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Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic
disorder caused by mutations in the BCKDHA, BCKDHB, DBT, and DLD genes. Among
the wide range of disease-causing mutations in BCKDHB, only one large deletion has
been associated with MSUD. Compound heterozygous mutations in BCKDHB were
identified in a Chinese patient with typical MSUD using next-generation sequencing,
quantitative PCR, and array comparative genomic hybridization. One allele presented
a missense mutation (c.391G > A), while the other allele had a large deletion; both
were inherited from the patient’s unaffected parents. The deletion breakpoints were
characterized using long-range PCR and sequencing. A novel 383,556 bp deletion
(chr6: g.80811266_81194921del) was determined, which encompassed the entire
BCKDHB gene. The junction site of the deletion was localized within a homologous
sequence in two AluYa5 elements. Hence, Alu-mediated non-allelic homologous
recombination is speculated as the mutational event underlying the large deletion. In
summary, this study reports a recombination mechanism in the BCKDHB gene causing
a whole gene deletion in a newborn with MSUD.

Keywords: maple syrup urine disease, BCKDHB, dried blood spot, novel mutation, large deletion

INTRODUCTION

Maple syrup urine disease (MSUD, OMIM #248600) is an autosomal recessive inherited metabolic
disorder, caused by a defective activity of the branched-chain α-keto acid dehydrogenase complex
(BCKAD) complex in the mitochondria (Chuang et al., 2004). MSUD was first reported by Menkes
et al. (1954). The worldwide incidence of MSUD is estimated to be 1 in 185,000 live births; however,
in consanguineous ethnic groups, such as the Mennonite population, the incidence is as high
as 1 in 380 live births (Nellis et al., 2003; Puffenberger, 2003; Chuang et al., 2006). BCKAD, a
multimeric mitochondrial enzyme complex, is composed of multiple subunits of the branched-
chain α-keto acid decarboxylase (E1), dihydrolipoamide branched-chain transacylase (E2), and
dihydrolipoyl dehydrogenase (E3) (AEvarsson et al., 2000). E1 subunit shows a heterotetrameric
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structure consisting of two α subunits (E1α) and two β

subunits (E1β), encoded by the BCKDHA and BCKDHB
genes, respectively. E2 and E3 are encoded by the DBT and
DLD genes, respectively. Pathogenic homozygous or compound
heterozygous variants in BCKDHA, BCKDHB, DBT, or DLD, can
lead to MSUD. BCKAD catalyzes the oxidative decarboxylation
of branched-chain α-keto acids that are derived from the
branched-chain amino acids (BCAAs), leucine, isoleucine, and
valine. The deficient activity of BCKAD leads to the accumulation
of leucine, isoleucine, valine and their respective metabolites
causing systemic toxicity, but especially in the central nervous
system (Yudkoff et al., 2005; Lang et al., 2010). The clinical
presentation of the disease, which may include fatal ketoacidosis,
neurological impairment and mental retardation, is dependent
on the BCKAD residual activity. Based on the age of onset,
clinical manifestation, and BCKAD residual activity, MSUD
is divided into five types: classic, intermediate, intermittent,
thiamine-responsive, and E3-deficient (Blackburn et al., 2017).
The classic type with <2% of the normal enzyme activity exhibits
the most severe phenotype. In the absence of timely diagnosis
and treatment, the neonate with classic MSUD may succumb
to early death due to brain edema from leucine neurotoxicity
soon after birth (Levin et al., 1993; Strauss et al., 2010; Myers
et al., 2012). In the present study, we described a Chinese patient
with the severe classic form of MSUD caused by a missense
mutation and a novel large deletion mutation in the BCKDHB
gene.

MATERIALS AND METHODS

Subjects
The male patient was diagnosed with MSUD based on the
typical biochemical signs and eventually death at 20 days
after birth. After 3 years, his parents visited the Nanjing
Maternity and Child Health Care Hospital for preconception
genetic counseling. Written informed consent was obtained
from the parents for the molecular genetic analysis of the
related genes and the publication of this case report, and
this study was approved by the Ethics Committee of the
hospital.

