transcriptional regulatory changes, in response to an external stimulus.

The model used in our study to explore chromatin dynamics is of particular interest because 

it mimics the inflammatory environment that the pancreatic islets may face in the early 

stages of T1D. While several T1D candidate genes regulating key steps related to “danger 

signal recognition” and innate immunity were shown to be expressed in human islets43, T1D 

associated variants were shown to be enriched for immune cell types but not in stable 

pancreatic islets regulatory elements4. Such apparent contradiction may be reconciled by our 

findings showing that human islet cytokine-responsive regulatory elements are enriched for 

T1D risk variants. Our data, supported by recent findings unmasking regulatory variants 

affecting enhancer activation in immune response33,44, opens the avenue to identify T1D 

molecular mechanisms acting at the pancreatic islet cells level.

Although we cannot exclude that functional variants disrupting β-cell regulatory 

mechanisms may at the same time affect the regulatory potential of immune-related cell 

types, the availability of stimulus-responsive cis-regulatory maps in pancreatic islets will 

facilitate hypothesis-driven experiments to uncover how common and lower frequency 

genetic variants impact islet cells in T1D. We here studied the human islet responses to a 

specific pro-inflammatory stimulus. Future work, studying additional immune-mediated 

stresses potentially affecting β cells at different stages of the disease, may allow uncovering 

other association signals acting at the islet cell level.

In general, our findings could apply by extension to other diseases where “primed” 

enhancers may facilitate cell-type-specific responses to ubiquitous signals resulting in tissue-

specific genetic susceptibility in autoimmune diseases.

Methods:

Human Islets and EndoC-βH1

Human islets from 14 multiorgan donors without a history of glucose intolerance were 

isolated in compliance with ethical regulations (Supplementary Note 1) and according to 

established isolation procedures45,46 (Supplementary Note 2 and Supplementary Table 5). 

The human insulin-producing EndoC-βH1 cells where kindly provided by Dr R. 

Scharfmann, University of Paris, France6 and cultured in DMEM medium (Supplementary 

Note 3).

Human islets and EndoC-βH1 cells where exposed or not to a cocktail of pro-inflammatory 

cytokines IFN-γ and IL-1β for 48 hours. The cytokine concentrations used were those 

described in previous dose-response experiments47-49 (Supplementary Note 2). The glucose 

stimulation index was tested on human islet preparations and EndoC-βH1 samples to 

confirm functional competence of the samples (Supplementary Note 4 and Extended Data 

Fig. 7).
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ChIP-seq and ATAC-seq

ATAC-seq library preparations were carried out as previously described50 with minor 

modifications51,52 (Supplementary Note 5). ChIP–seq was carried out using tagmentation 

(ChIPmentation) as previously described53 (Supplementary Note 6).

ATAC-seq and ChIP-seq libraries were sequenced on Illumina HiSeq 2500. Reads were 

aligned to the hg19 reference genome using Bowtie 2 (version 2.3.4.1)54 using default 

parameters. After alignment, reads mapping to ENCODE blacklist regions55, to non-

canonical chromosomes or to mitochondrial DNA were discarded. Duplicates were removed 

using samtools markdup (version 1.8)5656 (see Supplementary Table 6 for number of 

mapped reads per experiment and Extended Data Fig. 8 for measures of ATAC-seq quality).

Peaks were called with MACS2 callpeak (version 2.1)57 with parameters “-q 0.05 --nomodel 

--shift −100 --extsize 200” for ATAC-seq and “--broad --broad-cutoff 0.1 --nomodel” for 

H3K27ac ChIP-seq. A more in-detail description of the bioinformatics processing can be 

found in Supplementary Note 7.

RNA-seq

Total RNA was isolated from EndoC-βH1 cells and human islets8 using the RNeasy Mini 

Kit (Qiagen) which retrieves RNA molecules longer than 200 nucleotides, as previously 

described in detail58. RNA integrity number (RIN) values were evaluated using the Agilent 

bioanalyzer 2100 (Agilent Technologies, Wokingham, UK). All the samples had RIN values 

of > 8 (Supplementary Note 8).

RNA-seq libraries were sequenced on a HiSeq 2000 plataform to produce 100bp long 

paired-end reads with an average of 180 million reads per replicate (EndoC-βH1 n=5). 

Reads were aligned using TopHat (version 2.0.13)59 to GChr37 genome with default 

parameters. Afterwards, reads were assigned to Gencode version 18 gene annotation60 using 

htseq-count (version 0.6.1p1)61 with default parameters. The RNA-seq of 5 human islet 

preparations8 was used for comparison and processed in an identical way.

