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Abstract: This paper is devoted to proving two goals, to show that various depth sensors can be used
to record breathing rate with the same accuracy as contact sensors used in polysomnography (PSG), in
addition to proving that breathing signals from depth sensors have the same sensitivity to breathing
changes as in PSG records. The breathing signal from depth sensors can be used for classification
of sleep apnea events with the same success rate as with PSG data. The recent development of
computational technologies has led to a big leap in the usability of range imaging sensors. New
depth sensors are smaller, have a higher sampling rate, with better resolution, and have bigger
precision. They are widely used for computer vision in robotics, but they can be used as non-contact
and non-invasive systems for monitoring breathing and its features. The breathing rate can be easily
represented as the frequency of a recorded signal. All tested depth sensors (MS Kinect v2, RealSense
SR300, R200, D415 and D435) are capable of recording depth data with enough precision in depth
sensing and sampling frequency in time (20–35 frames per second (FPS)) to capture breathing rate.
The spectral analysis shows a breathing rate between 0.2 Hz and 0.33 Hz, which corresponds to
the breathing rate of an adult person during sleep. To test the quality of breathing signal processed
by the proposed workflow, a neural network classifier (simple competitive NN) was trained on a
set of 57 whole night polysomnographic records with a classification of sleep apneas by a sleep
specialist. The resulting classifier can mark all apnea events with 100% accuracy when compared to
the classification of a sleep specialist, which is useful to estimate the number of events per hour. When
compared to the classification of polysomnographic breathing signal segments by a sleep specialist,
which is used for calculating length of the event, the classifier has an F1 score of 92.2% (sensitivity
89.1% and specificity 98.8%). The classifier also proves successful when tested on breathing signals
from MS Kinect v2 and RealSense R200 with simulated sleep apnea events. The whole process can be
fully automatic after implementation of automatic chest area segmentation of depth data.

Keywords: image processing; signal processing; depth sensors; computational intelligence;
human-machine interaction; breathing analysis

1. Introduction

Recently, developed computational technologies have led to a big leap in the usability of range
imaging devices. The mentioned depth sensors are smaller, have a higher sampling rate and resolution,
but are also much more precise. They are mainly used for computer vision in robotics, and can work
as motion controllers for computers and other devices or 3D scanners. In addition, they can be used
as non-contact and non-invasive systems for monitoring breathing and its features. The first widely
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available depth sensor was MS Kinect for Xbox 360 and MS Kinect for Xbox One, which was both
successfully tested for complex monitoring of selected biomedical features [1–7]. They formed an
inexpensive replacement for conventional devices. These sensors can be used to monitor breathing
and possibly heart rate changes during physical activities or sleep to analyze disorders by mapping
chest movements during breathing.

In 2013, Intel presented at a Consumer Electronics Show that it would start focusing on adding
motion and voice controls to its computers under the label perceptual computing. As such, the technology
was re-revealed in 2014 as RealSense (RS) [8]. After research and implementation of said perceptual
computing abilities in devices, Intel launched on January 2018 a new Intel RealSense D400 Product
Family with Intel RealSense Depth Module D400 Series, and two ready to use depth cameras (Intel
RealSense Depth Cameras D435 and D415).

In general, the use of image and depth sensors [1,7,9–12] allow sleep monitoring and 3D modeling
of the chest and abdomen volume changes during breaths as an alternative to conventional spirometry
with the use of red-green-blue (RGB) cameras [13,14], infrared cameras[15,16], or Doppler multi-radar
systems [17] in addition to ultrasonic and biomotion sensors [18–21]. The paper provides motivation
for further studies of methods related to big data processing problems, dimensionality reduction,
principal component analysis, and parallel signal processing to increase the speed, accuracy, and
reliability of the results. Methods related to motion recognition can be further used in multichannel
biomedical data processing for the detection of neurological disorders, for facial and movement
analysis during rehabilitation, and for motion monitoring in assisted living homes [22–24].

