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Abstract: Neglected parasitic diseases affect millions of people worldwide, resulting in high mor-
bidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public
health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female
sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being
an endemic disease in many areas around the world, including the Mediterranean basin and South
America. Although recent years have witnessed marked advances in Leishmania-related research in
various directions, many issues have yet to be elucidated. The intention of the present review is to
give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We
aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host
that might help to develop novel chemotherapeutic and vaccine strategies.
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1. Introduction

Leishmaniasis is a group of neglected tropical diseases caused by an opportunistic
intracellular protozoan organism of the genus Leishmania that affects people, domestic
animals and wild animals worldwide e [1–3]. Humans contract the infection mainly by the
bite of female sand flies from the genera Phlebotomus in the Old World and Lutzomyia in the
New World. The public concern about the disease is increasing due to the appearance of
new endemic foci for the disease, potentiated by habit changes, climatic changes and the
expanded range of sand fly vectors. This group of diseases is now found in 98 countries
around the world, affecting a total of 12 million people [1,4,5], and approximately 350 mil-
lion people are at risk for infection; in addition, an estimated 500,000–2,000,000 new cases
and 20,000–50,000 deaths occur annually [3–5]. The disease has been linked to tropical and
subtropical regions, in addition to being endemic in many areas worldwide [1,3].

The three following forms of the disease are known, based on the infecting parasite
species and host immune response: cutaneous leishmaniasis (CL), mucocutaneous leish-
maniasis (MCL) and disseminated visceral leishmaniasis (VL) which has a fatal prognosis
in the absence of treatment [6,7]. In accordance with the causative species, CL is caused
by the following species: Leishmania major (L. major), L. tropica and L. aethiopica in the Old
World (Eastern Hemisphere, mainly Africa, Asia and Europe); whereas in the New World
(Western Hemisphere, specifically the Americas) CL species are: L. amazonensis, L. mexicana,
L. braziliensis, L. panamensis, L. peruviana and L. guyanensis [8–11]. In addition, CL is caused
by L. infantum (synonymous of L. chagasi) in the Old World and New World. L MCL is
caused by L. braziliensis, L. panamensis and L. guyanensis in the New World [8–11]. The
final form (VL) is mainly caused by L. donovani complex (Africa, India and Asia), and
L. infantum (synonymous of L. chagasi) in America, South America and the Mediterranean
area [8,12], with 500,000 annual estimated cases [3]. Despite several studies on Leishmania,
many questions remain unanswered. Among others, the control of the disease remains
beyond our reach, particularly with increasing numbers of subclinical cases of Leishmania
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infections that may flare up due to immunosuppression or an existent source of infection
in the context of blood transfusions or organ transplants. Early case detection followed by
adequate treatment represents the key to controlling the disease, which may improve the
prognosis and reduce transmission. Understanding the virulence factors of the infectious
agent, the immunological mechanisms and the host immune response seems crucial for
determining the course and the clinical outcome of any infection. Furthermore, better
understanding the host immune response would be very helpful in seeking novel drugs,
drug targets and vaccine preparation [13,14]. This review aims to summarise some facts
about the virulence factors of Leishmania (Figure 1).
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2. Virulence Factors of Leishmania

During its life cycle, Leishmania undergoes a series of morphological and biochem-
ical changes in energy metabolism, protein degradation, motility and antioxidant and
stress-related defences, making the parasite able to persist, replicate within macrophages
and spread to establish the infection [15–17]. In fact, several studies have reported plenty
of individual virulence factors contributing to the infectivity of Leishmania in their host
and intracellular parasitism in addition to the inhibition of the host immune response.
For example, both parasite and host proteinases affect the dynamics of the infection by
Leishmania [18–20]. The classes of proteinases in Leishmania species include cysteine pro-
teinases, metalloproteinases and serine proteinases [19,20]. The host proteinases, such
as matrix metalloproteinases, play a crucial role in the subversion of the host immune
response. Other virulence factors include glycoinositolphospholipids (GIPLs) [21–23],
lipophosphoglycan (LPG) [24,25], proteophosphoglycan (PPG) [26], A2 protein [23,27], cys-
teine proteinases [23], surface acid proteinase (Gp63Gp63) [23,27] and 11 kDa kinetoplastid
membrane protein (KMP-11) [28]. These factors might modulate the interaction between
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Leishmania and host immune cells [17,19,29]. The following sections briefly highlight the
major virulence factors of Leishmania that contribute to the pathogenesis of the disease and
enable the parasite to establish the infection [19,23,30–32].