Differential analysis ATAC-seq, ChIP-seq and RNA-seq

For both ATAC-seq and ChIP-seq, aligned reads from all replicates were merged into a 

single BAM file to identify a comprehensive set of peaks. We next used such peak set to 

compute read counts, separately for each replicate and condition. In the case of RNA-seq 

data, the output of htseq-count61 was used as the input matrix for downstream analysis. The 

generated matrices were normalized and differential analysis was performed using 

DESeq262 using a paired sample design (Supplementary Note 9). Thresholds for 

significance were set at an FDR adjusted P <0.05 and ∣log2 FC∣>1. All regions/genes that did 

not reach significance or did not pass log2 fold change cutoff were classified as stable/equal-

regulated.
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Proteomics

For the proteomic analysis 1.5 million EndoC-βH1 cells treated or not with cytokines (IL-1β 
+ IFN-γ) were processed using the Metabolite, Protein and Lipid Extraction (MPLEx) 

approach63 (Supplementary Note 10).

Collected data were processed using Decon2LS_V264 and DTARefinery65, both using 

default parameters, to recalibrate the runs and generate peak lists. Peptide identifications 

were done using MSGF+66 by searching peak lists against islet protein sequences deduced 

from a transcriptomics experiment47 and supplemented with keratin sequences (32,780 total 

protein sequences) (Supplementary Note 10).

Extracted reporter ion intensities (Supplementary Note 10) were then converted into log2 

and normalized by standard median centering. Proteins were quantified using a Bayesian 

proteoform discovery methodology (Bayesian proteoform quantification) in combination 

with standard reference-based median quantification67 and were considered significant at a 

cutoff of p ≤ 0.05 based on a paired T-test.

Protein–protein interaction (PPI) network analysis was performed with GeNets68 using 

Metanetworks v1.0 that integrates PPI from InWeb369 and ConsensusPathDB70. Default 

parameters were applied and Molecular Signatures Database (MSigDB; http://

software.broadinstitute.org/gsea/msigdb/)71 enriched pathways were overlaid.

Defining classes of induced regulatory elements

In order to characterize chromatin accessibility dynamics upon exposure of human islets and 

EndoC-βH1 to pro-inflammatory cytokines, we processed the results obtained from the 

DESeq2 differential analysis and computed the overlap between ATAC-seq peaks and 

H3K27ac enriched sites, allowing a 200bp gap. Regions annotated as “stable” for both 

ATAC-seq and H3K27ac assays were classified as Stable Regulatory Elements (SREs). 

Regions classified as either “stable” or “gained” in ATAC-seq differential analysis and as 

“gained” in H3K27ac were classified as Induced Regulatory Elements (IREs).

Induced Regulatory Elements (IREs) were classified in two groups: “Opening” IREs 

(n=2,436), corresponding to regions annotated as “gained” for both ATAC-seq and H3K27ac 

and “primed” IREs (n=1,362) for regions annotated as “stable” for ATAC-seq and “gained” 

for H3K27ac. Since opening IREs include a gradient of cytokine-induced chromatin 

accessibility changes, we next selected only those opening regions that were completely 

closed prior to the cytokine exposure. For this purpose, we considered newly open chromatin 

those opening ATAC-seq peaks that were not called in the control samples using a relaxed 

threshold (P≤0.05). Such analysis allowed us to identify a subset of 1,716 opening regions 

that we named “neo” IREs. A similar approach was used to identify macrophage latent 

enhancers7.

See Supplementary Note 11 for sequence conservation analysis performed at the different 

classes of induced regulatory elements.
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Assignment of regulatory elements to target genes

In order to annotate regulatory elements as distal or proximal, we assigned each regulatory 

element to the nearest TSS of a coding gene (using gencode v18 annotation60). Those 

regions that lie within 2kbs from the nearest TSS were annotated as promoters while the rest 

were considered as distal regulatory elements.

To test association between different classes of open chromatin and changes in gene 

expression and protein abundance (Fig. 1d-e, Extended Data Fig. 2e, 3a) in an unbiased 

manner, we assigned ATAC-seq sites to genes closer than 15kb from its TSS. For analyzing 

the additive effect of IREs on gene expression changes, we associated to a gene all IREs 

within 40kb of their TSS (Extended Data Fig. 2f)

Finally, in order to detect all possible IRE gene targets, we assigned to each IRE all up-

regulated genes whose TSS was closer than 40 Kb. When an up-regulated gene could not be 

found in <40 Kb, the IRE was assigned to the closest, but <1Mb far, induced gene (Extended 

Data Fig. 4a and Supplementary Table 1-2. See Supplementary Note 12).

Sequence composition and transcription factor analysis

De novo motif analysis was performed using HOMER (version 4.8.2)72 findMotifGenome.pl 
tool with parameters “-size given -bits -mask”. Only enriched sequences present in more 

than 1.5% of targets were retained. Selection of best matches was performed as follows: all 

matches with scores over 0.80 were included in the table. For those hits without any match 

over 0.80, the top 3 hits were selected and their score was included in the table (Extended 

Data Fig. 1g and 3 e,f).