DNA Extraction
Approximately, 3–5 mL peripheral blood samples were collected
in EDTA anticoagulant tubes from the parents. Genomic DNA
was prepared from blood specimens using a Simple R© Genomic
DNA Whole Blood Kit and Simple R© Super Automated
Nucleic Acid Extractor (Concert Bioscience, Xiamen, China)
according to the manufacturer’s instructions. For the proband,
the newborn dried blood spots filter paper was obtained
from local Neonatal Screening Center. 3-mm diameter disks
were punched, and the corresponding genomic DNA was
prepared using Simple R© Genomic DNA Forensic Kit and
Simple R© Super Automated Nucleic Acid Extractor (Concert
Bioscience) according to the manufacturer’s instructions. The
purified DNA was stored in TE buffer (10 mM Tris-HCl, pH 8.5)
for downstream applications.

Next-Generation Sequencing
Molecular analysis of BCKDHA, BCKDHB, DBT, and DLD genes
in both parents of the patient was performed using targeted
next-generation sequencing on Ion Torrent Personal Genome
Machine platform (Life Technologies, Waltham, United States).
The genomic DNA samples were used for PCR enrichment
of target genes using Ion AmpliSeq Custom Panel (Life
Technologies). The amplification library of the target exons was
prepared using an Ion Ampliseq Library Kit 2.0 and Ion Xpress
Barcode Adapter 1-16 Kit (Life Technologies). The emulsion
PCR was performed using the Ion OneTouchTM System and
Ion PGMTM Hi-QTM View OT2 Kit (Life Technologies). Then,
template-positive Ion SphereTM particles were enriched using
the Dynabeads R© MyOneTM Streptavidin C1 Beads and washed
with the Ion OneTouch Wash Solution included in the kit using
an Ion OneTouch ES system (Life Technologies). A parallel
DNA sequencing was performed with a PGM system using
the Ion PGMTM Hi-QTM View Sequencing Kit and Ion 318TM

Chip v2 (Life Technologies) according to the manufacturer’s
instructions. The sequencing data were processed with standard
Ion Torrent SuiteTM Software 4.2 utilizing the reference human
genome GRCh37/hg19 assembly. After variant calling, all the
detected variants were filtered against dbSNP142. The sequencing
results were visualized by the Integrated Genomics Viewer
(Robinson et al., 2011). In addition, the candidate disease-
causing variant in exon 4 of the BCKDHB gene was confirmed
by PCR and Sanger direct sequencing: forward primer 5′-
TCCTGGTCTCAAGTAATCCTCTT-3′ and reverse primer 5′-
GTAGCCTTGGACTCCTGGTT-3′.

Real-Time PCR
To detect the BCKDHB gene deletion/duplication, we developed
a gene dosage assay based on real-time quantitative PCR (qPCR).
Five pairs of primers targeting exons 1, 2, 4, 9, and 10 based
on the reference sequence NM_000056.4 and NG_009775.1 were
designed using Primer 3 software (Supplementary Table S1) (Ye
et al., 2012). Real-time PCR was performed in a total volume
of 20 µL consisting of 10 µL AceQ qPCR SYBR Green Master
Mix (Vazyme), 0.4 µL of 50X ROX reference dye 1 (Vazyme,
Nanjing, China), 0.4 µL of 10 µM each primer (forward and
reverse), 2 µL genomic DNA diluted from 10 ng/µL, and water.
The PCR reaction on StepOnePlusTM Real-Time PCR System
(Life Technologies) was as follows: an initial denaturation step
(95◦C for 5 min), followed by 40 cycles of two-step amplification
and fluorescence detection (94◦C for 10 s and 60◦C for 30 s), and
a melting curve in a single cycle of 95◦C for 15 s, 60◦C for 60 s,
and 95◦C for 15 s, while continuously measuring the change in
fluorescence intensity. At the end of PCR, the 5 exon dosages of
BCKDHB gene were calculated by the StepOneTM Software using
the comparative CT (11CT) quantitation method. The exon 4
of ACTB gene was used as the normal copy number reference.

