
 International Journal of 

Molecular Sciences

Review

Recent Progress in Rice Broad-Spectrum Disease Resistance

Zhiquan Liu 1, Yujun Zhu 1, Huanbin Shi 1, Jiehua Qiu 1, Xinhua Ding 2 and Yanjun Kou 1,*

����������
�������

Citation: Liu, Z.; Zhu, Y.; Shi, H.;

Qiu, J.; Ding, X.; Kou, Y. Recent

Progress in Rice Broad-Spectrum

Disease Resistance. Int. J. Mol. Sci.

2021, 22, 11658. https://doi.org/

10.3390/ijms222111658

Academic Editors: Ki-Hong Jung and

Jae-Yean Kim

Received: 4 October 2021

Accepted: 25 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China;
lzq770799446@163.com (Z.L.); Zhuyujun@caas.cn (Y.Z.); shihuanbin@caas.cn (H.S.); qiujiehua@caas.cn (J.Q.)

2 State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases
and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
xhding@sdau.edu.cn

* Correspondence: kouyanjun@caas.cn

Abstract: Rice is one of the most important food crops in the world. However, stable rice production
is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus
diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the
infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum
resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently,
researchers have focused on the identification of rice broad-spectrum disease resistance genes, which
include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more
pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum
disease resistance genes and understanding their underlying mechanisms not only provide new
genetic resources for breeding broad-spectrum rice varieties, but also promote the development of
new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In
this review, the most recent advances in the identification of broad-spectrum disease resistance genes
in rice and their application in crop improvement through biotechnology approaches during the past
10 years are summarized.
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1. Introduction

Rice (Oryza sativa L.) is the most important food crop, which is consumed by approx-
imately 50% of the world’s population, with its consumption growing dramatically in
many parts of the world. Stable rice production is constrained by various biotic stresses,
including fungal blast caused by Magnaporthe oryzae, sheath blight caused by Rhizoctonia
solani, false smut caused by Ustilaginoidea virens, bakanae disease due to Fusarium fujikuroi,
bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), bacterial leaf streak caused
by Xanthomonas oryzae pv. oryzicola (Xoc), and virus diseases. The yield loss of rice caused
by various diseases averages upward of 30%. Therefore, it is critical to adopt effective
means to control these diseases to ensure global food security. In addition to encouraging
farmers to exercise good farming practices, application of pesticides remains one of the
main methods of disease control, but the increase in costs and their harmful effects on
the environment and operators cannot be discounted. These make the farmers largely
dependent on the cultivation of new resistant varieties, which is considered to be the most
effective method so far.

Broad-spectrum resistance, which refers to resistance against two or more types of
pathogen species or the majority of races/isolates of the same pathogen species, is one
of the ultimate goals of breeders for rice improvement [1]. Exploitation of the genetic
determinants of broad-spectrum resistance will improve the resistance of the susceptible
varieties. On this account, breeders and biotechnologists are trying to obtain the source of
broad-spectrum resistance to understand and utilize the genetics underlying this process.
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With the development of rice molecular biology, functional genomics, and gene editing tech-
nology, great progress has been made in the broad-spectrum disease resistance genes in rice.
It is worth mentioning that many extremely important broad-spectrum disease resistance
genes and their mechanisms and applications were reported 10 years ago. These works
have been well summarized in several reviews and will not be highlighted here [1,2]. This
review focuses on the progress in the identification of broad-spectrum disease resistance
genes in rice and their application in crop improvement during the past 10 years.

2. Identified Rice Broad-Spectrum Disease Resistance Genes in Past 10 Years
2.1. R Genes Confer Broad-Spectrum Disease Resistance in Rice

The ability of plants to defend themselves against microbes is specified by disease
resistance (R) genes-mediated resistance and basal resistance. Upon recognition of an
invading pathogen, R proteins, mostly from the nucleotide-binding leucine-rich repeat
receptor (NLR) family, detect the secreted pathogen effectors to activate a multitude of
responses that ultimately lead to resistance. These responses include Ca2+ influx, ROS
(reactive oxygen species) accumulation, mitogen-activated protein (MAP) kinase activation,
defense hormone signaling activation, and upregulation of defense-related genes [3]. In
recent years, important progress has been achieved in cloning and mechanical analysis
of R genes. These identified R genes provide not only new genetic resources for breeding
broad-spectrum rice varieties, but also new strategies to improve resistance.