To assay motif colocalization, we used all motifs instances identified in the de novo analysis 

in primed enhancers. First we used the findMotifGenome.pl tool from HOMER to map all 

these motif instances in primed enhancers and SRE enhancers (i.e. excluding all sites <2Kb 

from a TSS). Next, the motif co-localization was calculated by counting motif pairs found in 

each ATAC-seq peak. Significance was determined by Fisher Exact test comparing co-

localization of motifs pairs in IREs vs. SREs distal regions. Only significant pairs (Fisher 

Exact test, FDR adjusted P<0.001) were retained (Extended Data Fig. 3 g,h).

To evaluate islet-specific transcription factors occupancy, we used ChIP-seq bam files for 

PDX1, NKX2.2, FOXA2, NKX6.1 and MAFB9. We computed the read coverage in the 

regions of interest over 10bp bins. Reads were quantile-normalized, mean counts in each bin 

for each transcription factor were calculated and the mean for all TFs was plotted (Figure 

2d).

To identify footprints from the ATAC-seq data, we generated tag directories with all ATAC-

seq replicates in each condition using HOMER makeTagDirectory. Neo and primed 

enhancers were centered on the ISRE motif matrix annotated with annotatePeaks.pl with 

options “-center motif1.motif –size given” and tag means for 5’ and 3’ read ends were 

obtained using annotatePeaks.pl with options “-size −100,100 –hist 1 –d tagsDir”. The 

resulting 5’ ends were plotted using ggplot273 (Figure 2e).
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In order to create a non-redundant dataset of motifs for the gene regulatory network analysis 

(Extended Data Fig. 4a), motifs from primed and opening enhancers were reduced to a non-

redundant set with the compareMotifs.pl script from HOMER using a similarity score of 0.7 

as threshold for merging similar motifs. The motifs were then mapped to primed and 

opening enhancers using annotatePeaks.pl.

850K Infinium MethylationEPIC Array

DNA from EndoC-βH1 cells exposed or not to IL-1β and IFN-γ for 48h as described above 

(5 replicates per condition) was extracted using QIAamp DNA Mini kit (Qiagen, Venlo, The 

Netherlands). 1 μg DNA aliquots (n=10) were processed for 850K Infinium 

MethylationEPIC Array (Illumina) as previously described74.

The resulting array signals were processed and analyzed using RnBeads R package75. The 

method used by RnBeads for assessing differences between groups consists on fitting a 

hierarchal linear model (empirical Bayes method from the limma package76) using M-values 

(log of β-values) as metrics to measure methylation levels77. All P-values were corrected for 

multiple testing using the Benjamini-Hochberg method for controlling the False Discovery 

Rate (FDR). CpGs were considered as differentially methylated when FDR adjusted P<0.05 

and absolute difference in methylation β-values between cytokine and control samples was 

>0.2 (20% changes in methylation). Information on the differentially methylated CpGs can 

be found in Supplementary Table 7.

UMI-4C

UMI-4C was performed as described25 with minor modifications (Supplementary Note 13). 

To increase molecular complexity, each library was obtained by pooling 5-10 PCRs per 

viewpoint. The PCR primers used in UMI-4C are listed in Supplementary Table 8. Each 

library was sequenced to a depth of >1M 75bp long paired-end reads using either NextSeq 

or HiSeq 2500 platforms.

Paired-end reads were demultiplexed according to the viewpoint sequence using fastx-multx 

from ea-utils78 and analyzed using umi4cPackage25. 4C tracks were created by selecting 

viewpoint-specific reads, aligning them to the genome and extracting the number of UMIs 

using the p4cCreate4CseqTrack function (see quality control statistics in Supplementary 

Table 9). Cytokine-treated profiles were then scaled to the control profile using the 

umi4cPackage package function p4cSmoothedTrendComp. Profiles were also smoothened 

based on the total number of UMIs present in a 2Mb region centered on the viewpoint and 

excluding 3kb around it. The following formula was used to calculate the minimum UMIs 

needed for smoothing. If the fragment did not reach this minimum, it was then merged with 

successive fragments until minimum was reached.

Minimum UMIs =
∑UMIsregion

2000 × 50

In order to detect differential chromatin contacts we focused on a 2Mb region centered on 

the viewpoint, but excluding 1.5kb on each side of the viewpoint. We then partitioned the 
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region into windows of width proportional to the mean restriction fragment length in the 

region (meanfragment):

widthwindow = meanfragment × 20

Differential contacts analysis was performed for each of the above-defined windows using a 

Chi-squared test, comparing UMIs in such windows with the total number of UMIs in the 

2Mb region. Windows with a Chi-squared P<0.05 were highlighted in Fig 3a,b and 

Extended Data Fig 5b-d by a small black diamond. To quantify the chromatin contact 

changes, we counted the number of cytokine-treated and control UMIs for each window and 

computed their odds ratio based on the total UMI counts in the region, following the formula

ORwindow =
CTRLregion × CYTwindow
CTRLwindow × CYTregion

where CTRL and CYT represent the number of UMIs in control (CTRL) and cytokine-

exposed (CYT) conditions.