Array CGH Analysis
In order to detect the copy number variation (CNV) and
deletion size, array comparative genomic hybridization (array
CGH) was performed using the Affymetrix CytoScan R© 750K
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arrays (Affymetrix, Santa Clara, United States) according to
the manufacturer’s instructions. The platform includes 550,000
unique non-polymorphic CNV probes and approximately
200,000 genotypable SNP probes with an average marker
spacing of >4 kb. The genomic DNA digestion, ligation,
fragmentation, labeling, hybridization, staining, and scanning
were performed according to the manufacturer’s protocol. The
data were analyzed by Chromosome Analysis Suite (ChAS)
v3.1 Software (Affymetrix, Santa Clara, USA), and the February
2009 human reference sequence (GRCh37/Hg19) was used for
genomic annotation.

Long-Range PCR Analysis
To further identify the breakpoint junction of the gross deletion
in the BCKDHB gene, a forward primer (5′-GTGTTTA
GGAGTGGCTTTACATGGTGAGGAAATC-3′ corresponding
to chr6:80809183-80809216) and a reverse primer
(5′- GTTGAATGAACAAAGAAGGAACCACAGACAAGAGA-
3′ corresponding to chr6:81197956-81197990), flanking
the predicted breakpoints were designed using Primer 3
software based on the reference sequence chr6: 80,804,685-
81,214,051 from UCSC hg19 for long-range polymerase chain
reaction (LR-PCR) (Ye et al., 2012). In this LR-PCR assay,
the 50 µL PCR mixture contains 10 µL of 5X PrimeSTAR
GXL Buffer, 8 µL of dNTP Mixture (2.5 mM each), 1 µL of
PrimeSTAR GXL DNA Polymerase (Takara, Shiga, Japan),
1 µL of 10 µM each primer (forward and reverse), 5 µL
betaine solution (5 M, PCR reagent) (Sigma-Aldrich, Seelze,
Germany), 50 ng genomic DNA, and water. The LR-PCR was
performed using 96-Well Veriti R© Thermal Cycler (Applied
Biosystems, Foster City, United States) as follows: 1 min
at 98◦C for an initial denaturation step, followed by 30
amplification cycles at 98◦C for 10 s, 68◦C for 15 min, and
72◦C for 15 min for a final extension step. The PCR products
were resolved by 0.8% agarose gel electrophoresis GelRed
(Biosharp, Hefei, China) in 1 × TAE buffer for 15 h at
15 mA, the followed by visualization using the Molecular
Imager R© Gel DocTM XR System (Bio-Rad, CA, United States).
After purification using a MultiScreen R© PCR96 Filter Plate
(Millipore, Billerica, United States), the purified products
were sequenced on an ABI 3730xl DNA automated sequencer
(Applied Biosystems). The contig assembly of the raw data
obtained by Sanger sequencing was performed using the
SeqMan module of Lasergene software (DNASTAR, Madison,
United States).

Bioinformatics Analysis
Approximately, 5000 bp of the contig sequence from LR-PCR
was analyzed to identify two breakpoints of the gross deletion
with BLAT using the UCSC Genome Browser1. The known
repetitive elements were evaluated by CENSOR2 at the 300
nucleotide sequence flanking each breakpoint using the February
2009 human reference sequence (GRCh37/hg19) (Kohany et al.,
2006).

1http://www.genome.ucsc.edu
2http://www.girinst.org/censor/index.php

RESULTS

Characteristics of the Proband
The proband was the first child born to healthy, non-
consanguineous parents after an uneventful pregnancy. The
child was born at 39 weeks of gestation by cesarean section. He
developed feeding difficulties, seizure, and lethargy at 10 days
of age; and was referred to a local hospital immediately. Maple
syrup-like urine was observed, and tandem mass spectrometry
(MS/MS) using dried blood spots showed 7172.76 µmol/L
leucine (normal range 93∼365 µmol/L), 783.72 µmol/L
valine (normal range 81∼307 µmol/L), and the rate of
leucine/phenylalanine as 53.82 (normal range 1.5∼5.8). The
patient was diagnosed with MSUD, and he deceased at the age of
20 days. After 3 years, the parents were referred to our clinic for
preconception genetic counseling when they expressed concern
about the recurrent risk of the disorder in future offspring.
Therefore, the parents underwent molecular genetic analysis to
identify the genetic cause of MSUD in the family.

