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Robust dynamic community detection with
applications to human brain functional networks
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While current technology permits inference of dynamic brain networks over long time per-
iods at high temporal resolution, the detailed structure of dynamic network communities
during human seizures remains poorly understood. We introduce a new methodology that
addresses critical aspects unique to the analysis of dynamic functional networks inferred from
noisy data. We propose a dynamic plex percolation method (DPPM) that is robust to edge
noise, and yields well-defined spatiotemporal communities that span forward and backwards
in time. We show in simulation that DPPM outperforms existing methods in accurately
capturing certain stereotypical dynamic community behaviors in noisy situations. We then
illustrate the ability of this method to track dynamic community organization during human
seizures, using invasive brain voltage recordings at seizure onset. We conjecture that
application of this method will yield new targets for surgical treatment of epilepsy, and more
generally could provide new insights in other network neuroscience applications.
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he brain functions (and dysfunctions) through interactions

spanning spatial scales, from the single neuron to the entire

nervous system, and temporal scales, from millisecond
action potentials to decades of development!. Modern neuroi-
maging, combined with sophisticated data analysis tools, has
expanded analysis of brain activity from individual brain com-
ponents to networks of interacting brain regions. Understanding
these brain networks (e.g., the connectome?, dynome3, and
chronnectome!), and the big data they entail, remains a funda-
mental challenge of modern neuroscience?, with the potential for
significant impacts to human health and disease>®.

Initial research efforts have focused on characterizing properties
of isolated brain networks using static graph metrics, resulting in
candidate network features important to brain function, including
hubs”8, rich-clubs®1%, and small-worldness!!. However, brain
networks are not static; instead, the patterns of brain connections
change in time, and emerging research suggests these network
dynamics are critical to brain function!? and dysfunction!3-1>.
Although many tools have emerged to characterize network
dynamics!®!7, the most common is dynamic community detec-
tion (ie., tracking how a group of nodes that share increased
connections changes in time). These methods typically apply an
algorithm developed for static graphs to define candidate com-
munities at a fixed time, and then define time-varying commu-
nities by linking consecutive static communities. For example, the
clique percolation method (CPM) defines communities in static
time slices by the extent to which a clique (i.e., a fully connected
subnetwork) can be walked over the graph, and then communities
at successive time points are linked using a rule based on overlap
of vertex subsets!®, In neuroscience, the most popular method to
detect communities in temporal networks is the multilayer mod-
ularity method (MMM), which extends the standard modularity
maximization framework to uncover communities across
time!%20, Application of MMM has provided new insights into
many areas of brain function, including learning?!-?2, aging?3-24,
language??, and cognition26-27,

Despite their widespread application in neuroscience, two key
challenges face existing dynamic community detection methods.
First, existing methods generally are unable to account for the
edge noise that is inherently present in functional networks
inferred from noisy brain voltage data?8. Specifically type-II
errors, or false negatives, are problematic given that type-I errors
typically are controlled as part of the network inference process.
Second, existing approaches generally lack a definition of com-
munities that is explicit and interpretable (e.g., in terms of basic
network motifs??) both within and across slices of time. For
example, MMM employs an optimization criterion!®3, yielding
an implicit notion of community (albeit computationally tractable
and mathematically elegant).

Here, we develop and apply a new dynamic community
detection method to address these challenges. The proposed
method extracts dynamic communities based on the explicit
notion of time-evolving aggregations of smaller motifs, which
have been proposed as building blocks characteristic of different
types of networks3!-32, The new method of dynamic community
detection—the dynamic plex percolation method (DPPM)—
connects static communities within a time slice to aggregations of
a variety of common motifs in a natural and flexible manner,
defines dynamic communities across time through an explicit
notion of temporal progression of these motifs, and is demon-
strably robust to edge noise. We show in simulation that DPPM
outperforms existing methods in four stereotypical community
evolution scenarios. We then apply DPPM to a dataset derived
from invasive brain voltage recordings made from human sub-
jects during seizures. Our analysis demonstrates a large dynamic
community that rapidly grows from a spatially localized region at

seizure onset, suggesting the potential for targeted therapeutic
intervention.

Results

The DPPM. The DPPM operates on dynamic networks, which
may be inferred from noisy time series data. Before illustrating
the utility of this method in simulation and examples of obser-
vational data, we first briefly describe and motivate the proposed
dynamic community detection procedure.

Let G=(V,E) be a graph with vertex set V and edge set E, and
let {Gt}f]:1 denote a sequence of N graphs indexed by time ¢,
which we assume to share a common vertex set V. Our goal is to
identify dynamic communities in such a sequence of graphs. We
define a community explicitly as subsets of nodes—within and
across time—that are reachable by small template subgraphs that
are walked within and across temporally adjacent graphs G,. The
result of this definition is that our communities may be
conceptualized as an evolving series of tubes, which represent
cohesive aspects of the dynamic networks evolving in time.

In walking, movement necessarily must be from one copy of
the template subgraph to another in such a way that the two differ
by at most one vertex. Our choice of template subgraphs are
plexes. A k-plex of size m is a vertex-induced subgraph S of m
vertices from a graph G with the property that the degree of v in
the subgraph is at least m-k for all v€S and m > k. In other
words, the order k refers to the maximum number of missing
neighbors. Movement across time is facilitated by artificially
connecting vertex pairs across G, and G, for every t, in a
manner conducive to walking plexes. Specifically, (1) each vertex
v € G, is connected by an edge to its mature self in G, ,, and (2)
if an edge {v, v} € G; exists again in G, ;; then the vertices v; €
G; and v, € G, 4, are connected by an edge, and likewise v, € G,
and v; € G, . ;. The result of these two steps is to create a proper
bridge for plex walking (Fig. la). This enhanced version of the
sequence {G,} is the infrastructure upon which the plexes walk in
space and time, and thus dynamic communities are well defined.
Note that this enhanced graph sequence is independent of the
choice of both plex size and order. For a detailed description of
the algorithm, including pseudo-code and comments on
implementation, please see “Methods”.