Variant enrichment analyses

We used the Variant Set Enrichment Analysis (VSE) R package79 to assess the enrichment 

of T1D and T2D risk variant for IRE and SRE regulatory annotations. We first selected from 

the NHGRI-EBI GWAS Catalog26 all “leading” SNPs with disease trait matching either 

“Type 1 diabetes” or “Type 2 diabetes” (date 2019-04-24). Next, we extended our collection 

of associated variants to all those in strong LD (R2≥0.8, EUR) with the lead SNP (source of 

LD information 1000 Genomes Project phase380). These SNPs and their proxies were used 

to generate the Associated Variant Set (AVS)79, resulting in 83 disjointed regions for T1D 

and 389 for T2D, after removing shared loci between T1D and T2D. A null distribution or 

Matched Random Variant Set (MRVS), matched in size and structure to the original AVS, 

was generated from 1000 Genomes Project phase3 by permutating the AVS 500 times. The 

number of independent SNPs from the AVS overlapping the regulatory annotations was 

computed and compared with the intersections obtained with the MRVS. The enrichment 

score was defined as the number of standard deviations that the overlapping tally deviates 

from the null overlapping tally median. The exact P-value was then calculated by fitting a 

density function into the null distribution derived from the MRVS. This P-value was finally 

corrected for multiple-testing using the Bonferroni method. Enrichments or depletions with 

a Bonferroni adjusted P<0.05 were considered statistically significant (Fig. 4a and Extended 

Data Fig. 6a).

T1D associated regions were generated by selecting all SNPs in strong LD (R2≥0.8, EUR) 

with the T1D leading SNPs. We defined the risk loci boundaries using the most upstream 

and the most downstream SNPs. We next merged the overlapping loci to obtain a total of 71 

T1D risk regions. All T1D associated regions containing IREs and T1D risk variants directly 

overlapping human islet cytokine-induced regulatory elements are shown in Supplementary 

Table 3. For this analysis, in order to extract all possible cytokine induced regulatory 

Ramos-Rodríguez et al. Page 14

Nat Genet. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



element located at T1D risk loci we used a less stringent set of human islet IREs by lowering 

the H3K27ac log2 fold-change threshold from 1 to 0.8.

For details regarding the GWAS association analysis see Supplementary Note 14.

Luciferase reporter assays

For episomal reporter assays in the EndoC-βH1 cell line, selected human cytokine-induced 

regulatory elements regions were first amplified from genomic DNA with primers 

(Supplementary Table 10) containing XhoI/HindIII restriction sites. The amplicons were 

next cloned into the PGL4.23[luc2/minP] Luciferase Reporter Vector (Promega) as 

previously described81. Briefly, the amplicon and the vector were simultaneously digested. 

Next, the vector was dephosphorylated with FastAP (Thermo Scientific). The DNA was then 

purified and ligated with a T4 DNA ligase (Promega). Next, the generated Reporter Vectors 

were transformed into E. coli (DH5α) and purified using the Nucleospin Plasmid 

(740588.250, MN, Düren, Germany).

Site-directed mutagenesis was used to introduce single nucleotide variants into the generated 

construct. The variants were generated by PCR using the primers shown in Supplementary 

Table 10. The parental supercoiled double-stranded DNA was digested with DpnI (NEB, 

174R0176S) 1h at 37°C and the constructs were transformed in competent E. coli cells 

(DH5α) by thermal shock. Finally, the introduced variants were checked by Sanger 

sequencing.

EndoC-βH1 cells were transfected in 24 well plates, at a density of 300,000 cells per well, 

with 200 ng of reporter vectors or empty vectors, plus 20 ng of phRL-CMV Renilla-

luciferase to control for transfection efficiency.

Transfections were performed with lipofectamine 2000 (Invitrogen) for 8h, according to 

manufacturer instructions. Upon transfection EndoC-βH1 medium was supplemented with 

2% FBS82 and exposed or not to the cytokines for 48 h. After 48 h, the cells were assayed 

using the Dual Luciferase Assay (Promega, Madison, USA), following manufacturer 

instructions. The luciferase units were measured using VICTOR Multilabel Plate Reader 

(PerkinElmer). Firefly luciferase activity was normalized to Renilla luciferase activity and 

then divided by values obtained for the empty pGL4.23. The assays were performed in at 

least three independent experiments.

Statistical differences were calculated using a one-way ANOVA test. P-values were then 

corrected with Bonferroni correction.

Reporting Summary:

Further information on research design is available in the Life Science Reporting Summary 

linked to this article.