Rice blast, caused by M. oryzae, is the most devastating disease of rice and reduces
yield by 10–35%. To date, approximately 100 R genes/alleles against M. oryzae have been
identified, of which more than 26 R genes/alleles were cloned [2]. Among these genes, Pi50,
Pi54rh, Pi56(t), Pi64, Pigm, Pizh, Ptr, and Pita2 were cloned as broad-spectrum resistance
R genes in the past 10 years [4–10] (Figure 1, Table 1). Pi50, Pigm, and Pizh are allelic
to Pi2/Pi9, which are well-known broad-spectrum resistance NBS-LRR (nucleotide binding
site-leucine rich repeat) genes on the chromosome 6, with different resistance spectra against
M. oryzae. One of these alleles Pigm has been confirmed with stable resistance to panicle
blast [7]. Pi54rh, an ortholog of Pi54, encodes an NBS-LRR protein with a unique Zinc finger
domain. Both Pi56(t) and Pi64 also belong to the NBS-LRR family of disease resistance
genes. Notably, the constitutively expressed Pi64 conferred resistance to both leaf and
neck blast. Unlike most blast R genes, Ptr, which is required for broad-spectrum blast
resistance mediated by R genes Pita and Pita2, encodes a four Armadillo (ARM) repeat
protein. Furthermore, more alleles or natural variation of broad-spectrum blast resistance
R genes have been investigated, including geographically distinct and domain-specific
sequence variations of Pib, novel alleles of Pik locus Pi1, Pike, and Pikg, Pi54 alleles, novel
Pi21 haplotypes, and novel alleles of Pi2/9 locus [11–22]. In addition, four broad-spectrum
resistance R genes, Pi-hk1, Pi57(t), Pi65(t), and Pi69(t), were finely mapped in the past
10 years [23–26].

In addition to rice blast, bacterial blight, caused by Xoo, is also a globally devastating
rice disease. In rice, at least 46 genes that confer dominant or recessive host resistance
to Xoo have been identified, of which more than 16 R genes were cloned [27]. Among
them, Xa7, Xa23, Xa41(t), and Xa47(t) were cloned as broad-spectrum resistance R genes in
the past 10 years [27] (Figure 1, Table 1). Xa7, which encodes a 113 aa unknown protein,
is a dominant R gene that provides broad-spectrum and extremely durable resistance to
Xoo. The transcription of Xa7 is specifically activated by the Xoo isolates with transcription
activator-like effector (TALE) AvrXa7 or PthXo3 to act as an executor [27]. Another execu-
tor R gene, Xa23, which is induced by TALE AvrXa23, confers extremely broad-spectrum
resistance to Xoo [28]. xa41(t), an allele of sugar transporter OsSWEET14, confers resistance
to half of the tested Xoo isolates [29]. Similar to Xa23, Xa47(t) is from the wild rice Oryza
rufipogon. Xa47(t), encoding a NLR protein, is highly resistant to all tested ten Xoo iso-
lates [30]. In addition to these cloned R genes, a broad-spectrum bacterial blight resistance
gene Xa33 from Oryza nivara has been finely mapped [31].
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Unlike rice blast and bacterial blight, no R gene for serious diseases sheath blight
and rice false smut has been identified [32,33]. Moreover, only one rice stripe virus (RVS)
resistance gene, STV11, has been cloned [34]. The molecular mechanisms underlying rice–
virus interaction remain poorly understood. Therefore, so far, there is no broad-spectrum
resistance R gene for these diseases.

For broad-spectrum resistance R genes, it is worth noting that the R genes are tagged as
broad-spectrum resistance genes because they can resist multiple isolates of one pathogen
rather than two or more types of pathogen species. However, in the case of many isolates
tested, it is unlikely for any R gene to be resistant to only one isolate. At present, there is no
standard in terms of how many isolates or what proportion of isolates an R gene confers
resistance to for it to be claimed as a broad-spectrum resistance R gene. Furthermore,
although so many broad-spectrum resistance genes have been identified, the mechanism of
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these genes mediating broad-spectrum resistance to rice disease is not yet clear. In the broad-
spectrum resistance R gene Pi9 case, the corresponding Avirulence gene AvrPi9 exists widely
in various M. oryzae isolates [35]. To determine whether other blast R genes are similar,
the cloning of their corresponding Avirulence genes and analysis of their distribution in M.
oryzae isolates will give some hints. Similar to R genes against blast, the resistance spectrum
of R genes against Xoo may also be determined by the distribution of corresponding
Avirulence genes, TALE in most of cases, in Xoo isolates. Actually, considering current
knowledge, it is difficult to predict the mechanism underlying R protein-mediated broad-
spectrum resistance in addition to the wide distribution of corresponding Avirulence genes.
The research progress of the interactions between R protein and effectors from pathogens
will increase our understanding of R protein-mediated broad-spectrum resistance.

Table 1. R genes with broad-spectrum disease resistance in rice reported in past 10 years.