2. Materials and Methods

This work is devoted to proving two goals: showing that various depth sensors can be used to
record breathing rate with the same accuracy as contact sensors used in polysomnography (PSG).
Section 2.3 is dedicated to spectral analysis of signals recorded by depth sensors and PSG (Table 1),
which is used to show the ability of these sensors to capture breathing rate. The next step after
preprocessing and comparing signals is to show that breathing signals from depth sensors can be used
for classification of sleep apnea events with the same success rate as with PSG data. Section 2.4 is
devoted to the classification of sleep apnea events. A simple competitive neural network is trained
and tested on a set of PSG data records and successfully tested on a breathing signal recorded by MS
Kinect v2 and RealSense R200.

The necessary background is explained in the next subsections.

Table 1. Depth data overview

Depth Sensor FPS Range Mean FPS Length of Data Sensor Setting

MS Kinect v2 3–29 20 8 h, 19 min 512 × 424 RAW 16bit, 30 FPS
RS SR300 25–45 35 14 min 640 × 480 RAW 16bit, 30 FPS
RS R200 25–43 33 43 min 628 × 468 RAW 16bit, 30 FPS
RS D415 27–33 30 26 min 640 × 480 RAW 16bit, 30 FPS
RS D435 25–37 30 42 min 848 × 480 RAW 16bit, 30 FPS

Frames per second (FPS).

2.1. Data Acquisition

Presented data were recorded either in a sleep laboratory or in a home environment. The overall
set consists of 57 patients (demographic overview in Table 2) recorded in a sleep laboratory with
polysomnography, where 32 of them were healthy and 25 patients had sleep apnea. To compare the
depth sensors properly, an 8-h long set of data was recorded with MS Kinect v2 together with PSG.
The PSG has a stable sampling frequency of 10 Hz, and MS Kinect v2 has a mean sampling frequency
of 20 Hz. A reason for an unsteady sampling frequency of MS Kinect v2 is that it is not primarily depth
sensors, but a device for skeletal data tracking. The sensor is constantly searching for people in space
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that it would segment and the increased processing demands slows down depth data output. Five
other short standalone experimental records of a sleeping person (length 14–43 min.) were recorded
with all sensors mentioned in a home environment with the mean sampling frequency being between
30 and 35 Hz. A detailed overview is in Table 1. The stable sampling frequency is necessary to properly
capture the motion of a chest during breathing. Each sensor has different recording capabilities
and needs different software for recording of data: MS Kinect—C#, Java, Matlab; Intel RS SR300 and
R200—Intel Realsense SDK 1.x, C#; Intel RS D415 and D435—Intel Realsense SDK: Librealsense, Viewer
(.bag) and MatLab wrapper. The overview of various specifications of depth sensors is in Table 3.
The Microsoft Kinect v2 was developed by Microsoft, One Microsoft Way, Redmond, Washington,
United States. The Intel RealSense cameras are developed by Intel Corporation, Santa Clara, California,
United States.

Table 2. Demographic overview of patients.

Healthy Apnoa

Sex Count Age Count Age
Male 21 41.19 ± 15.54 18 49.47 ± 16.65
Female 11 43.09 ± 7.23 7 48.14 ± 12.27

Table 3. Comparison of depth sensors

Kinect v2 R200 SR300 D415 D435

Depth technology Time of Flight Coded Light Coded Light Active IR Stereo Active IR Stereo
Image Sensor tech. Rolling Shutter Global Shutter Global Shutter Rolling Shutter Global Shutter

RGB FPS Max 30 FPS 30 FPS 30 FPS, 60 FPS up to 90 FPS up to 90 FPS
RGB Resolution 1080p 1080p 1080p, 720p 720p 1080p

Depth Resolution 512 × 424 480p 480p 720p 720p
Depth FPS Max 30 FPS 60 FPS 60 FPS 90 FPS 90 FPS

Range 0.5–4.5 m 0.4–2.8 m 0.2–1.5 m 0.16–10 m 0.11–10 m

Frames per second (FPS).