Data availability:

Datasets for induced regulatory elements (IREs) are available for download and 

visualization at the Islet Regulome Browser83 (www.isletregulome.com).
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Raw sequencing reads for the different high-throughput assays can be accessed at GEO with 

the following identifiers: GSE123404 (ATAC-seq), GSE133135 (ChIP-seq H3K27ac), 

GSE137136 (RNA-seq) and GSE136865 (UMI-4C). Raw proteomics data can be accessed 

at ProteomeXchange with the identifier PXD011902.

Code availability:

Code and scripts used in this paper are available upon request.

Extended Data
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Extended Data Fig. 1. Chromatin characterization of human pancreatic β cells exposed to pro-
inflammatory cytokines.
a, Pearson correlation values between replicates in different assays and conditions (see 

Supplementary Note 2). b, Volcano plots of ATAC-seq (left) and H3K27ac ChIP-seq (right) 

changes obtained after exposure of EndoC-βH1 to IFN-γ and IL-1β; green and red dots 

correspond to sites with ∣log2 FC∣>1 and FDR adjusted P<0.05 as calculated by fitting a 

negative binomial model in DESeq2. Chromatin changes are classified as “gained” and 

“lost” chromatin sites whereas non-significant changes are defined as “stable”. c, Chromatin 

accessibility and H3K27ac enrichment changes observed in EndoC-βH1 are largely 
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replicated in human pancreatic islets as illustrated by the distribution of log2 fold change at 

regions as classified in b in EndoC-βH1. Dotted lines indicate log2 fold change thresholds 

(∣log2 FC ∣>1). Box plot limits show upper and lower quartiles, whiskers extend to 1.5 times 

the interquartile range and the notch represents the confidence interval around the median. d, 

Hierarchical clustering using normalized ATAC-seq and H3K27ac ChIP-seq read counts at 

EndoC-βH1 IREs shows that samples cluster according to treatment, suggesting that the 

differences caused by the proinflammatory cytokines are greater than those derived by the 

sample heterogeneity. HI=Human pancreatic islets, EndoC=EndoC-βH1 e, Distribution of 

distances to nearest TSS for the different types of regulatory elements, showing that IREs, 

compared with stable regulatory elements (SREs), are preferentially located distally to TSS. 

f, Mean sequence conservation score of IREs and a randomized set of IREs in placental 

mammals. Peaks were extended from the center 1kb to each direction and mean score was 

calculated in 50bp windows. g, Sequence composition analysis of IREs (n=3,009) 

illustrating the top identified de novo motifs. Colors for matched genes correspond to RNA-

seq (name) or protein (underlined) status (red=down-regulated, blue=equal-regulated, 

green=up-regulated, black/no line= not expressed/detected).
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Extended Data Fig. 2. Exposure to pro-inflammatory cytokines drives changes in the 
transcriptome and proteome of pancreatic β cells.
a, Volcano plot of RNA-seq genes, showing up-regulated genes (green) and down-regulated 

genes (red) upon exposure of EndoC-βH1 to cytokines. Vertical lines indicate the log2 fold 

change threshold (∣log2 FC∣>1) and horizontal line indicates the FDR adjusted P cutoff for 

significance (FDR adjusted P<0.05) calculated by fitting a negative binomial model in 

DESeq2. b, Distribution of RNA-seq counts in human islet samples in the genes previously 

classified as up, down or equal-regulated in EndoC-βH1 cells. Boxplot limits show upper 

and lower quartiles, whiskers extend to 1.5 times the interquartile range and the notch 

represents the confidence interval around the median. c, Volcano plot for multiplex 

proteomics, showing in green the up-regulated proteins and in red the down-regulated, which 

have a Q-value<0.1 and ∣log2 FC∣>0.58. Vertical lines indicate the log2 fold change 

thresholds. d, Protein-protein Interaction (PPI) network generated from up-regulated 

proteins after cytokine exposure. Node color indicates belonging to same interacting 

community and background corresponds to specific pathway enrichment. e, Proportion of 

up, equal or down-regulated proteins encoded by genes located <15 kb from IREs or SREs. 

*** Chi-squared test P<0.001. f, An additive effect on gene up-regulation was observed for 

multiple IREs located at <40kb of a gene. Box plot limits show upper and lower quartiles, 

whiskers extend to 1.5 times the interquartile range and the notch represents the confidence 

interval around the median. ANOVA P<2.2×10−16. g, View of the LY6E locus, whose 

expression is induced after cytokine exposure and is coupled with chromatin changes in the 

vicinity.
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Extended Data Fig. 3. Characterization of β-cell IREs.
a, Genes associated to different classes of IREs (classified as in Fig. 2a) show cytokine-

induced expression in EndoC-βH1. CYT=cytokine exposed, CTRL=control. Boxplot limits 

show upper and lower quartiles, whiskers extend to 1.5 times the interquartile range and 

notch represents the median confidence interval. ***Wilcoxon test P<0.001. b, Sequence 

conservation score of IREs and a corresponding randomized set used as control. c, 