Gene Name Protein Type Isolates or
Pathogens 1 Chromosome Reference

Pi64 NBS-LRR 9 Mo isolates 1 [6]
Pizh NBS-LRR 31 Mo isolates 6 [8]
Pigm NBS-LRR 30 Mo isolates 6 [7]
Pi50 NBS-LRR 20 Mo isolates 6 [22]

Pi56(t) NBS-LRR 19 Mo isolates 9 [5]
Pi54rh NBS-LRR 7 Mo isolates 11 [4]

Ptr ARM repeat protein 331 Mo isolates 12 [9]
Pita2 ARM repeat protein 64 Mo isolates 12 [10]
Xa7 Executor R protein 8 Xoo isolates 6 [27]
Xa23 Executor R protein 39 Xoo isolates 11 [28]

xa41(t) Sugar transporter (SWEET) 18 Xoo isolates 11 [29]
Xa47(t) NBS-LRR 10 Xoo isolates 11 [30]

1 The pathogens and number of isolates to which resistance is conferred by the gene in the first column. Magna-
porthe oryzae, Mo; Xanthomonas oryzae pv. oryzae, Xoo.

2.2. Defense Regulator Genes Contribute to Broad-Spectrum Disease Resistance

Differing from R genes, defense regulator genes often confer partial resistance to a
broad spectrum of pathogen isolates or various pathogens. In the past 10 years, there were
at least 56 broad-spectrum resistant defense regulator genes identified which positively or
negatively regulate the resistance to rice diseases (Figure 1, listed in Table 2). The proteins
encoded by these genes are transcriptional factors, kinases, peroxidases, E3 ubiquitin
ligases, ferredoxin-dependent glutamate synthases, glutaredoxins, etc. In this review, we
classify these broad-spectrum resistant defense regulator genes according to the types of
pathogens they resist.

Table 2. Defense regulator genes showing broad-spectrum disease resistance.

Gene Name Protein Type Isolates or Pathogens 1 Chr 2 Reference

Bsr-d1 C2H2-type transcription factor 9 Mo isolates 3 [36,37]

OsMYB30 MYB transcription factor 5 Mo isolates 2 [38]

OsNAC60 NAC transcription factor 20 Mo isolates 12 [39]

OsWRKY45 WRKY transcription factor 1 Mo isolate 5 [40]

PIBP1 RRM (RNA recognition motif) protein 3 Mo isolates 3 [41]

OsBBI1 RING E3 ubiquitin ligase 7 Mo isolates 6 [42]

LHCB5 Light-harvesting complex II protein 21 Mo isolates 11 [43]

OsXB25 Plant-specific ankyrin-repeat (PANK) protein 1 Xoo isolate 9 [44]
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Table 2. Cont.

Gene Name Protein Type Isolates or Pathogens 1 Chr 2 Reference

OsBiP3 Endoplasmic reticulum (ER) chaperone,
luminal-binding protein 3 2 Xoo isolates 5 [45]

OsNPR1 BTB/POZ-ankyrin repeat protein 1 Mo isolate, 2 Xoo isolates 1 [46]

OsCRK6 Cysteine-rich-receptor-like kinases 1 Xoo isolate 7 [47]

OsCRK10 Cysteine-rich-receptor-like kinases 1 Xoo isolate 7 [47]

OsCDPK1 Calcium-dependent protein kinases Xoo 3 [48]

OsILA1 Raf-like MAPKKK 9 Xoo isolates 6 [49]

lc7 Ferredoxin-dependent glutamate synthase1 7 Xoo isolates 7 [50]

OsLYP4 Lysin motif-containing proteins 1 Mo isolate, 1 Xoo isolate, 1 Xoc
isolate 9 [51]

OsLYP6 Lysin motif-containing proteins 1 Mo isolate, 1 Xoo isolate, 1 Xoc
isolate 6 [51]

OsWRKY67 WRKY transcription factor 2 Mo isolates, 2 Xoo isolates 5 [52]

IPA1 Transcription factors 12 Mo isolates 8 [53,54]

OsTFIIAα, Transcription factor IIA subunits 10 Xoo isolates, 6 Xoc isolates 5 [55]

OsTFIIAβ Transcription factor IIA subunits 10 Xoo isolates, 6 Xoc isolates 5 [55]

OsGLP2-1 Germin-like protein 1 Mo isolate, 1 Xoo isolate 2 [56]

OsSnRK1a Sucrose nonfermenting 1-related protein
kinase 1

1 Mo isolate, 1 Xoo isolate, 1 Cm
isolate and 1 Rs isolate 5 [57]

OSK35/OsSnRK1b Sucrose nonfermenting 1-related protein
kinases 1 Mo isolate, 1 Xoo isolate 3 [58]

OsCPK4 Calcium-dependent protein kinase 1 Mo isolate, 1 Xoo isolate 2 [59]

BSR1 BIK1-like receptor-like cytoplasmic kinase
2 Mo isolates, 3 Xoo isolates, 1 Bg
isolate, 1 Cm isolate, rice stripe

virus
9 [60]

OsBAG4 Ubiquitin-like and BAG domain 1 Mo isolate, 1 Xoo isolate 1 [61]

EBR1 RING-Type E3 Ligase 1 Mo isolate, 6 Xoo isolates 5 [61]

SPIN6 Rho GTPase-activating protein (RhoGAP) 1 Mo isolate, 1 Xoo isolate 7 [62]