2.1. Lipophosphoglycan

LPG is among the most abundant cell surface heterogenous glycoconjugate molecules;
it is mainly present in the promastogote stage of the parasite and is strongly downregulated
or absent on amastigotes [33]. LPG is a large molecule composed of two parts linked by
a phosphodiester bond: an oligosaccharide backbone coated with repeating disaccharide
phosphate units (Galb1, 4Man-PO4), attached to a glycan core and inserted into the mem-
brane by an inositol anchor (glycosylphosphatidylinositol, GPI) which is mainly made
up of lipids [33]. Although the two parts are conserved among Leishmania species, the
precise structure of LPG varies depending on the species and stage of the parasite [33,34].
The heterogeneity of LPG among stage and species seems associated with the substituents
groups branched on the linear phosphoglycan chain (PG) and oligosaccharide cap [35].
These structures involved the modification among various stages of the life cycle and para-
site metacyclogenesis [36]. In accordance with stage-specific variations of LPG, metacyclic
promastigotes involve a higher number of repeating units of PG domain, and therefore
they are significantly longer than the procyclic promastigotes [37]. On the other hand,
the stage-specific variation of the oligosaccharide cap occurs through the replacement of
the galactoside residue by an arabinopyranoside residue. Importantly, the changes occur
in PG domains of LPG are among the main characteristic virulence factors that involve
species variation. To our knowledge, three types of Leishmania LPG have been reported
based on the nature of the side chain in the PG domain and the substitution sites. In
L. donovani, LPG is linear with no substitutions in the PG [36], while LPGs of L. infantum,
L. major, L. mexicana, and L. tropica are glycosylated in the linear PG at position C3 of the
galactose [38]. On the other hand, LPGs are mannosylated in L. aethiopica at the C2 position
of the mannose. Given the above information, sugar residues of the PG domain influ-
ence the heterogeneity of LPG. It is noteworthy to mention that several previous studies
documented the intraspecific variability of LPG among the same species of Leishmania
but from different field isolates [39]. It seems that these stage-specific polymorphisms
and inter/intra species variations contribute to the parasite survival and are involved
in the selectivity and competence of sand fly vectors for their specific strains [40,41]. A
previous study documented that the structural polymorphism of LPG from L. infantum
and L. braziliensis trigger the stimulation of host cells via Toll-like receptors (TLRs) [35]. In
addition, other previous studies revealed that the LPG of dermotropic strains caused by
L. infantum, which are devoid of side chains, triggers the higher production of cytokines
and nitric oxide (NO) levels in comparison with that of viscerotropic strains, whereas
LPGs target the immunosuppression by interaction with macrophages [42–44]. On the
other hand, LPGs play a pro-inflammatory role during the infection by L. amazonensis and
L. braziliensis. It should be stressed that LPG is largely confined to promastigote stages,
absent or downregulated in amastigotes LPG. Its expression is developmentally modified
on metacyclic promastigotes and these modifications are critical to its function [45,46].

In accordance with its function, LPG has been implicated in Leishmania pathogenesis
by triggering TLRs 1 and 2, which are well-known signalling receptors mediating the
activation signals in the cells of the innate immune response in mammals [47–49]. Fur-
thermore, the tissue tropism of different Leishmania species is related to the variations in
their surface glycolipids [50]. The LPG of promastigotes plays several roles, including
resistance to the complement system, inhibition of the oxidative burst response, induction
of the inflammation response and prevention of natural killer T cells from recognising
the macrophage infected with Leishmania [51]. LPG also impairs the nuclear translocation
of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in monocytes,
resulting in a subsequent decrease in interleukin (IL) 12 production [52–54]. In L. infantum,
LPGs are considered a TLR2/TLR4 agonists besides and they induce the production of
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prostaglandin E2 and heme-oxygenase-1 [44,55]. Likewise, LPG can influence the immune
responses of the host by modulating dendritic cells which in turns lead to the inhibition of
antigen presentation and the promotion of earlier IL-4 response [56]. Interestingly, several
studies used the mutants, e.g., L. major mutants deficient in LPG (lpg1 (-)), and these
studies showed that the LPG1 gene plays an important role in the survival of the parasite
in the Phlebotomus duboscqi insect vectors but not required for the survival of Leishmania in
Phlebotomus argentipes and Phlebotomus perniciosus [51]. Similarly, a previous study used
phosphoglycan (PG)-deficient mutant lpg2 (-) and revealed the critical role of Lpg2 for the
survival of L. major in these three sandfly species [51]. Given this information, it seems that
the structural polymorphisms of LPGs are evolutionary driven and control the vectorial
competence of various phlebotomine sand flies for different Leishmania spp [57]. Another
recent study on L. infantum also revealed that the deletion of LPG2 impaired the outcome
of infection in neutrophils [58]. The other actions of LPG include its involvement in the
phagocytosis of promastigotes, the inhibition of lymphoproliferative response and the
activation of T suppressor cells, and the protection of Leishmania from intralysosomal
microbicidal factor [59–61].