The sensors included in this study represent a variety of depth sensing devices—from the
well-known and widely used MS Kinect v2, which is unique with its time of flight depth sensing
technology and its primary function of skeletal tracking to Intel RealSense R200 with its low energy
consumption, global shutter, and means to be used in small portable devices. They use tree depth
sensing technologies. Time of flight uses IR emitter and camera, the technology counts the time
of emitted IR pulse from the device back to the camera, and it recalculates this time to distance.
The advantage of this technology is that each pixel of the output depth map has an independent value.
Coded light or Structured light technology uses an IR projector and camera. By illuminating scene
with a designed static light pattern, at once or by parts, it can determine depth from a single image
of reflected light. The disadvantage lies in the design of a pattern, it might mean that, instead of
unique depth value for each pixel, the depth might be the same for a few neighboring pixels. Active IR
stereo combines the coded Light technology with stereo triangulation. It uses one IR projector and
two cameras. The projected light pattern is captured by both cameras and the depth is calculated by
estimating disparities between matching points in images from both cameras, resulting in enhanced
depth precision.

The ideal candidate for use in this study would be Intel RS D435 with high frames per second
(FPS), more precise active IR stereo, and global shutter. However, all mentioned depth sensors are
taken into account in testing their ability to capture breathing rate, as there is a reason to use each of
them in a different situation, or one cannot choose which to use or acquire.

The MS Kinect v2 was placed 1 meter away from a bed, looking down at the abdomen of a patient
at an angle of 45 degrees from a plane of the bed. The recorded patient has a blanket, and it was
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possible for him to sleep either on his side or on his back despite the restriction of PSG cables and
sensors. In a home environment were depth sensors were placed at the head of bed looking down at
abdomen of a patient at an angle of 45 degrees from the plane of a bed.

2.2. Data Processing

The sequences of depth maps that were acquired by the depth sensors were analyzed over the
selected rectangular area with R rows and S columns that covered the chest area of the individual. For
each matrix Dn(i, j) including values inside the region of interest at discrete time n, the mean values of
a difference between two consequent images were evaluated by the following equation:

d(n) =
1

R S ∑
i

∑
j
(Dn+1(i, j)−Dn(i, j)) (1)

In this way, the mean value of change over each pixel in the selected area for each two depth data
forms a separate time series {d(n)}N−2

n=0 of length N − 1.
Then, FIR filtering of the selected order M was applied to obtained padded signal {d(n)}M+N−3

n=M−1
to evaluate the new sequence {y(n)}N−2

n=0 using the following equation:

y(n) =
M−1

∑
k=0

b(k) d(n− k) (2)

with coefficients {b(k)}M−1
k=0 defined to form a band-pass filter with cut-off frequencies f1 = 0.01 Hz

and f2 = 1 Hz to cover the estimated frequency of breathing rate and to reject all other frequency
components including the mean signal value and additional high frequency noise. A Savitzky–Golay
smoothing filter of the second order might be applied for additional smoothing.

Timestamps recorded with each image frame allowed for resampling of the resulting data with a
spline interpolation to a constant sampling rate of fs = 10 Hz matching sampling rate of PSG.

The resampled data are used for feature extraction and classification using an unsupervised
competitive neural network. It is using competitive learning which is in the form of a hidden layer
(commonly called a competitive layer) where every competitive neuron i is described by its vector of
weights wi = (wi1, ..., wid)

T , i = 1, 2, ..., L which calculates measure of similarity between the input
data xn = (xn1, ..., xnd)

T ∈ Rd and the vector wi. The neurons compete each other on every input
vector based on greatest similarity to its weight vector. The l neuron that wins sets its output oi = 1
and all other neuron outputs oi = 0, i = 1, ..., L, i 6= l. The inverse of Euclidean distance is usually
used as a similarity function together with learning vector quantization (LVQ), where L is number
of clusters and weight vector wi = (wi1, ..., wid)

T , i = 1, 2, ..., L corresponds to centroid of the cluster
i [25,26].