OsWAK25 Wall-associated kinases 2 Mo isolates, 1 Xoo isolate 3 [63]

OsCUL3a Cullin 3-based RING E3 ubiquitin ligases 1 Mo isolate, 3 Xoo isolates 2 [64]

OsDRP1E Dynamin-related protein 1 Mo isolate, 1 Xoo isolate 9 [65]

SPL33 Eukaryotic translation elongation factor 1
alpha (eEF1A)-like protein 12 Mo isolates, 11 Xoo isolates 1 [66]

LMM5.1 Eukaryotic translation elongation factor 1A
(eEF1A)-like protein 6 Mo isolates, 5 Xoo isolates 1 [67]

LMM5.4 Eukaryotic translation elongation factor 1A
(eEF1A)-like protein 6 Mo isolates, 5 Xoo isolates 4 [67]

LML1 Eukaryotic release factor 1 (eRF1) protein 4 Mo isolates, 6 Xoo isolates 4 [68]

OsABA2 Xanthoxin dehydrogenase 2 Mo isolates, 4 Xoo isolates 3 [69]

SPL35 CUE (coupling of ubiquitin conjugation to ER
degradation) domain-containing protein 8 Mo isolates, 4 Xoo isolates 3 [70]

OsHDT701 Histone deacetylase 4 Mo isolates, 1 Xoo isolate 5 [71]

OsMPK15 Mitogen-activated protein kinase 2 Mo isolates, 2 Xoo isolates 11 [72]
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Table 2. Cont.

Gene Name Protein Type Isolates or Pathogens 1 Chr 2 Reference

Bsr-k1 Tetratricopeptide repeats (TPRs)containing
protein 7 Mo isolates, 10 Xoo isolates 10 [73]

OsALDH2B1 Aldehyde dehydrogenase 1 Mo isolate, 1 Xoo isolate, 1 Xoc
isolate 6 [74]

OsPAL4 Phenylalanine ammonia-lyase 1 Mo isolate, 1 Xoo isolate, 1 Xoc
isolate 2 [75]

OsHsfB4d Class B heat-shock factor 1 Xoo isolate, 1 Xoc isolate 3 [76]

OsHsp18.0-CI Heat-shock proteins 5 Xoc isolates 3 [77]

OsPAD4 Phytoalexin-deficient 4 2 Xoo isolates, 1 Xoc isolate 11 [78]

OsGRXS15 Glutaredoxins family proteins 1 Xoo isolate, 1 Ff isolate 1 [79]

OsNH5N16 Pathogenesis-related genes 1 homologs (NHs) 1 Xoo isolates, 1 Ff isolate 11 [80]

OsASR2 Abscisic acid, stress, and ripening 2 protein 1 Xoo isolate, 1 Xoc isolate 11 [81]

Os2H16 Short-chain peptide-encoding protein 1 Xoo isolate, 1 Xoc isolate 6 [82]

OsGF14e 14-3-3 protein 1 Xoo isolate, 1 Rs isolate 2 [83]

OsWRKY30 WRKY transcription factors 1 Mo isolate, 1 Rs isolate 8 [84]

OsACS2 1-aminocyclopropane-1-carboxylic acid
synthase 2 Mo isolates, 1 Rs isolate 4 [85]

OsMESL Methyl esterase-like protein 1 Mo isolate, 1 Xoo isolate, 1 Rs
isolate 7 [86]

OsBON1 Copine protein 1 Mo isolate, 3 Xoo isolates, 1 Rs
isolate 2 [87]

OsBON3 Copine protein 1 Mo isolate, 3 Xoo isolates, 1 Rs
isolate 5 [87]

1 The pathogens and number of isolates to which resistance is conferred by the genes in the first colum. Burkholderia glumae, Bg; Cochliobolus
miyabeanus, Cm; Magnaporthe oryzae, Mo; Rhizoctonia solani, Rs; Fusarium fujikuroi, Ff ; Xanthomonas oryzae pv. oryzae, Xoo; Xanthomonas oryzae
pv. oryzicola, Xoc. 2 Chr: chromosome.