Molecular Analysis
Next-generation sequencing of the exons of BCKDHA
(NM_000709.3), BCKDHB (NM_000056.4), DBT
(NM_001918.3), and DLD (NM_000108.4) genes revealed a
heterozygous mutation c.391G > A in the BCKDHB gene
of the proband’s father, which resulted in the conversion of
glycine to arginine at the amino acid position 131 (p.Gly131Arg)
(Table 1 and Figure 1). This mutation has been reported as a
causative mutation of MSUD (Cheng et al., 2017). No reported
or suspicious mutations were identified in the genetic profile of
the proband’s mother; nonetheless, two homozygous variations
of the BCKDHB gene were revealed (Table 1).

The gene dosage assay revealed that the father harbored the
two normal copies of exons 1, 2, 4, 9, and 10 of BCKDHB, whereas
the mother had only one copy of these exons (Figure 2A), which
indicated that the mother carried a large deletion in the BCKDHB
gene. Moreover, the array CGH analysis revealed that a ∼378 kb
gross deletion of arr[hg19] 6q14.1(80,809,635-81,187,927) × 1
was present in the mother and a ∼404 kb gross deletion of
arr[hg19] 6q14.1(80,809,635-81,214,052) × 1 was present in the
proband (Figure 2B). The deletion region contained only one
OMIM gene: BCKDHB.

In order to further characterize the junction site of the large
deletion, LR-PCR was performed, and the PCR products detected
by agarose gel electrophoresis. Specimens from both the proband
and the mother demonstrated the ∼5 kb fragments. None of
the fragments were amplified in specimens from the father
and normal control (Figure 3A). The normal size amplicons
(expected size, 388,808 bp) were large and failed to display any
bands under the PCR conditions. Thus, the ∼5 kb fragment
was suggested as the result of a large deletion between the two
primer sites of the LR-PCR primer pair. Both ∼5 kb fragments
were subjected to Sanger sequencing (Figure 3B). The assembly
sequence from the proband was identical to that from his mother.
The sizes of the two fragments were same: 5153 bp. Using
chromosome 6 contig NC_000006.11 as a reference, the proximal

Frontiers in Genetics | www.frontiersin.org 3 April 2018 | Volume 9 | Article 145

http://www.genome.ucsc.edu
http://www.girinst.org/censor/index.php
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00145 April 21, 2018 Time: 11:38 # 4

Liu et al. Novel Large Deletion of BCKDHB

deletion breakpoint mapped somewhere between 80,811,219
and 80,811,265 region, while the distal deletion breakpoint
was mapped between 81,194,875 and 81,194,921 position. The
proximal and distal breakpoints were localized within the same
homologous sequence with a size of 47 bp (Figure 3C). According
to the mutation nomenclature recommended by HGVS, the large
deletion was described as chr6: g.80811266_81194921del383556.
The bioinformatics analysis of the 600-bp sequence surrounding
each breakpoint was performed using the CENSOR program. An
AluYa5 element was identified at both the proximal and distal
breakpoint loci. The AluYa5 in the proximal breakpoint shared
a 99.6% sequence similarity to the AluYa5 reference, and the
AluYa5 in the distal breakpoint had a 98.9% sequence similarity.
The recombination between the two AluYa5 elements resulted in
a new hybrid AluYa5 element (Figure 3C).

DISCUSSION

The c.391G > A mutation in the BCKDHB gene has been
reported to be responsible for MSUD in a Chinese patient (Cheng
et al., 2017). The MSUD patient in this study was the second
case carrying the mutation. Gly131 is a highly conserved amino
in several species, and the substitution from polar the uncharged
glycine to charged arginine proposed a damaging mutant with a
score of 1.000 (sensitivity: 0.00; specificity: 1.00) using PolyPhen2
algorithm (Adzhubei et al., 2010). The key role of glycine in

the structural stability of proteins has been described previously
(Pakula and Sauer, 1989). Therefore, the amino acid residue
Arg131 could affect the structure and function of the branched-
chain alpha-keto acid dehydrogenase complex, rendering the
mutation pathogenic.