The central role played by plexes in the DPPM framework
derives from the fact that plexes are network elements consistent
with motifs, the building blocks of larger network structures3!-32
(Supplementary Table 1). Our dynamic communities, explicitly
defined as aggregations of such building blocks, are thus
consistent in spirit with notions of network (sub)structure in
network science. In this sense, DPPM is an extension of the
CPM!3. DPPM differs from CPM, however, in that the latter uses
the more rigid notion of a clique (a fully connected subgraph, k =
1) as a template subgraph. Importantly, replacing cliques by the
more flexible notion of plexes leads to robustness against edge
noise (in particular type-II errors, i.e., false negatives), which is
common in functional networks inferred from multisensor brain
recordings.

Community detection is an area that has seen extensive
development, and the literature on dynamic community detection
is already nontrivial>3. Nevertheless, our work below shows that
substantial improvement on current state-of-the-art is still possible
where specific questions relating to notions like coalescence and
fragmentation of dynamic communities is concerned (illustration in
Fig. 1b). Increasingly, evidence suggests that such notions are likely
central to better understanding the evolution of phenomena like the
seizures motivating our work>4-36,

As representative comparisons, we focus on two other methods
of dynamic community detection popular in the analysis of

2 | (2020)11:2785 | https://doi.org/10.1038/s41467-020-16285-7 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16285-7

ARTICLE

(1]

Preferred result

7 edges

—_
+
-

{
4P -4P-4D,
X

8 edges

—-
+
—_

4P -4P-4D

C,

X

J P-4 P -q P,

t+1 C,

+1 Cy

—_

.+.X. + 0 g.

IR RP RSSO ED
G RB DG SE S
HHBSPFHOS D

Fig. 1 lllustration of DPPM principles and effectiveness. a Schematic of the bridges used to walk plexes within dynamic communities across time. Blue
edges represent inferred connectivity, while red edges connecting the same (solid) or adjacent (dotted) vertices facilitate movement. b lllustrative example
showing how a simple community (in orange) is tracked by DPPM across time in a manner allowing for both coalescence and fragmentation. This
community at first grows at t + 1, and then fragments at t + 2. Another community present at t (purple) perishes at t + 1. ¢ Comparison of DPPM (with 2-
plex of size m=3, 2nd column), CPM (with 1-plex of size m =3, 3rd column), and MMM (with y =1, @ =1, 4th column) in determining communities
across two adjacent time points t and t + 1. The connected component at time t + 1 shares increasingly more edges components at time t from the top to
the bottom row of plots. In the preferred results, the dynamic communities (Ist column) depend on the number of edges shared from time t to t + 1.
Whereas DPPM treats these as three distinct scenarios, neither CPM nor (effectively) MMM distinguish the three cases. In CPM and MMM, the colorbar
indicates the proportion of community membership over n =100 repetitions of community detection. d Example dynamic community tracking in the
presence of missing edges. Dynamic community membership for ten example sequential time index networks computed using DPPM (with 2-plex of size
m=4), CPM (with 1-plex of size m = 3), and MMM (with y =1, @ =1). While DPPM detects a single dynamic community in time, the other two methods

do not.

functional connectivity networks: CPM and MMM!%30. DPPM
differs from CPM not only in its use of plexes rather than cliques,
but also in the manner that those are used to define dynamic
communities. Specifically, CPM only walks the clique within time
slices G, to identify static communities, rather than both within
and across time slices (as in DPPM), using instead a more ad hoc
rule of overlap among static communities across adjacent times to
form dynamic communities. MMM, in contrast, differs from both
DPPM and CPM in its core mechanism, adopting an implicit
notion of communities defined via optimization of a cost criterion
like modularity.

To illustrate the impact of these differences, we consider three
simple examples of dynamic community tracking between two
sequential networks (Fig. 1c). In the first example, two connected
components at time ¢ evolve to a single connected component at

time t+1 (Fig. lc, seven edges). While DPPM detects three
separate communities, both CPM and MMM detect only two
communities. We note that, unlike the deterministic result of
DPPM, the community label at time ¢ + 1 for CPM and MMM is
not unique. In this example, the community label for CPM at
time t+ 1 is chosen arbitrarily (i.e., by a fair coin flip) from the
existing community labels at time #37. In the second example, we
add an additional edge to the single connected component at time
t + 1 (between the upper two nodes, Fig. 1c, eight edges). In this
case, DPPM tracks a dynamic community from time ¢ to £+ 1
(red in Fig. Ic, eight edges). While the DPPM result is quite
different in this example, the additional edge has little effect on
the dynamic communities detected with CPM and MMM.
Addition of another edge (between the lower two nodes at t+
1) again changes the DPPM result (Fig. 1c, nine edges); in this

NATURE COMMUNICATIONS | (2020)11:2785 | https://doi.org/10.1038/s41467-020-16285-7 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

case, all components at times t and t+1 establish a single
community. This occurs because a plex, beginning in the upper
triangle at time f, can propagate to the single component at time
t+ 1, and then back to the lower triangle at time f. Again, the
addition of an edge has little effect on the dynamic communities
detected with CPM and MMM. We note that the choice of MMM
parameters y =1, w = 1 serves as a representative example; other
parameter choices perform similarly (see Supplementary Fig. 1).
We conclude that unlike the latter two methods, DPPM
distinguishes between the three subtly distinct basic scenarios in
an explicit and deterministic way.