2.2. Glycoinositolphospholipids (GIPLs)

GIPLs, mainly free GPIs, are well characterised for members of the Trypanosamiti-
dae family. In Leishmania, both the major surface glycoprotein Gp63 and the abundant
LPG are attached to the lipid bilayer by inositol-containing glycolipids. GIPLs are the
predominant class of glycolipids synthesised by all developmental stages of Leishmania [19].
These molecules play an important inhibitory role in L. major survival inside macrophages
by inhibiting inducible nitric oxide synthase (iNOS) and protein kinase C [17,20,62]. A
clear correlation has also been reported between GIPL-containing detergent-resistant mem-
brane domains of L. (Viannia) braziliensis and the rate of macrophage infection by this
species [29,63,64]. Furthermore, a previous study documented that the inter- and in-
traspecies polymorphisms in LPGs and GIPLs are not only important for the interaction
with hosts in the old world species of Leishmania but also in the New World species, re-
vealing their role as a major key elements for the survival of the parasite inside the host
vector in addition to their roles in the modulation of the host immune response as a result
of infection [35,65]. These functions of the polymorphisms of LPG and GIPLs combined
with their association to pro-inflammatory profile were confirmed in L. enriettii [66].

2.3. Proteophosphoglycans (PPGs)

PPGs are highly glycosylated polypeptides cover the plasma membrane of the parasite,
forming a sausage-shaped structure-enclosed amastigote with O-glycosylations similar
to those found in the LPG and acid phosphatase [24,67–69]. PPGs exist as secretory and
surface-bound forms in both promastigotes and amastigotes in Leishmania [70]. They be-
long to serine- and threonine-rich Leishmania proteins that are extensively modified by
phosphodiester-linked phosphooligosaccharides and terminal mannooligosaccharides [71].
The function of membrane PPGs remains unclear; however, they contribute to the establish-
ment of the parasitophorous vacuole [71–74], and the activation of the complement [71,72].
Interestingly, the N-terminal domain of PPG has the potential of a DNA vaccine against
experimental VL caused by L. donovani because it elicits a Th1-type immunoprotective
response, represented by a surge in IFN-γ, tumour necrosis factor (TNF) α and IL-12 levels,
in addition to the extreme downregulation of transforming growth factor (TGF) β, IL-4 and
IL-10. In the same study, a rise in the level of Leishmania-specific immunoglobulin G2 (IgG2)
has been reported, which is an indicator for enhanced cell-mediated immunity [75]. Like-
wise, PPGs seem important for the parasite colonisation of the sandfly, transmission and
mammalian infection [26]. Among others, the filamentous proteophosphoglycan (fPPG)
were reported to accompany the parasite species during transmission [76]. It should be
stressed that the secretion of this filamentous gel was accompanied by the differentiation
of mammal-infective transmission stages, confirming that the behavioural manipulation of
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the infected vector by Leishmania might provide a selective advantage to the parasite [77].
Moreover, a previous study has confirmed the role played by PPGs in different species of
sand fly that were addressed using LPG2-deficient mutants [78]. In this study, PPGs were
considered key molecules which target the resistance of the parasite to midgut digestive
enzymes through the prevention of the killing of lpg2(-) promastigotes. Interestingly,
PPGs accelerated the wound healing in the host infected by L. mexicana by the activation
of macrophages which is driven by the action of insulin-like growth factor 1-dependent
signalling [79]. Furthermore, a previous study revealed that L. major PPGs were expressed
by amastigotes of the parasite and bound to macrophages, which resulted in the inhibition
of the production of TNF-α, which together with IFN-γ, stimulated the production of NO
by macrophages, modulating the biology of the infected immune cells [70].