To date, only one deletion in the BCKDHB gene has
been identified, in an Iranian patient with a homozygous
deletion of exon 3 in the BCKDHB gene (Abiri et al., 2017).
However, the deletion has not yet been well characterized by
another method, and the deletion breakpoints are unknown.
Such a large deletion, also known as a copy number variant
(CNV), arise from different mutation mechanisms than do
point mutations and small insertions and deletions (indels),
such as non-allelic homologous recombination (NAHR), non-
homologous end joining (NHEJ), and fork stalling and template
switching/microhomology-mediated break-induced replication
(FoSTeS/MMBIR) (Gu et al., 2008; Lieber, 2008; Zhang et al.,
2009; Liu et al., 2011). The current study describes the second
large deletion in the BCKDHB gene, thereby providing insights
into the mechanisms underlying the genomic rearrangement.
The two AluYa5 elements, belonging to the short interspersed
elements (SINEs), are localized in the two breakpoints of the
large deletion (Mamedov et al., 2005). Alu elements are frequently
involved in genomic rearrangements including deletion, because
of its frequency of 1.1 million copy numbers in the human
genome with a high degree of sequence homology. In addition,
these elements are associated with roughly 0.1% of the human

TABLE 1 | The variations in BCKDHA, BCKDHB, DBT, and DLD genes detected in the parents.

Sample Gene Chromosome coordinate Nucleotide change Amino acid change Type MAF dbSNP ID