In the past 10 years, several broad-spectrum resistant defense regulator genes against
M. oryzae were identified. Through a genome-wide association study (GWAS), a natural
allele of a C2H2-type transcription factor bsr-d1 was identified in rice that confers non-
race-specific resistance to blast. This allele causes a lower gene expression level, and then
downregulates expression of three peroxidase-encoding genes, Os05g04470, Os10g39170,
and Perox3, resulting in accumulation of H2O2 and enhanced broad-spectrum resistance
to M. oryzae [36,37]. In addition, an MYB transcription factor (OsMYB30) is also involved
in bsr-d1-mediated broad-spectrum blast resistance by activating the lignin biosynthesis
genes Os4CL3 and Os4CL5 to strengthen cell walls [38]. The other three transcription
factors, OsNAC60, OsWRKY45, and RRM (RNA recognition motif) protein PIBP1 (PigmR-
interacting and blast resistance protein 1), also contribute to broad-spectrum blast resistance
in rice. OsNAC60, which is a target of Osa-miR164a, negatively regulates rice immunity
against the blast fungus M. oryzae by decreasing programmed cell death, ion leakage, ROS
accumulation, callose deposition, and defense-related gene expression [39]. OsWRKY45
mediates the blast resistance of CC-NB-LRR protein Pb1 [40]. PIBP1 specifically interacts
with PigmR and other similar NLRs, and it functions as an unconventional transcription
factor to activate the expression of OsWAK14 and OsPAL1 to trigger blast resistance [41].
In addition to transcription factors, the RING protein OsBBI1 with E3 ligase activity and
light-harvesting complex II protein LHCB5 are also involved in broad-spectrum blast
resistance. OsBBI1 confers broad-spectrum resistance against M. oryzae by increasing H2O2
accumulation in cells and modifying the cell-wall defense [42]. Phosphorylation of LHCB5
enhances resistance to M. oryzae through the accumulation of ROS in the chloroplast [43].
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Several broad-spectrum resistant defense-regulator genes against Xoo were also iden-
tified in rice in the past 10 years. In rice, several genes involved in receptor-mediated
broad-spectrum resistance and systemic acquired resistance (SAR) likely contribute to
broad-spectrum resistance to Xoo. The XA21-binding protein XB25, a plant-specific ankyrin
repeat (PANK) protein, contributes to the accumulation of receptor XA21 and maintenance
of XA21-mediated broad-spectrum resistance to Xoo [44]. The endoplasmic reticulum (ER)
chaperone, luminal-binding protein 3 (BiP3) negatively regulates resistance mediated by
rice XA3, a receptor that provides broad-spectrum resistance to Xoo [45]. Overexpression of
OsNPR1 (non-expressor of pathogenesis-related genes 1), a master gene for SAR in rice, greatly
enhances resistance to Xoo [46]. Moreover, the cysteine-rich-receptor-like kinases (OsCRK6
and OsCRK10) are required for OsNPR1-mediated immunity [47]. In addition to CRK6 and
CRK10, some kinases have been identified as conferring broad-spectrum resistance to Xoo.
For instance, overexpression of a constitutively activated form of calcium-dependent pro-
tein kinases OsCDPK1 confers Xoo resistance by affecting OsPR10a expression in rice [48].
OsILA1, a Raf-like MAPKKK, functions as a negative regulator and acts upstream of the
OsMAPKK4–OsMAPK6 cascade against Xoo [49]. Unlike the type of genes mentioned
above, lc7, encoding a mutant ferredoxin-dependent glutamate synthase 1 (Fd-GOGAT1),
promotes ROS accumulation in the leaves and has high broad-spectrum resistance against
seven Xoo strains [50].

Defense regulator genes are different from pathogen-specific R genes, which can confer
resistance to multiple pathogens. For instance, Lysin motif-containing protein genes LYP4
and LYP6, transcriptional regulator genes OsWRKY67 and IPA1, the host basal transcription
factor IIA subunit genes OsTFIIAα and OsTFIIAβ, germin-like protein gene OsGLP2-1,
sucrose nonfermenting 1-related protein kinase 1 genes OsSnRK1a and OsSnRK1b/OSK35,
calcium-dependent protein kinase gene OsCPK4, and receptor-like cytoplasmic kinase gene
broad-spectrum resistance 1 (BSR1) play a positive role in basal resistance against M. oryzae
and Xoo [51–60]. In contrast, mutations in E3 ubiquitin ligase gene EBR1 (enhanced blight
and blast resistance 1), RhoGAP SPIN6, rice wall-associated kinase gene OsWAK25, Cullin
3-based RING E3 ligase gene OsCUL3a, dynamin-related protein gene OsDRP1E, eEF1A-
like protein gene SPL33, eukaryotic translation elongation factor 1A-like genes LMM5.1
and LMM5.4, eukaryotic release factor 1 gene LMM1, abscisic acid 2 (OsABA2), and CUE
domain-containing protein gene SPL35 result in lesion mimic leaves and enhanced broad-
spectrum resistance to M. oryzae and Xoo [61–70]. Differing from these lesion mimic genes,
histone H4 deacetylase gene HDT701 and mitogen-activated protein kinase OsMPK15,
whose mutant or overexpressing lines do not show lesion mimic leaves, negatively regulate
the resistance against M. oryzae and Xoo [71,72]. Similarly, loss of function of the Bsr-k1
gene, encoding a tetratricopeptide repeat (TPR)-containing protein, leads to accumulation
of OsPAL1–7 mRNAs, which confer broad-spectrum resistance against M. oryzae and Xoo
with no major penalty on key agronomic traits [73].