In addition, we demonstrate the robustness of DPPM to noise.
To do so, we begin with a nine-node template network possessing
eight edges. We then replicate this network 100 times to create a
time-indexed network, such that at each time we remove two
randomly chosen edges. We expect that a dynamic community
tracking procedure robust to noise (i.e., type-II errors or missing
edges) would track a single community in time. We find that
DPPM succeeds and successfully tracks a single dynamic
community in time (Fig. 1d, top row), whereas CPM fractures
into different transient dynamic community detections (Fig. 1d,
middle row). While MMM also detects a consistent structure in
time, it consists of two dynamics communities, based on the
configuration of the eight edges in the template network (Fig. 1d,
bottom row). We conclude that edge noise dramatically impacts
CPM, while both DPPM and MMM are robust to noise, but only
DPPM detects a single community in time.

DPPM accurately tracks dynamic communities. To better
characterize the performance of DPPM compared with existing
dynamic community detection methods, we consider four cate-
gories of simulation. Each category simulates a representative
dynamic community behavior, motivated by the notion that brain
functional networks can expand, contract, split, and merge in
response to changing task demands, internal states, and disease!8.
We show that, across these four categories, DPPM outperforms
existing methods and successfully detects the functional network
community dynamics.

We start with simulations of community expansion. The
simulations begin with a group of nodes that belong to the same
community (Fig. 2a, b). As time evolves, a second group of nodes
joins the community established by the first group (Fig. 2a, b). At
a later time, a third group joins the expanding dynamic
community. In this way, the community expands to encompass
larger groups of nodes as time evolves. We note that all nodes that
join the expanding group share a common community label,
while nodes outside of this expanding group are assigned a
random community labels (see “Methods”).

Application of the three dynamic community detection
methods yields distinctly different results. While in this example
CPM fails to capture the community expansion, both DPPM and
MMM succeed (Fig. 2c). We note that here, and in the
simulations that follow, we fix the detection method parameters
to show representative examples; see Supplementary Fig. 2 for
examples of each community detection method applied with
different parameter settings.

In the second category of simulation, we consider dynamic
community contraction, which can intuitively be understood as
dynamic community expansion with time reversed. For these
simulations, we begin with a large group of nodes that share a
common community label (see ground truth on Fig. 3a, left
panel). As time evolves, we remove nodes from this community.
By doing so, we expect to reduce the number of nodes that
participate in the dynamic community, until eventually all nodes
are removed (and each node assigned a random community label,

see “Methods”). In this illustrative example, only DPPM
successfully detects the dynamic community contraction with
high sensitivity and specificity (Fig. 3a). Different choices of
module size in CPM, or structural and temporal resolution
parameters in MMM, tend to detect the dynamic network
contraction with low sensitivity, low specificity, or both (Fig. 4b,
e; see Supplementary Fig. 3 for examples of each community
detection method applied with different parameter settings).

For the third simulation category, we consider the scenario of
one community splitting into two. To simulate this scenario, we
begin with a single group (see Group A on Fig. 3b, left panel) of
nodes that share a common community label (see ground truth in
Fig. 3b, left panel). After an interval of time, two new groups of
nodes appear (Groups B and C, Fig. 3b). Each node in these
groups shares a common community label with Group A. All
three groups remain active for an interval of time, establishing a
dynamic community consisting of nodes from all three groups.
Then, Group A leaves the common community, while Groups B
and C remain in the common community. We expect to detect a
single dynamic community splitting from the collection of all
nodes in Groups A, B, and C, to the collection of nodes only in
Groups B and C (i.e, the blue ground truth community in Fig. 3b,
left panel).

We find that all three methods detect some aspects of the
dynamic community splitting (Figs. 3b and 4c, e; see Supple-
mentary Fig. 4 for examples of each community detection method
applied with different parameter settings). However, only DPPM
detects the dynamic community splitting with high sensitivity
and specificity.

Finally, we consider the converse of splitting: dynamic
community merging. In this scenario, we begin with two groups
(Groups B and C) whose nodes share a common community label
(see ground truth in Fig. 3¢, left panel). After an initial interval of
time, a third node group (Group A) joins the common
community. Finally, we remove nodes only in Group B and
Group C (Fig. 3¢c). After these removals, only the Group A nodes
share a common community label. We expect to detect a single
dynamic community that begins with nodes in Groups B and C,
then adds nodes from Group A, and finally consists only of
Group A nodes. We again find that, although all three methods
capture some features of the dynamic community merging, only
DPPM performs with high sensitivity and specificity (Figs. 3¢ and
4d, e; see Supplementary Figs. 5 and 6 for examples of each
community detection method applied with different parameter
settings).

Based on the results from these four simulation categories
(summarized in Fig. 4), we conclude that only DPPM detects the
dynamic community behavior with high sensitivity and high
specificity in all scenarios considered. We find that no fixed
parameter setting for MMM performs with both high sensitivity
and high specificity across all simulation scenarios. While DPPM
and CPM perform with similar specificity across parameter
settings, DPPM (withm =4, k=2;m=4,k=3;or m =5,k =3)
perform with higher sensitivity than CPM.

Expansion of a dynamic community at human seizure onset.
To illustrate the performance of DPPM on clinical data, we
consider an application to invasive electrocorticogram (ECOG)
recordings from an 8 x 8 electrode grid placed directly on the
cortical surface of a human patient undergoing resective surgery
for epilepsy (see “Methods”). From these data, we infer dynamic
functional networks (see “Methods”) that begin 100 s before sei-
zure onset, and examine the dynamic communities that emerges
at seizure onset in four seizures. We choose to examine seizure
onset, where a rapid increase in functional connectivity often
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Fig. 2 In an example of dynamic community expansion, DPPM outperforms two existing methods. lllustration of community expansion in nodes (a) and
in edges (b). a Two-dimensional representation of the nodes on an 8 x 8 grid at five time intervals. Color (blue) indicates when a node becomes recruited
to the largest community. b Adjacency matrices for the simulated network of 64 nodes at the same five time intervals. Color (black) indicates an edge
between a node pair. ¢ Dynamic community detection results for each method, from left to right: true expansion, DPPM with parameters m =4 and k=2,
CPM with parameter m =4, and MMM with parameters y = 0.1, w = 0.1; see Supplementary Figs. 2 and 6a for results with different parameter choices,
and see Fig. 4a, e for average results over 100 realizations of the simulation. Color indicates community membership. The largest community detected by