Father BCKDHA chr19:41903675 c.-58A>G – Homozygous 0.0202 rs892043

BCKDHB chr6:80837239 c.197-25A>G – Homozygous 0.3878 rs9448893

BCKDHB chr6:80877442 c.391G>A p.Gly131Arg Heterozygous – –

BCKDHB chr6:80982701 c.952-151G>A – Homozygous 0.4026 rs9341811

BCKDHB chr6:81053217 c.1039-164G>T – Homozygous 0.2859 rs2322763

DBT chr1:100715454 c.-78C>T – Homozygous 0.2750 rs3806235

DLD chr7:107531279 c.-417A>T – Heterozygous 0.2760 rs6943999

DLD chr7:107545586 c.438+83G>A – Heterozygous 0.2758 rs17412104

DLD chr7:107545799 c.439-7T>C – Heterozygous 0.2840 rs10263341

DLD chr7:107559722 c.∗18A>T – Heterozygous 0.2758 rs8721

Mother BCKDHA chr19:41919944 c.376-10A>C – Homozygous 0.3840 rs3213861

BCKDHA chr19:41928652 c.972C>T p.Phe324 = Homozygous 0.3836 rs284652

BCKDHA chr19:41928765 c.995+90C>T - Homozygous 0.3860 rs284655

BCKDHA chr19:41930396 c.1221A>G p.Leu407 = Homozygous 0.3830 rs4674

BCKDHA chr19:41903699 c.-34T>G – Heterozygous 0.0825 rs45500792

BCKDHB chr6:80877371 c.344-24C>T – Homozygous 0.1298 rs73479953

BCKDHB chr6:80912977 c.951+48C>T – Homozygous 0.1296 rs3749896

DBT chr1:100715454 c.-78C>T – Homozygous 0.2750 rs3806235

DLD chr7:107531203 c.-493C>T – Homozygous 0.3636 rs34572011

DLD chr7:107545799 c.439-7T>C – Homozygous 0.2840 rs10263341

DLD chr7:107559732 c.∗28G>T – Homozygous 0.2003 rs17154615

(1) Chromosome coordinates were based on the NCBI37/hg19 assembly of the human genome. NM_000709.3, NM_000056.4, NM_001918.3, and NM_000108.4 were
employed as reference sequences for BCKDHA, BCKDHB, DBT, and DLD, respectively. (2) The symbol “–” indicates no change or record and the symbol “ = ” indicates
a synonymous mutation or no change in amino acid residues. (3) “MAF,” referred to the frequency of the minor allele in 1000 Genomes database. (4) “dbSNP ID,” referred
to the identification number of variations in NCBI dbSNP database 142.
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FIGURE 1 | Identification of a BCKDHB c.391G > A mutation in the father and the proband. (A) Visualization of c.391G > A in the BCKDHB gene as heterozygous
in the father of the proband. NGS reads were piled and are shown on the Integrative Genomics Viewer. (B) Sanger sequencing showing the BCKDHB c.391G > A
mutation in the father and the proband. The same mutation was not found in the BCKDHB gene of the mother. Black arrows indicate the point mutation.
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FIGURE 2 | Identification of a large deletion mutation in BCKDHB gene in the mother and the proband. (A) The gene dosage assay based on qPCR. The exon copy
numbers of the father and the mother were normalized against the normal control. The mean dosage ratios of exons 1, 2, 4, 9, and 10 in the BCKDHB gene of the
mother were approximately 0.5, suggesting heterozygous deletions. (B) CNV analysis of the mother and the proband using Affymetrix CytoScan 750K microarray
platform. A ∼378 kb gross deletion of arr[hg19] 6q14.1(80,809,635-81,187,927) × 1 was detected in the mother, while a ∼404 kb gross deletion of arr[hg19]
6q14.1(80,809,635-81,214,052) × 1 was detected in the proband. The two deletions encompass the whole BCKDHB gene.
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FIGURE 3 | Characterization of the junction site of the deletion. (A) Electropherogram of LR-PCR products for the identification of the deletion breakpoints. In the
LR-PCR analysis, the proband and the mother presented ∼5 kb fragments, whereas the father and a normal control lacked such fragments. Lane 1, the proband.
Lane 2, the proband’s mother. Lane 3, the proband’s father. Lane 4, a normal control DNA sample. Lane 5, blank control H2O. Lane M, DNA marker λ-EcoT14 I
digest. (B) Sanger electropherogram is showing the breakpoint junction of the deletion. Sanger sequences from the mother were identical to that of the proband at
the single nucleotide level. The black arrow indicated the breakpoint junction. (C) Sequence comparison between the deletion junction at the proximal and distal
breakpoints. Approximately, 600-bp sequence surrounding each breakpoint was analyzed. Two Alu elements (AluYa5) were identified and highlighted by light blue
lines. Yellow highlight indicated different nucleotides between the two AluYa5 elements. Symbol “–” indicated no nucleotide base. Green wireframe indicated 47 bp
same homologous sequence.
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genetic disorders (Kim et al., 2016). Moreover, two low-copy
repeats or repetitive sequences such as LINE and Alu elements
can drive NAHR events leading to genomic rearrangements
such as recurrent insertions and deletions with similar sequence
sizes and clustered breakpoints (Shaw and Lupski, 2004; Lee
and Lupski, 2006; Gu et al., 2008; Carvalho and Lupski,
2016).

The comparison of the two AluYa5 elements involved in
this deletion with the newly formed AluYa5 element that
results from the deletion, revealed that the junction was
localized within a homologous sequence in both AluYa5.
Therefore, Alu-mediated NAHR was a putative mutational
event underlying the large deletion. Furthermore, about 80
Alu elements are distributed throughout the entire BCKDHB
gene, creating DNA sequence contexts prone to mutation
events. AluYa5 is the most active Alu element in the human
lineage (Konkel et al., 2015). Only two AluYa5 elements
exist in the BCKDHB gene (upstream and downstream),
the ones involved in the large deletion observed in our
patient.

In this study, we identified compound heterozygous BCKDHB
mutations in our patient: a missense mutation (c.391G > A) and a
large deletion mutation (chr6: g.80811266_81194921del383556).
The current results provided accurate information for
genetic counseling, including the possibility of prenatal and
preimplantation diagnosis. The analysis of the junctional
fragments revealed that the two AluYa5 elements were located at
the proximal and distal breakpoint loci, respectively. This finding
suggests that Alu-mediated NAHR may be the mechanism
underlying the identified large deletion. Also, we emphasize
that large deletions in the BCKDHB gene should be considered

if a molecular diagnosis cannot be achieved through routine
methods.
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