Importantly, the secretion of mucin-like gel called promastigote secretory gel (PSG),
which is comprised largely of PPGs, represents one of the adaptation mechanisms of Leish-
mania species for their sand fly vectors. This secretory gel is mainly localised in the mouth
parts and midgut of sand fly vectors. Interestingly, PSG accelerated the transmission of the
parasite through the enhancement of the regurgitation of metacyclic promastigotes during
blood meal as a result of blocking these localised regions (stomach valve, anterior mid-gut,
and mouth) [80]. More importantly, PSG greatly influences the action of macrophages
and neutrophils recruitment at the site of infection and this action is usually allied with
saliva [81]. The presence of macrophages with PSG might favour the survival of the par-
asite in the hostile environment and the persistence of the infection, in addition to their
synergistic action with saliva and sand fly bite [82,83]. It is noteworthy to mention that
PSG reduced the efficiency of the elimination of the parasite by inflammatory macrophages
through their influence on the catabolism of L-arginine to NO, which represents one of the
most effective mechanisms of parasite killing [84]. This catabolism occurs though the action
of inducible nitric oxide synthase (iNOS). In addition, the extracellular L-arginine might
also influence the adaptive immune response by affecting T cells proliferation and T cells
receptor signalling, in addition to their role in the production of cytokines [85]. However,
other studies documented that PSG targeted the alternative activation of macrophages
through the enhancement of the expression and increasing the activity of arginase-1, ex-
plaining the possible competition between PSG and iNOS for L-arginine [81]. Furthermore,
a previous report documented the critical role of proteophosphoglycan-rich gel of PSG
from L. tropica, L. major, from Lutzomyia longipalpis which exacerbates the cutaneous le-
sions in mice together with parasite growth, reinforcing the hypothesis which proposes
that these molecules are very crucial and evolutionarily conserved structures of Leishma-
nia [86]. Given the above information, PPGs and PSG play a major role in the protection of
the parasites against the proteolytic damage, favouring Leishmania transmission and the
progression of the infection [26,78].

2.4. 11 kDa Kinetoplastid Membrane Protein (KMP-11)

KMP-11 is an 11 kDa kinetoplastid membrane hydrophobic protein associated with
LPG and which has shown immunoregulatory properties [87–89]. It was found in many
kinetoplastid parasites, including Leishmania, in both stages, and its surface expression
increases during metacyclogenesis [90]. This hydrophobic protein also induces the expres-
sion of IL-10 in cells from patients with CL and MCL; however, the mechanism underlying
these effects is still unclear [91,92]. Some previous reports have suggested the involvement
of KMP-11 with the following functions: parasite mobility, attachment to the surface of
the host cell, the stimulation of T-cell proliferation and the regulation of the cytoskeleton
through interaction with the subpellicular microtubules [88,93].

2.5. Acid Phosphatases (ACPs)

Acid phosphatases (ACPs) form a group of enzymes released at both stages of Leish-
mania, particularly the promastigote stage [94–97]. The cell surface has two forms of ACP,
membrane-bound and secretory, which are antigenically distinct [95–98]. Large quantities
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of ACP seem to participate in the pathobiology of the disease by eliciting the humoral
immune response of the host, adaptation of the parasite in acidic environments and acquisi-
tion of nutrients from host cells [59,99]. The membrane-bound ACP reduces the respiratory
burst of neutrophils and inhibits the toxic oxidative metabolite production of neutrophils;
therefore, it favours the survival of parasites inside the host cell [59,100–102]. It also de-
phosphorylates certain phospholipids and phosphoproteins [100,103]. This ectoenzyme
seems to protect Leishmania by inhibiting the production of superoxide anions by neu-
trophils and macrophages that produce microbial free radicals [100,104]. Moreover, some
studies have linked extracellular acid phosphatase activity with the degree of promastigote
infectivity/virulence [105].