In addition, several genes have been reported as conferring broad-spectrum resistance
against multiple pathogens other than both M. oryzae and Xoo. Aldehyde dehydrogenase
OsALDH2B1 has a moonlight function as a transcriptional regulator to regulate a diverse
range of biological processes involving G protein, brassinolide, jasmonic acid, and salicylic
acid signaling pathways. Loss of function of OsALDH2B1 greatly enhanced resistance to M.
oryzae, Xoo, and Xoc [74]. Similarly, rice phenylalanine ammonia-lyase gene OsPAL4 is asso-
ciated with resistance to M. oryzae, Xoo, and Xoc [75]. Heat-shock factor OsHsfB4d binds
the promoter and regulates the expression of a small heat-shock protein gene OsHsp18.0-CI
to be resistant against Xoo and Xoc [76,77]. Moreover, suppression of phytoalesin-deficient 4
OsPAD4 results in increased susceptibility to the Xoo and Xoc [78]. Rice glutaredoxin gene
OsGRXS15 and a novel NPR1 homolog gene OsNH5N16 contribute to broad-spectrum resis-
tance to Xoo and F. fujikuroi by regulating the expression of PR genes related to SAR [79,80].
Abscisic acid, stress, and ripening 2 (ASR2) contributes to broad-spectrum resistance against
Xoo and R. solani by regulating the expression of a defense regulator gene Os2H16 [81,82].
In contrast, 14-3-3 protein (GF14e) negatively affects cell death and disease resistance to
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Xoo and R. solani [83]. WRKY transcription factor OsWRKY30 and 1-aminocyclopropane-1-
carboxylic acid synthase gene ACS2 positively regulate the resistance against M. oryzae and
R. solani [84,85]. Moreover, methyl esterase-like gene OsMESL and copine genes OsBON1
and OsBON3 are critical suppressors of immunity to M. oryzae, Xoo, and R. solani [86,87].

These excellent studies on broad-spectrum resistant defense regulator genes show
multiple characteristics. Firstly, with the increasing attention to broad-spectrum resistance,
the reports of broad-spectrum resistance related genes have increased sharply in the
past 10 years [1]. For breeders, whether these genes also show broad-spectrum disease
resistance in the natural field environment is still the focus of attention. Secondly, the
connections between these broad-spectrum resistant defense regulator genes and their
relationships with R genes remain largely unclear due to limited experimental evidence. It
is possible that these broad-spectrum resistance defense regulator genes function in the
convergence point of the crosstalk between the pathways of basal and R protein-mediated
resistances or between the pathways initiated by different R proteins [1]. Thirdly, only a
few broad-spectrum resistant defense regulator genes mediate resistance with little or no
yield penalties. The tradeoff between broad-spectrum resistant defense regulator genes
and rice yield is one of the important limiting factors, as summarized in Chen’s review [2].
Last but not least, there are rare examples of using these disease resistance-related genes
to obtain broad-spectrum disease-resistant varieties in breeding programs. Although it
was very difficult to effectively use these broad-spectrum resistant defense regulator genes
in molecular breeding of rice until now, identification of natural variations/alleles of
these genes from rice varieties with excellent agronomic traits, artificial mutation, and
genome-editing technology would provide important methods for broad-spectrum disease
resistance.

2.3. Identification of Broad-Spectrum Disease Resistance Loci by QTL Mapping and
GWAS Analysis

Broad-spectrum resistance is a polygenic trait, whereby a combinatorial effect of major
and minor genes mediates this trait [88]. With the advances of next-generation DNA
sequencing and high-density molecular marker platforms, various quantitative trait loci
(QTL) against rice blast, sheath blight, and/or bacterial leaf blight have been mapped
to locate the source of these traits in the past 10 years. Using Heikezijing, a japonica rice
landrace with broad resistance against rice blast and Suyunuo recombinant inbred lines,
13 QTLs were identified to be effective against only one M. oryzae isolate, while the other
seven QTLs may be non-isolate-specific because each QTL confers resistance to more than
one isolate [89]. By evaluating the disease reactions of 60 US weedy rice accessions with
14 M. oryzae isolates, 28 resistant QTLs were identified, of which three loci contribute to
non-isolate-specific resistance [90]. With a combination of genome-wide association studies
(GWAS) and interval mapping analyses, 51 QTLs against Xoo and Xoc were identified in
multiparent advanced generation intercross populations, including 11 broad-spectrum
resistance, three pathovar-specific, and 37 isolate-specific QTLs [88]. A GWAS analysis of
236 diverse rice accessions revealed 12 QTLs, of which two QTLs showed broad-spectrum
resistance to Xoc [91]. Recently, 147 SNP associated with Xoo resistance were identified in
222 predominantly Thai rice accessions; however, the significantly associated SNP only
occurred across a maximum of five Xoo isolates [92]. In rice, most resistance QTLs are
conditioned to different populations and different QTL mapping analyses, which makes
it difficult to handpick suitable QTL candidates for breeding programs with multiple
resistances. To integrate QTL from different studies, a meta-analysis of QTLs represents
a good approach. Using meta-analysis, 48 meta-QTLs were obtained from 27 studies,
of which MQTL8.1 and MGTL2.5 were associated with resistance to rice blast, sheath
blight, and bacterial leaf blight [93]. Resistant QTLs confer a partial but frequently referred
resistance to broad-spectrum pathogen isolates or diverse pathogens, which are considered
as effective resources for breeding to achieve broad-spectrum resistance [1]. However,
the results from all these studies clearly showed that most QTLs confer isolate- and/or
pathogen-specific resistance; in other words, not all resistance QTLs are broad-spectrum.
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Moreover, there are few broad-spectrum resistant QTLs available for crop improvement
programs, which results in the breeder needing a longer time and higher cost to pyramid
QTLs to obtain broad-spectrum disease-resistant varieties.