Distribution of distances to nearest TSS of the different classes of open chromatin sites. Line 

indicates the threshold used to classify them as “promoters”. d, Number of IREs overlapping 

regions annotated as “Strong” or “Weak” enhancers by ENCODE ChromHMM. *Chi-
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squared P<2×10-16. e, f, Top hits for de novo motif analysis in opening (e) and primed 

enhancers (f). Colors for matched genes correspond to RNA-seq (name) or protein 

(underlined) status (red=down-regulated, blue=equal-regulated, green=up-regulated, 

black/no-line=not-expressed/detected). g, Diagram showing the percentage of colocalization 

between the TF binding sites identified by de novo motif analysis in SRE and primed 

enhancers (i.e. excluding sites <2Kb from a TSS). Label size indicates number of regions 

containing the TF binding sites and line width/intensity percentage of regions in which two 

motifs colocalize. h, Odds-ratio for finding a motif pair in the same enhancer in primed vs. 

SRE. Only significant pairs (FDR-adjusted Fisher Exact test P<0.001) are shown. Immune 

and islet-specific TF motifs colocalize more often in primed compared to SRE chromatin 

sites. i, Percentage of overlap between EndoC-βH1 different classes of open chromatin and 

islet-specific TFs obtained by ChIP-seq in untreated human islets. j, Volcano plot showing 

differentially methylated sites (depicted in red) in EndoC-βH1 exposed or not to cytokines. 

Dotted lines indicate the threshold for methylation differences or significance using limma 

moderated t-test. k, Distribution of demethylated and stable CpGs according to different 

classes of open chromatin.
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Extended Data Fig. 4. Deconstructing cytokine induced cis-regulatory networks in β cells.
a, Gene Regulatory Network (GRN) derived from IREs and their putative target genes. 

Squares represent the IREs inferred TF binding sites (motifs logos and TF matches are 

shown on the right side) and the ellipses represent their putative target genes (see methods). 

The size of the squares reflects the number of connections (edge count) while the gene node 

size reflects the log2 fold change of RNA expression after cytokine exposure. The resulting 

GRN is an interconnected scale-free network composed of 648 nodes and 3,589 edges. 

Genes regulated exclusively by primed IREs are represented in blue while green depicts 

opening IREs regulated genes. Red denotes genes regulated by both types of IREs. In each 

of these three groups the representation of the hierarchy is based on the principle of network 

centrality where authoritative nodes are located more proximal to the core. b, Comparison 

between the degree distribution of the observed GRN (black triangles) and a random 

generated network (blue squares) having the same number of nodes and edges. The bell-

shaped degree distribution of random graph denotes a statistically homogeneity in the degree 

of small and large nodes. In contrast, the observed network showed a high frequency of 
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small degree nodes and a low frequency of highly connected nodes as is typical of a scale-

free network. c, Bar plot of gene ontology biological process enrichment analysis. Gene-

ontology analysis was performed using all target genes in the GRN. Functional enrichment 

analysis was performed by Metascape (http://metascape.org). Only terms with P<0.001 and 

with at least 3 enriched genes were considered as significant. Color is proportional to their P 
values.
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Extended Data Fig. 5. 3D chromatin changes induced by exposure of human islets to pro-
inflammatory cytokines.
a, Violin plots showing the distribution of CHiCAGO scores of contacts, detected by pc-HiC 

experiments in untreated human islets2, between stable and induced enhancers and their 

target genes. SREs engage chromatin contacts with higher interaction scores compared to 

those detected for IREs. *** Wilcoxon test P<0.001. b, c, d, Views of the 3D chromatin 

contacts of CIITA (b), SOCS1 (c) and RSAD2 (d) promoters obtained by UMI-4C 

performed in islets exposed or not to pro-inflammatory cytokines. In yellow we highlight 

those IREs that gain contacts with the up-regulated gene promoter. A heatmap under the 4C 

track represents the log10 odds ratio (OR) of the UMI-4C contacts difference in cytokine vs. 

control and a small black diamond on top of the contact heatmap indicates a significant 

difference in contacts between cytokine-treated and control samples (Chi-squared P<0.05). 

ATAC-seq peaks are represented by rectangles, shaded from gray to green proportionally to 

the cytokine-induced H2K27ac log2 fold change observed at that site.
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Extended Data Fig. 6. Cytokine-induced islet regulatory elements are enriched in T1D associated 
variants.
a, EndoC-βH1 cytokine-induced regulatory elements (IREs) overlap more often than 

expected T1D associated variants while the opposite is true for T2D. EndoC-βH1 cytokine-

invariant regulatory elements (SREs) are instead enriched for T2D, but not T1D associated 

variants. Each dot denotes the Varian Set Enrichment (VSE) score in IREs or SREs regions. 