DPPM is most consistent with the true expansion.

occurs38:39, Before seizure onset, a large number of small dynamic
communities transiently appear (N = 1768 communities detected
for n = 4 seizures, example in Fig. 5a). The vast majority of these
communities are short-lived (median lifespan 1s, 95% of life-
spans <6.55s, gray histogram in Fig. 5c) and spatially limited
(median maximum size 4 nodes, 95% of maximum community
sizes <13 nodes, Fig. 5d). After seizure onset, a large dynamic
community appears and persists for tens of seconds before con-
tracting and disappearing (example in Fig. 5a, middle panel, the
red community); we label this community the seizure onset
community. During expansion, the seizure onset community
rapidly recruits nodes (e.g., red curve and red community in
Fig. 5a, b) until almost all nodes are recruited (median maximum
size 61 nodes for n =4 seizures, see arrows in Fig. 5d) and stays
active for significantly longer than the pre-seizure communities
(median lifespan 143.50s, range [55s, 239.5s], n =4 seizures,
arrows in Fig. 5c¢).

Computing node loyalty (i.e., how often a node is part of a
community), we find that, before seizure onset, two brain regions
are more likely to participate in the multiple communities
observed (Fig. 5e). During seizures, the spatial pattern of node
loyalty changes to become broader (Fig. 5f); more nodes
participate longer in the seizure onset community than in the
pre-seizure communities. We also observe that the maximum
node loyalty emerges from a spatially localized brain region,
centered on a region of high pre-seizure node loyalty (Fig. 5e, f,
black circle), perhaps consistent with an ictogenic process
emerging before clinical seizure onset.

To characterize how nodes join the seizure onset community,
we calculate the node recruitment order (i.e., an ordering of the
nodes from first to join the seizure onset community to last to

join). Visual inspection of the median maps of node recruitment
order (Fig. 5g) across the patient’s four seizures suggests
recruitment occurs in a spatially organized pattern; neighboring
nodes tend to be sequentially recruited in the seizure onset
community. We note that the spatial pattern of this node
recruitment is consistent with the spatial pattern of recruitment
into large amplitude oscillations after seizure onset for this
patient®Y (Fig. 5h). Perhaps surprisingly, analysis focusing on two
different aspects of seizure dynamics (dynamic functional
connectivity here versus the dynamics of signal power in%0)
produce consistent spatial maps (compare Fig. 5g, h). Moreover,
we note that the time scale over which these spatial maps appear
differ by an order of magnitude; recruitment to the seizure onset
community occurs within seconds, while recruitment to the large
amplitude oscillations characteristic of seizure occurs over tens of
seconds. Yet, despite this temporal difference, the spatial maps
appear consistent.

To explore further these initial observations we repeat the
analysis for a population of patients and seizures (12 patients,
38 seizures). We find, consistent with the example patient and
seizures, that: (1) the largest community size increases during
seizure compared with pre-seizure (Fig. 5i), and (2) the lifespan of
the largest community is longer during seizure compared with
pre-seizure (Fig. 5j). We then explored the hypothesis that
patients with a worse surgical outcome would have more
fractured, longer-lasting dynamic communities during seizure,
which are less susceptible to a targeted intervention (in this case,
resective surgery). We find that both the number of communities
(Fig. 5k) and the duration of the longest community (Fig. 51) are
higher in patients with worse surgical outcomes (p =0.025, t-
statistic = —2.35, 95% confidence interval for the difference in
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Fig. 3 In three additional examples of dynamic community evolution, DPPM outperforms two existing methods. Community detection for each method
in the case of a community contraction, b community splitting, and € community merging. From left to right in each subfigure: true community evolution,
DPPM with parameters m =4 and k =2, CPM with parameter m = 4, and MMM with parameters y = 0.1, ® = 0.1; see Fig. 4 and Supplementary Figs. 3-6
for results with different parameter choices. Color indicates community membership. In all cases, the largest community detected by DPPM is most

consistent with the true community evolution.

population means [—0.59, —0.04]; and p =0.0016, t-statistic =
—3.41, 95% confidence interval for the difference in population
means [—0.46, —0.11]; respectively, two-tailed two-sample t-test,
n =27 from nine patients with low Engel score, and n =11 from
three patients with high Engel score, degrees of freedom = 36).

We conclude from these observations that application of
DPPM to ECOG data recorded from patients with epilepsy
provides new insights into the expansion of a large dynamic
community at seizure onset. We propose that larger communities
of longer duration emerge during seizure, and that patients with
fewer, shorter duration communities during seizure have
improved surgical outcomes.

Discussion

In this manuscript, we introduced the DPPM to track dynamic
communities that evolve in time. We designed this method spe-
cifically to address the challenges introduced when inferring
dynamic functional networks from neural time series data. The
resulting method differs from existing dynamic community
tracking procedures in two ways. First, we extract communities
based on the explicit notion of time-evolving aggregations of
smaller motifs, rather than through optimization of a cost cri-
terion. Second, we account for edge noise—a factor in any set of
functional networks inferred from time series data. We showed in
simulations that DPPM outperforms two existing methods in
representative dynamic network scenarios motivated by the
intuitive notions of community expansion, contraction, merging,
and splitting. We then applied DPPM to examples of time-
indexed functional networks inferred at human seizure onset. We
showed preliminary evidence of rapid, dynamic community

expansion at seizure onset from an initial set of nodes, and that
community structure during seizure correlates with surgical
outcome.