Receiver operating characteristics (ROCs) are used for evaluation of the classifier. It is created
by a comparison of classification results to target data and by creating a confusion matrix with: true
positive (TP) values, equivalent with hit; true negative values (TN), equivalent with correct rejection;
false positive (FP), equivalent with Type I error; and false negative (FP), equivalent with Type II error.
The measures used in a classifier evaluation are Sensitivity (TPR), Specificity (TNR), Precision (PPV)
from Equation (3) and Accuracy (ACC) with F1 score from Equation (4). The goal is to have as much
accuracy as possible; however, in some cases, F1 score is more useful as it considers both the precision
and sensitivity:

TPR =
TP
P

=
TP

TP + FN
TNR =

TN
N

=
TN

TN + FP
PPV =

TP
TP + FP

(3)

ACC =
TP + TN

P + N
=

TP + TN
TP + TN + FP + FN

F1 = 2× PPV × TPR
PPV + TPR

=
2TP

2TP + FP + FN
(4)
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2.3. Breathing Data Processing

To show that the depth sensor records are qualitatively comparable to PSG, various records of
breathing during sleep were made with Kinect V2 and RealSense SR300, R200, D415, and D435.

The overall set consists of 57 whole night PSG records, 1 whole night record was made by MS
Kinect v2 simultaneously recorded with PSG, and 5 short standalone experimental records with the
rest of the sensors mentioned.

The most interesting comparison is from whole night sleep data recorded with PSG and MS Kinect
v2 at once. The spectrum from one selected PSG record processed with FFT [27] is in Figure 1a and
the spectrum from the corresponding MS Kinect v2 record is in Figure 1b. The resting breathing rate
of an adult person is between 0.2 and 0.5 Hz while both figures clearly show that both pieces of data
have the highest presence of frequency change between 0.2 and 0.3 Hz, with a very similar curve of
the breathing data spectrum.

The rest of the records are made in a home environment, one sensor at a time, under the same
conditions (angle of view, placement of the sensor, distance from bed), and their details are summarized
in Table 1. Except for the MS Kinect v2, all devices have a very stable frame rate around 30 FPS during
the whole record. Spectral analysis (Figure 1) from RealSense SR300 is in Figure 1c, RealSense R200
in Figure 1d, RealSense D415 in Figure 1e, and RealSense D435 in Figure 1f. From all these figures, it
is clear that all of the sensors can capture the breathing rate of a sleeping person using the described
methods, and shows similar trends to the whole night records.
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(a) Spectrum of breathing signal
from PSG, 8 hours of data.
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(b) Spectrum of breathing signal
from Kinect V2, 8 hours of data.
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(c) Spectrum of breathing signal
from RS SR300, 14 min of data.
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(d) Spectrum of breathing signal
from RS R200, 43 min of data.

0 0.2 0.4 0.6 0.8 1

Frequency [Hz]

0

50

100

Spectrum D415

(e) Spectrum of breathing signal
from RS D415, 26 min of data.
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(f) Spectrum of breathing signal
from RS D435, 42 min of data.

Figure 1. Comparison of spectral analysis of 8 hour records from (a) PSG, (b) MS Kinect v2 resampled
to 10 Hz and (c–f) shorter signals from RealSense depth sensors.

For some of the diagnoses of sleep disorders, it is sufficient to have a breathing rate, but, for
diagnosis of sleep apnea, it is very useful to have a breathing signal. The sleep apnea Syndrome [28–32]
is characterized by a cessation or decrease of ventilatory effort during sleep and is usually associated
with oxygen desaturation [33]. It is divided into three categories: Central Apnea, Obstructive Apnea,
and Mixed Apnea. The severity of such syndrome is then measured by a number of episodes during
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the night and are associated with sleepiness or insomnia. The classification by sleep specialists then
usually marks some part of the signal when the events occur because manual marking of all events
of 8-hour long records would be unnecessarily time-consuming. However, these data are enough for
getting the ground true for classifier training.