Boxplot shows the enrichment distribution of the matched null permutated data sets. Red 

dots indicate that the difference is statistically significant as determined by VSE (Bonferroni 

adjusted P < 0.05). Box plot limits show upper and lower quartiles, whiskers extend to 1.5 

times the interquartile range and the notch represents the confidence interval around the 

median. b-f, Representative regional plots of different T1D risk loci containing T1D variants 

overlapping IREs and up-regulated genes. R2 values are based on 1KG phase 3 EUR and the 

leading SNPs in the locus is represented by a diamond. If different leading variants are 

present in the same locus, their proxies are depicted in different colors. Yellow squares 

highlight those variants that overlap a human islet IRE. IREs are depicted as boxes, with the 

filling color corresponding to the H3K27ac log2 fold change. g, The IRE bearing the T1D 

associated variant rs78037977 is marked by the ENCODE ChromHMM classification as a 

“strong enhancer” (orange) in other non β-cell lines (left). ENCODE ChromHMM 

classification in non β-cell lines for the IRE bearing the T1D associated variant rs193778. h, 
i, Allele-specific luciferase experiments for rs78037977 (h) and rs193778 (i) in untreated 
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EndoC-βH1. ANOVA followed by Bonferroni correction * P < 0.05; ** P < 0.01; *** P < 

0.001. Bars represent mean ± sd.
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Extended Data Fig. 7. Human islets and EndoC-βH1 Glucose-Stimulated Insulin Secretion 
(GSIS).
GSIS was assessed, in pancreatic human islets (a) and EndoC-βH1 cells (b). In the case of 

EndoC-βH1 cells, the experiments were performed upon exposure or not to IFNγ (1000 

U/ml) + IL1β (50U/ml) for 48h. Data are mean plus range of four to eight independent 

experiments, and are expressed as the ratio between glucose stimulated and basal insulin 

secretion. *P < 0.05, **P < 0.01, ***P < 0.001, for the indicated comparisons (paired t test 

(a) or ANOVA followed by Bonferroni correction (b)). NT=Non treated.
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Extended Data Fig. 8. ATAC-seq quality control.
a, Agilent TapeStation profiles obtained by chromatin tagmentation of human islets and 

EndoC-βH1 samples showing the laddering pattern of ATAC-seq libraries. The band sizes 

correspond to the expected nucleosomal pattern. *Notice that samples HI-19 CTRL and 

CYT were used as examples to illustrate the expected fragment distribution pattern in 

ATAC-seq experiments in Raurell-Vila et al.52. b, Summary of per-replicate sequencing 

metrics, showing total library sizes, percentage of aligned reads, percentage of mitochondrial 

aligned reads, normalized strand cross-correlation coefficient (NSC, values significantly 

lower than 1.1 (<1.05) tend to have low signal to noise or few peaks) and relative strand 

cross-correlation coefficient (RSC, values significantly lower than 1 (<0.8) tend to have low 

signal to noise). c, TSS enrichment over a 4kb window centered on genes TSS compared to 

a set of genes randomized along the genome, showing the expected pattern of open 

chromatin centered on the TSS. d, Percentage of total reads found at called open chromatin 

peaks classified as distal (>2kb from TSS) or promoters (≤2kb from TSS) compared to a 

randomized set of peaks. e, UCSC views at islet-specific loci (NKX6.1, PDX1 and 

NEUROD1) showing the high reproducibility of ATAC-seq profiles among independent 

replicates.
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Figure 1. Pro-inflammatory cytokines exposure causes profound remodeling of the β-cells 
regulatory landscape.
a, Summary of the experimental design. The number of EndoC-βH1 (EC) and human 

pancreatic islets (HI) samples used in different assays is indicated. b, Correlation between 

chromatin accessibility and H3K27ac deposition, each dot corresponds to a chromatin site. 

The point fill refers to the ATAC-seq and the border to the H3K27ac classification 

(gained=green; lost=red; stable=grey). The dotted box depicts the regulatory elements 

referred as induced regulatory elements (IREs) and the lighter shade of green depicts a 

subtype named neo IREs (see text). c, Correlation between changes in RNA expression and 

protein abundance in EndoC-βH1 cells. Point fill and border indicate the classification of 

RNA-seq and protein respectively (up-regulated=green; down-regulated=red; equal-

regulated=grey). d, Genes proximal to IREs (see methods) show cytokine-induced 

expression in EndoC-βH1 exposed or not to pro-inflammatory treatment. CYT=cytokine 

exposed, CTRL=control. ***Two-sided Wilcoxon test P<0.001. Box plot limits show upper 

and lower quartiles, whiskers extend to 1.5 times the interquartile range. e, Translation of 

proteins encoded by IRE-associated genes is induced by cytokine exposure in EndoC-βH1. 