2.6. Proteinases

Proteinases are among the most important virulence factors, playing central roles
in the interaction between parasite and host [20]. They hydrolyse peptide bonds and
degrade proteins and peptides [20,106]. In addition, they are involved in the steps of
parasite invasion and migration inside the host, immune evasion, pathogenesis and disease
outcome [107]. Proteinases can be classified based on their catalytic domains as serine-,
threonine-, aspartyl-, metallo- and cysteine proteinases [108,109]. These groups of enzymes,
proteinases, are associated with various pathogenic processes and mediate immunopathol-
ogy during infection [110–112]. It should be stressed that several studies targeting genomic
analysis have reported that the proteinases’ genes are kept constant in various Leishmania
species; however, there is a high diversity of proteinases in the parasite [20]. Importantly,
the function of these critical enzymes varies according to the infecting species [20,106].
Among others, aspartyl-, metallo- and cysteine-proteinase are the most studied proteinases
in Leishmania species [113]. Cysteine proteinase (CP) appears to be localised in the mega-
some, a modified lysosome-like organelle observed in the stationary phase, in New World
CL and the extracts of L. major amastigotes [111,114,115]. These enzymes have been also
involved in mechanisms of survival and growth of amastigotes inside macrophages [110],
in addition to their intracellular degenerative action for proteins, favouring intracellular
parasite survival [20]. Among others, the most studied CPs in Leishmania were CPA, CPB
and CPC. They belong to the group clan CA, which is then divided into two families; family
C that includes cathepsin B-like that involves CPC, and cathepsin L-like that comprises CPA
and CPB enzymes; while family C2 includes calpain-like enzymes [116]. In accordance with
their functions, a previous study on L. infantum revealed that CPA is associated with the
infection of mammalian hosts cells in vitro [117]. Meanwhile, the activities of CPB on mam-
malian hosts were different according to the infecting species. In this regard, CPB triggered
the Th2 profile during the infection by L. mexicana in BALB/c mice, in addition to their role
in the induction of lesions, the production of IL-4 and IL-5, and the inhibition of IL-12 and
NO production by cleaving the STAT-1 and AP-1 transcription factors. Meanwhile, CPB
targeted the Th1 profile in C57BL/6 mice and C3HeB/FeJ was infected by L. mexicana. CPB
enhanced the expression of its associated cytokines [116,118–121]. In L. chagasi and L. major,
CPB was reported to induce the Th1 profile and regulate the production of IFN-γ [120,122].
CPB is also associated with the following functions in L. (L.) amazonensis; cleavage of MHC
class II gene, the induction of Th1 or Th2-related cytokines; as well as the activation and
stimulation of CD8+ T lymphocytes [123,124]. Taken into account, there are several types
of CPB, named type I, Type II and type III. Interestingly, CPB encoded the genes from
different species of Leishmania in addition to their long lasting protection against the infec-
tion [125]. It should be stressed that Type I mainly comprises C- terminal extension (CTE)
domain in Kinetoplastidae and several CP genes have been identified in various species
of Leishmania e.g., L. major, L. pifanoi and L. amazonesis [126–128]. It seems that parasites
contain multiple, highly active cysteine peptidases with many stage-regulated proteinases
that modulate the host immune response [59,129]. However, it should be kept in mind that
single nucleotide polymorphisms (SNPs) might arise in many of these CP genes during
life cycle differentiation. In addition, CP genes might vary based on the infecting species
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and the parasitic stage. On the other hand, CPC enhances the expression of TGF-β during
L. (L.) chagasi infection [130], while it contributes to the resistance in L. (L.) mexicana to get
killed by macrophages [131,132].

The expression of aspartyl-proteinases changes between morphological forms and
seems to be related to the host responses to survive in distinct micro-environments [133].
Recently, it was reported that L. (Viannia) braziliensis promastigotes express serine pro-
teinases that have distinct subcellular distributions and expression. Taken together, this
might contribute to the maintenance of this parasite’s lifestyle at physiological pH, in the
cytosol and on the external face of the parasitic membrane [134]. In stark contrast, the
proteinases secreted from the host also affect the dynamics and progression of the infection,
in addition to the development of the lesion [135]. For example, matrix metalloprotease-9
(MMP-9) interferes with the re-epithelisation of chronic wounds in humans, where TNF-α
and pro-inflammatory chemokines in regulation with MMP-9 delay normal wound heal-
ing [136,137]. A recent study reported that small myristoylated protein-3 is a potential
virulence factor in L. amazonensis [138]. Taken together, MMP-9 plays a crucial role in
tissue destruction and the excessive degradation of the basal membrane, the migration of
inflammatory cells to the site of infection and ulcer development; therefore, therapeutic
modulation of MMP-9 may be a useful approach for improving disease outcomes.