The results presented here may appear to challenge previous
applications of dynamic community evolution procedures to
human brain activity?1-23:25-27,30:41-44 However, one should not
dismiss this prior work. We showed in simulation that MMM
may still produce accurate results, and the ability to investigate a
range of resolution parameter values may provide a more com-
prehensive view of a network’s modular organization?’. Different
brain activity (e.g., slow hemodynamic responses versus fast
electrophysiological changes) may results in dynamic functional
networks more compatible with accurate inference over a broad
range of resolution parameters. While DPPM only links nodes at
neighboring time steps, MMM permits links between nodes
across broader time intervals. Such links may support more
accurate detection of communities in which nodes infrequently—
but consistently—participate. We note that the communities
identified by any method, while not necessarily optimal, could
still facilitate fruitful exploration of functional brain networks.
For example, the distinction between a large community, and two
smaller communities that evolve similarly, may not have practical
consequences to understanding brain function or dysfunction.

While DPPM performs well in simulations, and in an example
application to in vivo data, we note three limitations. First, the
computational time required to track dynamic networks with
DPPM depends on the plex size, and hence is likely to be most
practical for plexes of relatively small scale. We developed
approximations to reduce computational time in two cases—(4,2)
and (5,3)—which are consistent with the size of structural and
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Fig. 4 DPPM performs with higher sensitivity and specificity than two existing methods in the four simulation scenarios. Specificity and sensitivity of
DPPM (blue), CPM (red), and MMM (yellow) for n =100 independent simulations with different noise instantiations of each dynamic community
evolution scenario. a Community expansion, b Community contraction, ¢ Community splitting, and d Community merging. Each circle indicates the result
of one simulation with one parameter configuration (see “Methods”). @ Summary results for each community tracking method applied to each simulation
scenarios. Bars indicate the mean sensitivity and specificity for each parameter configuration of each method. Dots indicate the results of the n=100

simulations for each simulation scenario and method.

functional motifs proposed as common network building
blocks31:32. DPPM successfully aggregates these common motifs
into communities. We note that the appropriate interpretation of
network motifs in neuroscience remains a point of open discus-
sion. While motifs have been proposed as network building

NATURE COMMUNICATIONS | (2020)11:2785 | https://doi.org/10.1038/s41467-020-16285-7 | www.nature.com/naturecommunications

blocks of the brain#®, motifs may instead represent a byproduct of
local brain connectivity?”#8, The connection of DPPM with
motifs through the central role of plexes may facilitate more
explicit study of this issue going forward, in the specific context of
dynamic community detection. Applications to different systems,
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in which larger plexes are required, may require additional
development. Along this line, maximal k-plex identification,
which is a computationally costly algorithm at the core of DPPM,
has received renewed interest in network sciences, which could
lead to further speed improvements4%-20,

Second, DPPM may link dynamic communities which may be
interpreted as separate based on information beyond the network
connectivity. To illustrate this, we consider the hypothetical
scenario in which two dynamic communities exist simulta-
neously. Within one community, a low frequency rhythm (e.g.,
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Fig. 5 Application of DPPM reveals new characteristics of dynamic communities before and after human seizure onset. a Top: Voltage time series
recorded at nine electrodes to illustrate pre-seizure and seizure voltage dynamics. Middle: Example recruitment of a large community at seizure onset.
Before seizure onset (t<0's) small communities appear briefly; color indicates community membership. After seizure onset (t>0 s) a large dynamic
community appears (red) that persists for over 30 s. Bottom: Temporal evolution of the size of the seizure onset community (red). Nearly all nodes
participate in the seizure onset community. b Example expansion of the seizure onset community. Each circle denotes an electrode on the 8 x 8 electrode
grid, and red (black) indicates electrodes recruited (not yet recruited) into the dynamic community. Community lifespan (¢) and maximum community size
(d) for all pre-seizure communities (gray histograms) and the seizure onset community observed for each of the four seizures of this patient (four arrows,
red indicates the community shown in (a)). Node loyalty averaged over the four seizures for (e) all pre-seizure communities and (f) the seizure onset
community. In both panels, warm (cool) colors indicate nodes that participate in communities for longer (shorter) times. The black circles indicate a subset
of electrodes that have high node loyalty before and during early seizure. g Median recruitment order to the seizure onset community for four seizures.
Warm (cool) colors indicate electrodes recruited earlier (later) into the seizure onset community. h Mean recruitment time to large amplitude ictal
oscillations observed for the same patient, as reported in ref. 5. Warm (cool) colors indicate electrodes recruited earlier (later) into ictal spread.
Histograms of the size (i) and the lifespan (j) of the maximum community during the pre-seizure (blue) and seizure (red) intervals from each patient and
seizure. The maximal community tends to be larger and of longer duration during seizure. The mean number of communities (k) and the longest
community duration (I) during seizure for patients with good (Engel 1,2) and poor (Engel 3,4) surgical outcomes. Each circle indicates an individual seizure,
and the red square the population mean (n =27 from nine patients with low Engel score, and n =11 from three patients with high Engel score). Worse

surgical outcomes exhibit more communities with longer maximal duration during seizure.

theta, 4-8 Hz) links the nodes, while in the other dynamic
community, a higher frequency rhythm (e.g., beta, 12-20 Hz)
links the nodes. Initially, because different frequency rhythms
appear in each community, no links exist between the two
communities; i.e., the communities are functionally disconnected.
Then, at a later time, nodes in both communities transition to the
same rhythm (e.g., alpha, 8-12 Hz), establishing functional con-
nections between the nodes in both communities, and causing the
two dynamic communities to merge. In this scenario, DPPM
would identify a single dynamic community that includes all
nodes at all time considered. That the two sets of nodes initially
form separate functional communities—employing rhythms in
different frequency bands—is not represented in the single
dynamic community identified by DPPM. Analysis of node
properties (e.g., the power spectrum) or selection of coupling
measures targeting specific frequency bands would address this
particular scenario.