3. Strategies for Broad-Spectrum Disease Resistance Rice Breeding
3.1. Gene Pyramiding Breeding Is an Effective Way to Obtain Broad-Spectrum Disease Resistance
Rice Varieties

Developing and using resistant varieties could effectively and economically control
diseases. One of the effective ways to develop broad-spectrum resistance varieties is marker-
assisted gene pyramiding. Numerous cloned R genes provide a wealth of information
and resources for pyramiding breeding, which promoted the generation of pyramiding R
gene lines with broader and enhanced resistance to bacterial blight and rice blast in the
past 10 years. Introducing Piz/Pi2/Pi9, Pid3, or Pi54 or pyramiding the R genes Pi37 +
Pid3, Pi5 + Pi54, Pi54 + Pid3, Pigm + Pi37, Pi9 + Pi54, Pigm + Pi1, Pigm + Pi33, Pigm + Pi54,
Pi2 + Pi46 + Pita, Pi2 + Pi46 + Pigm, and Pib + Pi25 + Pi54 leads to broad-spectrum blast
resistance [94–101]. Pyramiding the R genes Xa4 + xa5 + Xa21, xa5 + xa13 + Xa21, xa5 +
Xa21, Xa21 + Xa33, and Xa23 with other genes, as well as Xa4 + xa5 + Xa7 + xa13 + Xa21,
provides a higher and broader resistance to Xoo than individual resistance genes [102–108].
Moreover, pyramiding the genes Pi2 + Xa7 and xa5 + xa13 + Pi54 + qSBR7-1 + qSBR11-1 +
qSBR11-2 confers broad-spectrum resistance to both M. oryzae and Xoo [109,110].

All aforementioned studies give excellent examples of pyramiding R genes to obtain
broad-spectrum resistance rice. However, it is still very difficult to obtain broad-spectrum
disease resistant varieties by polymerization breeding for several reasons [111,112]. The
first is that only a few R genes have been successfully used for molecular breeding processes.
The existence of R genes containing resistant germplasms with excellent comprehensive
traits is an important perquisite for breeding application. Secondly, the utilization of R
genes in main modern rice varieties and the effectiveness of R genes in different rice-
cultivating regions are still not very clear. Thirdly, the resistance effect of pyramiding
different R genes may not be a simple accumulation of resistance spectrum and improve-
ment in the resistance level; meanwhile, with the increase in the number of pyramided R
genes via traditional genetics approaches, the workload of breeding, time consumption,
and linkage drag with unacceptable traits increase. Therefore, an accurate understanding of
R gene utilization and the establishment of high-throughput molecular breeding methods
to create R genes harboring resistant germplasms without linkage drag are important steps
to overcome these difficult points, so as to improve broad-spectrum resistance breeding in
the future.

3.2. Engineering Broad-Spectrum Disease Resistance Rice by Editing Susceptibility and Executor
R Genes Is a New Method with Broad Application Prospects

During the plant–pathogen interaction, phytopathogens evolve to exploit the sus-
ceptibility (S) genes of plant to facilitate their infection. These S genes are associated
with host recognition, penetration, pathogen proliferation and spread, or negative regu-
lation of immune signals [113]. Disrupting these S genes can lead to enhanced resistance
or reduced compatibility and, consequently, expand resources for broad-spectrum dis-
ease resistance. To date, many S genes have been identified in rice, such as Pi21, Xa5,
Xa13/OsSWEET11, Xa25/OsSWEET13, and Xa41/OsSWEET14 [29,114–121]. Recent ad-
vances in genome editing technologies, such as the CRISPR (clustered regularly inter-
spaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated gene
editing system, have greatly accelerated the generation of new resistant rice through genetic
manipulation of S genes [113,122].