Interestingly, several previous reported the hydrolytic and inactivation actions of
metallo-proteinases, which belong to the metzincin class (peptidase family M8), in trigger-
ing the immunoglobulin G, in addition to its role in the inactivation of the C3b factor of
the complement cascade. Furthermore, M8 contributed to several functions that include
the adhesion and internalisation of the parasite in macrophages, the induction of a Th1
profile response, the downregulation of the expressions of Gp63, iNOS and IL-12, and the
cleavage of NF-κB [139–141]. Regarding their role at the species level, M8 might influence
the proliferation of NK cells in humans during the infection by L. (L.) major, in addition to
its role on cleavage CD4 glycoprotein on human T cells [142]. Meanwhile, M8 interferes
with the signalling cascades and transcription factors in murine macrophages infected
with L. (L.) mexicana. Revising the available literature, previous reports documented the
major role played by oligopeptidase B (OPB) of Leishmania as serine proteinases (SPs) in
parasite virulence and immune response against the infection, in addition to their asso-
ciation with signal peptidase, metacaspase, and maturase-like activity, confirming their
essential functions in parasite physiology [107,143]. In this concern, OPB facilitates the
establishment of the infection of murine macrophages by L. (L.) donovani [144], while it is
associated with maintaining the infection of murine macrophage in L. (L.) major [145]. A
recent study proposed that promastigotes of L. (V.) braziliensis express SPs that contribute
to the maintenance of this parasite’s lifestyle at physiological pH and the out membrane
of the parasite [134]. Taken together, odorant-binding protein (OBP) regulates the degra-
dation of enolase–plasminogen complexes of the parasite, immune evasion, and disease
pathology [144].

In accordance with Glycoprotein 63 (Gp63) or leishmanolysin, it is a major surface pro-
tease antigenic glycoprotein that involves parasite–host interactions and parasite virulence
through the attachment of the parasite to macrophages [146]. It was originally identified
as a 63–68 kDa glycoprotein anchored in the membrane via a GPI anchor [59,147–150].
Gp63 has been identified in both stages of all major pathogenic species of Leishmania, but
it is mostly found on the surface membrane of promastigotes, where it is endowed with
proteolytic activity [59,147,148,151,152]. Gp63 is involved in the modulation of the host
response against the infection, but it is downregulated in the amastigote phase and this
reduced expression is compensated by the absence of LPG on the surface of amastigotes,
enabling Gp63 from the modulation of the host response against the infection [153]. It
should be stressed that Gp63 plays different roles depending on the parasite stage. In
accordance with its functions in the promastigote phase, Gp63 was reported to cleave
C3b into iC3b in L. major and L. amazonensis, which protect the parasite from complement-
mediated lysis [154]. Furthermore, iC3b could play an opsonin-like action which helps
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in establishing the interaction between the parasite and macrophages, resulting in its
internalisation. Gp63 also interacts with fibronectin receptor (FR) like receptors which
enhance the adherence of the parasite to macrophages [155]. Interestingly, a previous
study revealed that Gp63 resulted in the degradation of various proteins from the ex-
tracellular matrix of subcutaneous tissue when they become in contact with L. mexicana
promastigotes, which in turns alters the macrophages functions and favours the parasite
survival [156]. Similarly, previous reports documented the protective action of Gp63 in
L. mexicana that was expressed by the protection of proteins entrapped in liposomes from
phagolysosomal degradation when coated with Gp63 [157]. In addition, the Gp63 molecule
was reported to protect the amastigote phase of the parasite from the harsh environment
of macrophages [158].Thus, the co-localisation of GP63 with the macrophage lipid raft
microdomains during the infection represents one of these mechanisms [159]. Gp63 is also
associated with the hydrolysis of myristoylated alanine-rich C kinasesubstrate (MARCKS)
and their related proteins (MRPs), which represent substrates in macrophages [160]. In
addition, Gp63 is associated with protein kinase C(PKC) critical serine/threonine kinases
which are involved in cell proliferation, differentiation and apoptosis [160]. Another study
revealed the critical role played by Leishmania Gp63 in the activation and regulation of three
major protein tyrosine phosphatase (PTPs), namely SHP-1, PTP1B and TCPTP, involved
in JAK2/STAT1a pathway, that represent a major player in Interferon gamma (IFNγ)-
mediated signalling and their critical roles in the regulation of NO, targeting parasite
survival [161,162]. Importantly, Gp63 demonstrated profound impacts on several host
cell transcription factors and translational systems as shown in L. major, whereas Gp63
manipulated the host translational system by the cleaving of mTOR, leading to 4E-BP1 de-
phosphorylation, and favouring the parasite survival [163]. In addition to their association
with the modification of cytokine profiles, these reported actions of Gp63 represent the
major escape mechanisms of Leishmania from the killing mechanisms of host macrophages.
Moreover, Gp63 involves the action of other phagocytic and non-phagocytic cells that
are involved in the establishment of infection, e.g., they influence the release of IFNγ by
natural killer (NK) cells, affecting the Th1 immune response against the parasite [142]. In
addition to its correlation with infectivity and host–parasite interactions [142], the effects of
Gp63 include influencing host cell signalling mechanisms and their related functions [164],
the cleavage and degradation of various kinases and transcription factors, which exhibit
proteolytic properties via the inhibition of the relevant enzymes [142,148,157,165–167].
Furthermore, the proteolytic activity of such metalloenzymes on the surface of these par-
asites protects their membranes from cytolytic damage during their survival, as well as
the differentiation and multiplication in the phagolysosomes of macrophages [157]. More
interestingly, Gp63 is also immunogenic, and therefore, it has been used as an antigen
for immunodiagnosis and immunoprophylaxis [168–170]. It should be kept in mind that
some recent reports revealed that Gp63 is highly polymorphic, even among parasites in
the same endemic area; however, it seems that the functional domains are conserved in the
host environment [171]. It is noteworthy to mention that the role played by Gp63 in the
pathogenesis of Leishmania was confirmed through the deletion of the entire 20 kb region
that contains the seven leishmanolysin genes (Gp63 genes 1–7). It seems that the resulting
expressed promastigote forms of Gp63 1–6 genes played no role in nutrient utilisation
in the early stages of parasite development in the sand flies, while these promastigotes
showed a marked increase in their sensitivity to complement-mediated lysis besides a
marked delay in the development of the lesions in murine models, revealing their major
protective role against complement-mediated lysis [172,173]. Taken together, it seems that
Gp63 play a vital role as virulence factor during Leishmania pathogenesis.