Third, DPPM is designed for binary networks that are often
inferred from multi-electrode brain recordings, but in neu-
roscience it is frequently desirable to analyze weighted networks.
CPM has been extended to weighted networks®!, where in order
to percolate cliques are now required to be of sufficient intensity
(i.e., the geometric mean of the link weights in a clique®> must
exceed a given threshold). An extension of DPPM to weighted
networks should be similarly feasible, although somewhat less
immediate for two reasons. First, there can be a multiplicity of
plexes among a given set of nodes, and thus there is flexibility in
representation. One approach might be to adopt the recently-
introduced notion of a maximal edge-weighted plex3. Second, it
is necessary to equip the edges between the same nodes at dif-
ferent network time points with an appropriate notion of an edge
weight. Depending on the manner of network construction, there
may be multiple ways in which to do so. A full and careful
exploration of these possibilities is beyond the scope of the pre-
sent manuscript. We note that MMM handles weighted edges
seamlessly and without modification.

While tools from network analysis serve an essential role in
understanding multisensor recordings®4, significant challenges
remain in the application of these tools. In social networks or
association networks, for which many network tools were
developed, the edges are known with certainty (e.g., social
network friends or manuscript co-authors). However, in func-
tional networks inferred from noisy brain activity, the edges are
estimated with uncertainty. This uncertainty depends—in com-
plex ways—on the association measure applied and the nature of
the data recorded. Different measures to define functional

connectivity may lead to different inferred functional networks
and different dynamic communities. How this uncertainty
impacts the standard tools of network analysis remains poorly
understood. Moreover, these inferred—and uncertain—func-
tional networks change rapidly in time*>>>°6, Finding the best
approaches to infer and characterize dynamic communities from
noisy, non-stationary brain signals is a significant challenge. We
note that the appropriate choice of plex could change as a
function of time. How, why, and the extent to which this would
be can be expected to vary with context. However, at a minimum,
nontrivial changes in network density over time can be expected
to be a factor. In the context of epilepsy, it has been observed that
network density can evolve dramatically during a seizure34. This
might suggest the value of developing an extension of DDPM (as
well as related methods like CPM) with adaptively chosen, time-
varying plex order.

In this manuscript, we considered a systematic comparison of
DPPM with two representative methods, CPM and MMM, as
implemented in the literature. However, we note that modifica-
tions of these methods—by interchanging characteristics of
DPPM, CPM, and/or MMM—would allow a more comprehen-
sive exploration of the benefits and contributions of specific
method characteristics to dynamic community detection in gen-
eral. For example, in DPPM we link networks in time by
including an edge from each node to itself, and to all other nodes
with which it shares consistent connections (Fig. 1a). This is a
generalization of the coupling usually used in MMM; extending
MMM to link networks in time as in DPPM would help reveal the
impact of this specific method characteristic. In DPPM, the cross-
network links proposed have a simple and explicit approach. This
approach, for connecting nodes to themselves across time, is
implicitly a local smoothing of the network structure itself, with
the degree of smoothing connected to the choice of plex k. An
alternative approach to link networks in time is a temporal
smoothing of network connectivity matrices across adjacent
frames. While this approach would link networks in time using all
connections, it would also introduce a new smoothing parameter;
how to best choose this smoothing parameter automatically is not
clear. While we explored a wide range of method variations here,
additional modifications may allow CPM and MMM to perform
similarly to DPPM (e.g., the choice of null model in MMM, or an
alternative procedure to couple networks across layers in CPM).
However, such extensions are beyond the scope of the present
manuscript.

Understanding the brain’s network dynamics remains a fun-
damental challenge in neuroscience, with opportunities spanning
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from genetic networks to social networks®’, and applications
spanning health and disease. Here we focus on one component of
this challenge: the characterization of dynamic communities in
evolving functional connectivity networks, and application to the
dynamic networks that emerge during human seizures. While
characterization of seizure onset requires inference and analysis
of rapidly evolving functional networks, we expect the dynamic
community tracking approach developed here will apply to other,
multivariate neuronal data sets (e.g., calcium imaging, MEG,
multi-neuron recordings). Ultimately, the continued development
of statistically principled network analysis tools—combined with
advances in data acquisition and computational modeling—is
essential to understanding the neural origin, mechanisms, and
functions of the brain’s dynamic functional connectivity.

Methods

DPPM. The DPPM identifies all dynamic subgraphs over which a k-plex of at least
order m vertices can be ‘walked’. From an algorithmic standpoint, DPPM consists
of three subroutines: Plex, StatComm, and DynComm. We briefly describe these
subroutines and their implementation here; pseudo-code versions can be found
in Supplemental Materials.

Given an input graph on p vertices, say G = (V,E), Plex identifies the maximal
k-plexes, based on ref. *8. That is, all vertex-induced subgraphs S;, S,,... are
enumerated such that each S is a k-plex of size n; and, if any other vertex is added
to S;, it would cease to be a plex. In practice, since a clique is also a k-plex and
finding a clique is faster, we start by finding all maximal cliques larger than m and
then look for k-plexes within the remaining vertices that are not parts of any
cliques.

Using Plex, StatComm effectively creates from an input graph G a secondary
graph G*, with each vertex corresponding to a maximal k-plex S; in G. An edge
exists between two vertices i and j in G* if the number of vertices common to §;
and §; is at least m — 1 vertices, indicating that a k-plex S; may be walked to the k-
plex S;. This step is similar to the CPM that requires a minimum overlap of m — 1
vertices to aggregate cliques into communities!S. The connected components in
G*, say C|,C;, ... , then implicitly represent subsets of vertices/edges in the
original input graph G over which a k-plex may be walked. These vertices/edges are
assigned labels according to their membership in these connected components. A
vertex/edge may have multiple labels.