The most reported examples of editing S genes in rice can be found in research related
to Xoo resistance. During the infection process of Xoo, abundant transcription activator-like
effectors (TALEs), which are the major virulence factors and compatibility determinants,
are secreted into rice cells. Most TALEs bind to the cis-element effector-binding elements
(EBEs) in the promoter of S gene and reprogram their transcription to promote disease.
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For instance, the TALEs PthXo1, PthXo2, and PthXo3/AvrXa7/TalC/TalF bind the EBEs
in the promoters of rice OsSWEET11, OsSWEET13, and OsSWEET14 genes, respectively
(Figure 2a) [122]. Editing the EBEs of S genes OsSWEET11, OsSWEET13, and OsSWEET14
in rice varieties japonica Kitaake and indica IR64 and Ciherang-sub1 resulted in loss of
induction of these S genes by Xoo and broad-spectrum resistance against Xoo [123–126].
Similar strategies were used in the modification of S genes, Pi21, Bsr-d1, and Xa5 to obtain
broad-spectrum resistance rice against Xoo and M. oryzae [127]. In addition, it was well
summarized that editing the open reading frame of susceptibility defense regulators could
obtain broad-spectrum resistance rice plants in the Wang’s review (Figure 2b) [128].

Contrary to the interaction between TALEs and rice S genes, the usually suppressed
executor R genes, such as Xa10 and Xa23, are transcriptionally activated by TALEs to restrict
the growth of Xoo [28]. Using an in-depth understanding of the mechanism underlying the
interaction between TALEs and executor R genes, a new strategy for engineering broad-
spectrum bacterial blight resistance through CRISPR/Cas9-mediated precise homology
directed repair was proposed. Using this strategy, the EBEAvrXa23, which is bound by
TALE AvrXa23 to activate the expression of Xa23, was inserted into the promoter region of
the susceptible xa23 allele in the susceptible rice cultivar, resulting in a resistant variety
(Figure 2c) [129]. This is a significant expansion to the application of executor R genes and
a new genome editing strategy in improving rice disease resistance.
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3.3. Transgenic Rice Expressing Genes from Other Species Shows Broad-Spectrum
Disease Resistance

Along with pyramiding resistance genes and editing susceptibility genes in rice, de-
velopment of transgenic rice plants by expressing defense genes from other species is an
appropriate approach to control pathogens, especial in the absence of a resistant germplasm.
For instance, the Arabidopsis NPR1 protein (non-expressor of PR1) is a key regulator in the
signal transduction pathway leading to the activation of SAR, which is a broad-spectrum
resistance response upon exposure to a pathogen [130]. Constitutive expression of the
AtNPR1 gene in rice leads to high resistance but growth and agronomic trait defects.
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To overcome this problem, different strategies were developed by two groups [130,131].
Eventually, broad-spectrum resistant rice plants without a fitness cost were obtained by
expression of AtNPR1 driven by green tissue-specific promoter or pathogen-responsive
upstream open reading frames of key immune regulators TBF1 [130,131]. Similarly, trans-
genic rice lines expressing the auto-activated NLR genes RPS2 and RPM1 (D505V) from
Arabidopsis conferred broad-spectrum resistance to pathogens M. oryzae and Xoo via early
and strong induction of ROS, callose deposition, and expression of defense-related genes.
These RPS2 and RPM1 cases revealed that auto-activated NLRs are a promising resource
for breeding crops with broad-spectrum resistance, and they provide new insights for engi-
neering disease resistance [132]. In addition to genes from Arabidopsis, transgenic rice plants
expressing resistant Lr34 allele from wheat showed increased resistance against multiple
isolates of the hemibiotrophic pathogen M. oryzae by delaying invasive hyphal growth [133].
In another example, transgenic rice lines expressing the isoflavone synthase (GmIFS1) gene
from soybean contributed to the synthesis of isoflavone (genistein) to promote M. oryzae
resistance, indicating that the synthesis of heterologous secondary metabolites, such as
isoflavone, is a good way to develop blast resistance in rice [134]. As such, we believe that
engineering resistant rice through ectopic transcription of defense genes cloud be a broadly
applicable new strategy, which may lead to reduced use of pesticides and lightening the
selection pressure of resistance pathogens.

4. Conclusions

In the past 10 years, several broad-spectrum R genes, defense regulators, and QTLs
were identified in rice with resistance against two or more types of pathogen species
or many isolates of the same pathogen species. This emerging knowledge of broad-
spectrum resistance genes formulates efficient ways to best use these genetic resources for
crop improvement via biotechnological approaches. However, there are still many gaps
in our knowledge of the mechanisms underlying broad-spectrum resistance. To reveal
these mechanisms, more research about the interactions between the host R protein and
pathogen effectors, as well as the cooperation among these broad-spectrum resistance
genes, is required in future. Furthermore, there is still a long way to using these genes to
create broad-spectrum disease-resistant varieties. An accurate understanding of R gene
utilization, the establishment of high-throughput molecular breeding methods to create R
genes harboring resistant germplasms without linkage drag, and an investigation of new
strategies for using defense regulator genes without a yield penalty will be helpful for
improving broad-spectrum resistance breeding in the future.
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