2.7. Nucleotidases

Nucleotidases are a group of membrane-anchored proteins facing the extracellular
milieu. Several studies have reported that 5-nucleotidase and 3-nucleotidase/nuclease
are involved in parasite nutrition through the generation of nucleotides and phosphate



Vet. Sci. 2021, 8, 33 9 of 21

from nucleic acids, in addition to their role in the establishment of infection in some try-
panosomatids [174–176]. Simulating many parasites, Leishmania is unable to engage in de
novo purine biosynthesis, and therefore, different species of the genus Leishmania have
developed a well organised pathway specialised in extracellular purine salvaging for sur-
vival [176–178]. Ecto-nucleotidases are enzymes involved in the hydrolysis of extracellular
nucleotide tri- and/or di-phosphate into monophosphate products, which are subsequently
hydrolysed into adenosine and play an important role in purinergic signalling; therefore,
they might be capable of modulating the host immune system, which explains the di-
rect relationship between the ability to hydrolyse nucleotides and the ability to sustain
infection [174,178,179]. Furthermore, the ecto-nucleotidases are involved in the genera-
tion of nucleosides that are able to cross plasma membrane via specialised transporters
(purine receptors), and they allow Leishmania to escape killing via neutrophil extracellular
traps; therefore, they participate in parasite infectivity and the clinical outcome of the
infection [174,175,179,180]. Likewise, ecto-nucleoside triphosphate diphosphohydrolase
(E-NTPDase) in parasites can act as an adhesion protein during the early stages of infection,
contributing to the modulation of the macrophage signalling pathways and the intracellular
survival of Leishmania [181]. These enzymes require alkaline pH to work properly, and this
may suggest that they serve such functions for metacyclic and procyclic promastigotes
rather than amastigotes [59,174,179,182].