Ultimately, DPPM consists of applying StatComm in two passes through a
dynamic network {Gt}szl‘ Recall that the vertex sets V; in each graph G, are
assumed to be equal to a common set V of p vertices. In the first pass, StatComm is
first applied at each time slice  to determine the static communities within each G,.
In the second pass, StatComm is applied to each of N — 1 enhanced multi-slice
graphs with 2p vertices containing pairs of graphs adjacent in time. Each new
multi-slice graph, say G, consists of copies of G, and G,,,, wherein a vertex i is
labeled v} for its copy from G, and vi,, for its copy from G, . Next, we enhance
this new graph G, by adding an edge between vertices v/ and their matured self
vi‘ 1- We also add edges between (vi, V£+1) and (vh 1 ) to G/ if (vi, v}) is an edge
in G,and (v}, v, 1) is an edge in G, ;. This provides a means for the community
to walk across time, and visually appears as what we term railroad tracks in G, (see
Fig. 1a). Community labels associated with vertices/edges within each of the slices
G, from the first pass of StatComm are then propagated forward and backward in
time through the resulting augmented dynamic graph {G; }} |, in an iterative
fashion, thus equipping each dynamic community with a unique label.

The computational complexity of DPPM is dominated by the identification of
all maximal k-plexes in the Plex algorithm, which in turn is called in the context of
identifying communities across adjacent time points t and ¢ + 1 using the StatCom
algorithm. We use a modification of the Bron-Kerbosch (BK) algorithm®8, which is
a recursive backtracking procedure for identifying all maximal cliques in an
undirected graph consisting of p vertices. Because there are at least as many k-
plexes as maximal cliques on m vertices, the worst-case complexity for

identification of k-plexes is at least O(3§>. Suppose that m, and m,; maximal k-

plexes are returned by the algorithm on the graphs G, and G; ,;, respectively. The
static communities at times t and ¢+ 1 are determined by comparing the sizes of
vertex set intersections of all (r;’) + (m'z“ ) pairs of k-plexes within time
slices. Similarly, the dynamic communities between times t and ¢t + 1 are
determined by comparing the sizes of vertex set intersections of all m,m,, pairs of
k-plexes across time slices. Let d; be the number of vertices in the largest maximal
k-plex in time slice ¢, and d = max(d,, d;, ). Then each pairwise comparison is O
(dlogd) complexity using a standard merge sort. Subsequently, breadth-first-search
determines the connected components in O(m, + m, ) time. In total, letting m =
max(m,m,1), identifying communities from time ¢ to ¢+ 1 has a worst-case
complexity of at least O(dlogdm?). Empirical results indicate that our modified BK

algorithm for identifying maximal k-plexes in a graph has time complexity that is
output sensitive and performs, experimentally, as sub-exponential.

In practice, several steps are taken to increase computational efficiency. Within
StatComm the secondary graph G* is never explicitly constructed. Rather, we
simply compute the overlap between all pairs of k-plexes and determine
community labels accordingly. We use a threshold of (m — 1) when considering the
vertex overlap between k-plexes to build the plex graph and find its connected
components. Finally, to avoid having to build a 2p x 2p adjacency matrix from each
of the enhanced multi-slice graphs G;” we employ a strategy that has been shown
(using exhaustive enumeration) to be almost exact for DPPM parameters up to
(5,3). Specifically, our heuristic measures the overlap between all pairs of
communities found at time steps ¢ and ¢+ 1 and labels them as the same
community if the overlap is greater than m — 1 vertices. This approach is almost
exact in the sense that, when applying DPPM for plexes of size m, it reproduces the
results of the formal algorithm (i.e., based on the exact rule walking across time
slices) except that when encountering an m-cycle, which is matched with its
isomorphic motifs (e.g., hourglass to square and vice-versa for size 4). We do not
expect this approximation to impact the network communities of interest here for
two reasons. First, cycle and isomorphic motifs are unlikely due to transitive
connections common in correlation networks®®. Second, the size of the
communities we observe typically exceeds 4 or 5 nodes, so that alternative plexes
could stitch the communities in time. We view these trade-offs as acceptable when
held against the significant computational improvements the approximation brings
when applied to the functional networks of interest here. We find that, in practice,
DPPM tends to run in less time than MMM and CPM (Supplementary Fig. 7).

Existing dynamic community detection methods. In addition to DPPM, we
apply two other dynamic community detection methods already in existence. We
implement MMM following the procedure described in ref. 1° and using the
MATLAB code (including the GenLouvain function) available at http://netwiki.
amath.unc.edu/GenLouvain/GenLouvain, Version 2.1. An additional post-
processing step was applied to refine the results: we discard identified communities
that are deemed too small (here, size strictly lower than 3) and too short-lived (only
found for one time step). We implement CPM following the procedure described
in!'8 and using in-house MATLAB code available at the repository associated with
this paper (see “Code availability”).

To estimate the dynamic communities in MMM requires optimization of a
quality function with respect to a chosen null model. Different choices exist®?,
including approaches that account for functional networks (i.e., networks derived
from time series data0), which may alter features of the dynamic communities
detected (e.g., the number and size of communities). Here we choose the standard
null model (the Newman-Girvan null model), which may detect fewer
communities of larger size than other approaches3?. While this choice of null
model is common in analysis of neural data?!:232526:41 jlternative choices (e.g.,
Erdds-Rényi) tailored to specific applications may enhance performance. In
addition, we note that in practice examination of dynamic functional brain
networks requires a comparison of the extracted statistics (such as the module
allegiance, flexibility, or laterality) to those expected in a random network null
model®0. This can be done with post-optimization null models, for which different
choices exist (e.g., temporal, nodal, and static)?(. Because we know the true
network structure in the simulated data, we did not examine such post-
optimization null models here.