This is shown by the significantly different (Two-sided Wilcoxon test P<2×10−16) log2 FC 

distribution of protein abundance obtained after cytokine exposure, for proteins encoded by 

genes associated with IREs or stable regulatory elements (SREs). f, Representative view of 
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the IFN-inducible guanylate binding proteins GBP4 and GBP5, illustrating their up-

regulation upon cytokine exposure and the nearby induction of IREs characterized by gains 

in chromatin accessibility and enrichment in H3K27ac (green boxes).
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Figure 2. The β cell response to pro-inflammatory cytokine unveils neo and primed regulatory 
elements.
a, Classification of ATAC-seq open chromatin sites upon exposure of human β cells to IFN-

γ and IL-1β. IREs=induced regulatory elements, SREs=stable regulatory elements. b, View 

of the SOCS1 locus, a gene strongly induced upon pro-inflammatory cytokine exposure. We 

here depict representative examples of primed (blue box) and neo IREs (green boxes). c, 
Box plot distribution of ATAC-seq and H3K27ac normalized tag counts at different classes 

of IREs. Box plot limits show upper and lower quartiles, whiskers extend to 1.5 times the 

interquartile range, individual data points represent outliers and the notch represents the 

confidence interval around the median. d, Islet-specific TF occupancy at neo, primed and 

stable regulatory elements. Read density for PDX1, NKX2.2, FOXA2, NKX6.1 and MAFB 

was calculated in 10bp bins in 1kb windows centered on the regulatory element. Lines 

represent means, while the grey shades depict the standard deviation. e, Footprint analysis of 

ISRE motifs in neo (left) and primed regulatory elements (right) in cells exposed or not to 

IFN-γ and IL-1β (control = blue; cytokines = orange). f, Violin plots showing the 
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distribution of DNA methylation β-values in neo and primed enhancers, exposed or not to 

pro-inflammatory cytokines. *** Two-sided Wilcoxon test P<0.001. g, Model showing two 

types of IREs driving the response to pro-inflammatory cytokines in human β cells.
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Figure 3. Cytokine exposure induces changes in human islet 3D chromatin structure.
a, b, View of the UMI-4C chromatin contacts of TNFSF10 (a) and GBP1 (b) promoters, 

before and after exposure to pro-inflammatory cytokines. Yellow boxes indicate IREs that 

gain contacts with the up-regulated gene promoters. A heatmap under the 4C track 

represents the log10 odds ratio (OR) of the UMI-4C contacts difference in cytokine vs. 

control. Small black diamonds on top of the contact heatmap indicate a significant difference 

between cytokine-treated and control samples 3D chromatin contacts (Chi-squared P<0.05). 

ATAC-seq peaks are represented by rectangles shaded from gray to green proportionally to 

the cytokine-induced H2K27ac log2 fold change observed at that site (RE=regulatory 

elements track). c, Distribution of the UMI-4C contacts log2 fold changes (cytokines vs. 

control) at the different types of islets open chromatin sites classified as in Fig. 2a. The data, 

obtained by analyzing viewpoints centered at the promoter of cytokine-induced genes, show 

that the chromatin structural changes are preferentially happening at IREs. Box plot limits 

show upper and lower quartiles, whiskers extend to 1.5 times the interquartile range, 

individual data points represent outliers and the notch represents the confidence interval 

around the median. Two-sided Wilcoxon test * P<0.05, ** P<0.01, *** P<0.001.
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Figure 4. Cytokine-induced islet regulatory elements map to T1D associated regions and guide 
the identification of functional risk variants.
a, Islet IREs are enriched for T1D but not T2D risk variants while the opposite is true for 

islet SREs. Significant Varian Set Enrichment (VSE) scores are depicted in red (Bonferroni 

adjusted P<0.05). Box plot limits show upper and lower quartiles, whiskers extend to 1.5 

times the interquartile range and notch represents the median confidence interval for 

distributions of matched null sets (500 permutations). b, rs78037977 overlaps an IRE bound 

by islet-specific TFs under basal conditions. c, Luciferase assays in EndoC-βH1 exposed to 

cytokines show that the sequence exerts enhancer activity which is reduced in the T1D 

associated allele (G). d, UMI-4C in human islets show that the IRE containing rs78037977 

engages multiple distal chromatin contacts. e, Zoom-in at one induced chromatin contact, 

mapping to the up-regulated TNFSF18 gene. f, Variant rs193778 maps to a phylogenetically 

conserved IRE. g, Luciferase assays in EndoC-βH1 exposed to cytokines show significantly 

increased enhancer activity of the risk (G) allele compared to the non-risk (A) allele. h, 

UMI-4C in islets using the promoter of DEXI as viewpoint, show a chromatin contact with 

the IRE bearing the T1D risk variant. ATAC-seq peaks are represented, in d and h, by 

rectangles shaded proportionally to the H2K27ac log2 fold change (RE=regulatory 

elements). Statistical significance in c and g was determined by one-way ANOVA tests 

followed by Bonferroni’s correction. *P<0.05, **P<0.01, ***P<0.001. Bars represent mean 

± sd.
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