2.8. Heat-Shock Proteins (HSPs)

Heat-shock proteins (HSPs) are molecules with different molecular weights that act
as chaperons in peptide folding; under certain stress conditions, such as temperature
shock, these molecules will increase and bind to the cellular proteins to sustain the folding
of the proteins [183]. The members of the family Trypanosomatidae express highly con-
served members of HSP families. Leishmania species possess a full set of HSPs that play
an important role in the biphasic life cycle of the parasite [184,185]. These proteins are
highly abundant in both stages of the parasite. It is noteworthy to mention that HSP100
null mutants failed to establish the experimental infection by L. major and targeted the
proliferation and survival of L. donovani inside murine macrophages [186,187]. This ac-
tion of HSP 100 could be attributed to its immune modulatory action associated with
sorting proteins into exosomes [188]. However, it should be stressed that HSP100 are not
involved in the thermotolerance in L. major and L. donovani. In addition, HSP83, a homolog
of HSP90, is a regulatory element in the 3′ untranslated region (UTR) of Hsp83 which
controls the translation of Hsp83 in a temperature-sensitive manner [189]. This category
of protein plays an important role in the folding, assembly, intracellular localisation, se-
cretion, regulation, stabilisation and degradation of other proteins [190]. HSP90 and its
co-chaperones represent integral parts of the signal transduction pathways during the life
cycle of several species of Leishmania, e.g., L. donovani, in addition to their crucial role in
a stage-specific phosphorylation process [191–193]. Furthermore, the post-translational
modification of HSP90 and its co-chaperones are associated to Leishmania viability [194].
Taken into consideration, HSP 70 and HSP 40 are diverse in Leishmania. However, few stud-
ies have demonstrated their possible roles during the parasite life cycle. It is noteworthy
to state that HSP 70 and HSP 40 are members of foldosome, together with HSP 90, and
several co-chaperones, e.g., P23 (Sba1) and Sti-1 (HOP), that contribute to the process of
activation and maturation of the essential proteins [184]. In accordance with the HSP23 of
L. donovonai, it has been considered an important virulence factor necessary for parasite
survival at mammalian host. This function was confirmed in HSP23-null mutants, which
became non-infectious to primary macrophages in vitro [195,196]. Taking all these facts
together, HSPs may play major roles in parasite differentiation/survival during infection
with Leishmania [197]. These proteins are crucial for temperature-induced differentiation
from the promastigote to the amastigote stage, in addition to their role in intracellular
survival within the mammalian host [195,196]. An increase in virulence has been briefly
reported with heat shocked promastigotes [59]. Furthermore, these proteins have been
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implicated in the induction of human T-cell and protective immune responses because
they enhance dendritic cells to produce several inflammatory cytokines. Clearly, HSPs
are involved in antigen processing and presentation pathways, in addition to their role
in the development of tissue damage in strong hypersensitive reactions cases [198]. In
conclusion, HSPs modification might play a pivotal role in parasite survival at the mam-
malian host temperature, and as a consequence, in the development of parasitic resistance
to chemotherapy [196,199].

2.9. Transporters

Several transmembrane transporters have been reported in all organisms, ranging
from bacteria to mammals, and they belong to the family of ABC transporters (traffic
ATPases) [200,201]. The ATP binding domains of ABC transporters are around 200 amino
acids long. Leishmania encodes many putative membrane transporters because it possesses
a transport system for carbohydrate, glucose, folate, proline ribose, nucleobase, nucleosides,
amino acid, and cation or proton transporting ATPase, which seems extremely important
in the promastigote stage of the life cycle [202–204]. These systems are crucial for parasite
homeostasis, ion acquisition and the transportation of certain essential nutrients, such
as lipid movements across the plasma membrane, and therefore, any alteration in these
mechanisms will affect parasite homeostasis combined with their importance in the
viability and infectivity of the disease-causing amastigote stages of L. mexicana. Fur-
thermore, their activity might affect vesicle trafficking, and therefore, could be a key to
developing novel antileishmanial drugs and understanding the mechanisms underlying
drug resistance [59,205–208].

3. Conclusions

Leishmania possesses the ability to persist in host cells by modulating the host immune
system via several mechanisms, including the induction of immunosuppression or the
modification of the chemokine profiles of the host. The pathogenesis of leishmaniasis
is highly variable depending on several factors, including the infecting species and its
virulence factors, as well as the host, which determine the course of the disease. In addition
to their important role in survival in the host cells, the parasites’ virulence factors are
crucial for seeking novel drugs, drug targets and vaccine preparation (Figures 2 and 3).
Further future research to explore the virulence factors of various Leishmania species seems
interesting for establishing a better understanding of the pathogenesis of the disease that
would be helpful in designing a novel vaccine for combating the disease.
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Figure 2. The virulence factors of cutaneous leishmaniasis (CL)/mucocutaneous leishmaniasis (MCL) causing species of Leishmania and their reported function.Figure 2. The virulence factors of cutaneous leishmaniasis (CL)/mucocutaneous leishmaniasis (MCL) causing species of Leishmania and their reported function.
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Figure 3. The virulence factors of visceral leishmaniasis (VL) causing species of Leishmania and their reported functions.
Figure 3. The virulence factors of visceral leishmaniasis (VL) causing species of Leishmania and their reported functions.
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