2.4. Classification of Breathing Data

A classifier from the pilot study [34] was trained on 57 whole night PSG records (32 healthy and
25 patients with sleep apnea) without a teacher based on a competitive neural network works with
good accuracy on incomplete classification from a sleep specialist, 94.2% accuracy (vs. sleep specialist).
The classifier from the pilot study was trained on features derived from signal energy of the 6th level
Haar’s wavelet decomposition. The breathing signal from a depth sensor is different from the one
from PSG, mainly because of using a difference of signal in its process. The same approach using
unsupervised learning can be used to train a similar classifier on data used in this study.

The strategy to classify a normal breathing signal from that of apnea event is based on analyzing
part of a signal of some length. The whole signal is then divided into smaller overlapping pieces.
The first feature for the classifier is the most significant frequency. A disadvantage of this feature is that
it does not take amplitude of signal into account, so a standard deviation of the signal was selected as
a second feature.

Since there are parts of training PSG data that are only partially classified and longer parts of the
signal with just one apnea event are rare, it is challenging to create a good training set for supervised
learning, which is a reason why unsupervised learning was used. The training set was created from a
selected marked apnea event from the set in Table 4. Each segment contains a marked event with 25 s
before and after the event so parts of signals with normal breathing were added to the training set. If
there were marked events too close to each other (2 central apnea events, 14 obstructive apnea events),
the events were not used for training, but they are still useful for evaluation. The circumjacent signal
usually contained apnea events missing from original classification These data were used to train two
classifiers, simple competitive neural network (2 neurons, 1000 epochs), and K-means classifier with
2 classes. The competitive neural network was selected for further use, as it showed better accuracy
(comparison of classifiers statistics is in Table 5).

Table 4. Overview of apnea events.

Apnea Length of Event [s]
Type Number of Events Mean Min Max

Central 13 16.2 12.5 31
Obstructive 69 22.8 12.5 37
Mixed 9 21.9 5 44.5

Table 5. Results of training set classification, 25.23 min. with Fs of 10 Hz.

Competitive NN K-Means
Confusion Matrix Results Confusion Matrix Results

TP FP Sensitivity 89.2% TP FP Sensitivity 9.7%
2855 139 Specificity 98.8% 311 215 Specificity 98.2%
FN TN Precision 95.4% FN TN Precision 59.1%
347 11802 F1 score 92.2% 2891 11726 F1 score 16.7%

The new classifier was successfully tested on data selected from whole night PSG records
(Figure 2a), with a selected part with Central apnea events in Figure 3a.
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(a) Selected training data from 57 whole night PSG records, with
classification of sleep apnea event.
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Figure 2. Training data with classification and example of selected central apnea event.
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Figure 3. Comparison of sleep apnea classification. All signals are with a sampling frequency of 10 Hz.

3. Results

This paper aims to prove two goals: the first is to show that all mentioned depth sensors can
be used to record breathing rate with the same accuracy as contact sensors used in PSG. The second
goal is to prove that breathing signals from depth sensors can have the same sensitivity to breathing
changes as in PSG data and that it can be used for sleep apnea classification.

The breathing rate can be easily represented as the frequency of a recorded signal. The adult
patient should have a breathing rate between 16 and 20 breaths per minute, which is 0.26 Hz and
0.33 Hz. For elderly patients, the breathing rate should not be lower than 10 breaths per minute and
higher than 30 breaths per minute, which corresponds to 0.16–0.5 Hz [35–39]. All tested depth sensors
are capable of recording depth data with enough precision in depth sensing and sampling frequency
(20–35 FPS) in time to capture breathing rate.

To test the quality of breathing data from depth sensors processed by the proposed workflow,
a neural network classifier (simple competitive NN) was trained on a set of whole night
polysomnographic records with a classification of sleep apneas by a sleep specialist. The training
data consist of 57 records containing 32 healthy patients and 25 patients with sleep apnea. Since the
original PSG classification by a sleep specialist is done manually, not every apnea event is marked in
the classification.

There are two goals for the classification of sleep apnea. The first is to mark correctly that the
event occurred, as a number of events per hour or per night is useful criteria for severity ranking of a
sleep apnea syndrome. The second goal is to match the classification of a sleep specialist as closely
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as possible. The length of sleep apnea is also counted in the severity of sleep apnea syndrome [33].
The usual sampling rate of classification used in hospital record is 0.5 seconds, and we decided to
use more precise classification with a sampling period of up to 0.1 seconds (10 Hz). The resulting
classifier, validated by 5 K-Fold cross-validation with a randomized training set using 70% of segments
for training. This classifier can mark all apnea events with 100% accuracy when compared to the
PSG classification of a sleep specialist, and with an F1 score of 92.2% (Table 5, sensitivity 89.1% and
specificity 98.8%) when compared to the classification of breathing signal segments by a sleep specialist
(sampling frequency of 10 Hz). The cause of false positive and false negative classification is mainly
because of slower change from regular breathing to apnea event. An example of classifier use on one
of the segments is in Figure 2b, where there is also graphical comparison to classification by a sleep
specialist. Since we can rely on classification from a sleep specialist as ground truth, we can expect that
the parts we are unable to compare are classified with the same or similar accuracy.

The classifier was then applied on experimental data with simulated sleep apnea records made
with RealSense R200 and MS Kinect V2. These two sensors were selected from all tested devices
because they both have highest error estimating distance (MS Kinect V2 [40], 6 mm; RS R200 3 mm [41]).
Furthermore, the RS R200 has undefined areas in depth images and works on low power (1.6 W [42]),
so it is the best candidate for any further use. The example of successful classification results for
RS R200 are in Figure 3b, and the whole record contained four sleep apnea events that the classifier
correctly marked. An example of successful results for Kinect v2 is in Figure 3c, and the whole input
signal contained five similar sleep apnea events.

4. Discussion and Conclusions

The limitation of this study is in the position of the depth sensor and training of the classifier.
The processing of depth data can handle a blanket or clothes, but a big distance or bad angle would
mean more noise and less recorded movement. The training set could be more balanced with more
samples, but as it usually is with biological or biomedical data, it takes time and effort to gather data
for a balanced training set. Some of the samples of apnea events are from the same person, but none of
the events are repeated in the training set.

Hypothetically, the method can also be used for monitoring newborns with modification of an FIR
filter. The breathing rate of newborns is 40–60 breaths per minute, which is 1.33–2 Hz. The proposed
method has an upper cut-off frequency at 1 Hz. In theory, a 4 Hz sampling rate would satisfy the
Nyquist–Shannon sampling theorem, while most of the sensors have a 30 Hz sampling rate. However,
the resolution of depth data should not be a problem, but the movement of the newborn might be
problematic.

This paper presents the use of various depth sensors for non-contact monitoring of breathing
rate and breathing signal using recorded depth data frames and verification of the obtained results.
We showed that the depth sensors MS Kinect v2, Intel RealSense R200, SR300, D415, and D435 are
capable of capturing the breathing rate of a sleeping person. The classifier can mark both sleep apnea
events and signal segments of sleep apnea events with acceptable accuracy. Both can be used for
severity ranking: the first as a number of events per hour and the second for finding out the length of
the event. In addition, both types of classification were successfully tested on simulated sleep apnea
recorded with MS Kinect v2 and Intel RealSense R200. This method is only a small step before fully
automatic use. The future research will be focused on automatic segmentation of a patient’s chest,
which is now done manually. Automatic segmentation is so far tested only on data from MS Kinect v2.
Quantification of automatic segmentation of a chest area from other depth sensors is planned for the
near future.
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