While the focus of our work here is specifically motivated by the problem of
characterizing the evolution of functional connectivity networks during epileptic
seizures, and the details and design choices underlying the proposed DPPM derive
directly therefrom, there is of course a large and active literature on dynamic
community detection in general. The recent survey by Rosetti and Cazabet33 offers
a concise summary of the literature to date, organized according to a certain
taxonomy (see their Fig. 4), with the three main classes of instant-optimal
communities discovery, temporal trade-off community discovery, and cross-times
communities discovery. In the language of that paper, DPPM is of the third type,
specifically of the sub-type evolving memberships, evolving properties. CPM, in
contrast, is a method primarily of the first type but arguably with some
characteristics of the second type. Finally, MMM is of the third type. The choice of
these two algorithms as competitors in our numerical work is therefore
representative in the sense that MMM allows for comparison within the same class
as DPPM, while CPM allows for comparison across the classes. However, it would
be of independent interest—although beyond the scope of the current paper—to
evaluate the performance of DPPM broadly, against many methods and on a large
compendium of networks.

Patients and recordings. The patient analyzed in Fig. 5a-h was a 37-year-old male
with medically intractable focal epilepsy who underwent clinically indicated
intracranial cortical recordings using grid electrodes for epilepsy monitoring.
Clinical electrode implantation, positioning, duration of recordings and medication
schedules were based purely on clinical need as judged by an independent team of
physicians. The patient was implanted with intracranial subdural grids, strips, and
depth electrodes (Adtech Medical Instrument Corporation) for 10 days in a spe-
cialized hospital setting and continuous ECOG data were recorded (500 Hz sam-
pling rate). The reference was a strip of electrodes placed outside the dura and
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facing the skull at a region remote from the other grid and strip electrodes. One to
four electrodes were selected from this reference strip and connected to the
reference channel.

Seizure onset times were determined by an experienced encephalographer
(S.S.C.) through inspection of the ECOG recordings, referral to the clinical report,
and clinical manifestations recorded on video. We selected four seizures to analyze
for this patient. Their durations were respectively 75.94 s, 62.79 s, 60.14 s, 133.16 s.
We included 100 s before seizure onset in each dataset.

The population of patients analyzed in Fig. 5i-1 corresponds to patients P1-P6,
P9, P11, P12, P13, P15, and P16 in Table 1 of ref. 40. We note that, in comparing
patients with different surgical outcomes (Fig. 5k, 1), we treat multiple seizures
from the same patients as independent.

All human subjects were enrolled after informed consent was obtained and
approval was granted by local Institutional Review Boards at Massachusetts
General Hospital and at Boston University according to National Institutes of
Health guidelines.

Deterministic community detection simulation. We consider two networks,
each of seven nodes. The first network, which exists at time ¢, consists of six
edges organized in the adjacency matrix plotted in Fig. 6a. For the second
network, which exists at time ¢ + 1, we consider the three alternative adjacency
matrices plotted in Fig. 6b. The 7-, 8-, and 9-edge networks correspond to
Fig. 1c top, middle, and bottom row of plots, respectively. We apply each
community detection method to the sequence of two networks: (1) the
network at time £, and (2) one of the networks selected at time ¢+ 1.
Because the CPM and MMM do not provide deterministic community
assignments, we repeat each method 100 times on the two-network sequence,
and indicate the proportion of times each node is assigned to one (of two)
communities.

Robustness to noise simulation. To illustrate how the three dynamic community
detection methods perform when functional network inference is corrupted by
false negatives (i.e., missed edges) we perform the following simulation. We begin
with a connected nine-node network with adjacency matrix plotted in Fig. 6c. We
then simulate a dynamic network for 100 time steps, by removing two edges chosen
at random from the adjacency matrix at each time step. We apply each community
detection method to the resulting sequence of 100 networks.

Dynamic network simulations. We construct simulated network data motivated
by multi-electrode brain voltage recordings. To do so we consider a 64-electrode
recording, and generate benchmark dynamic network models using the algorithm
defined in ref. ®! and available at https://github.com/MultilayerGM/Multilayer GM-
MATLAB, Version 1.0.1. For each simulation scenario, we implement a multilayer
partition (S) with 64 nodes and either 100 time points (Split, Merge) or 140 time
points (Expand, Contract), as described in the following subsections. For con-
creteness, we assume each layer of the multilayer network represents a functional
network inferred for a 1s interval; i.e., the total duration of a simulated dynamic
networks is either 100 s (Split, Merge) or 140 s (Expand, Contract). For each
community detection method and for each parameter set investigated for this
method, we repeat each simulation scenario 100 times, with different realizations of
the multilayer partition S. The parameter sets evaluated for each method are as
follows: DPPM (m,k) = (4,1), (4,2), (4,3), (5,1), (5,2) and (5,3); CPM minimum
clique size of 3, 4, and 5; MMM all combinations of y = {0.01,0.1,0.5,1,2}, w =
{0.01,0.1,0.5,1,2,5,10}.

Simulation scenarios. In each simulation scenario we define a multilayer partition S
to create dynamic communities that evolve in time. To compute the adjacency
matrices for each layer, we fix the parameters in ref. ! as follows: exponent for the
power law degree distribution of —2, minimum degree of 3, maximum degree of 20,
mixing parameter of 0, maximum number of rejections for a single block of 100.

0

7 edges

Split: splitting of one community into two communities. In this scenario, we
simulate three dynamic communities ¢;, ¢, and c;. Each consists of 15 nodes. We
divide the timeline of this scenario into 5 intervals of duration 20 s each, as follows
(Fig. 3b):

(1) Initially each node is assigned a random community label (a randomly
chosen integer between 1 and 64) for each layer (i.e., 1) of the 20 s interval.
No dynamic communities exist.

(2) Only community c, is active; each node receives the same community label.

(3) Communities ¢; and c3 become active; each node receives the same
community label as c,.

(4) Community ¢, becomes inactive (each node receives a random community
label), and only communities ¢; and c; remain.

(5) Communities ¢; and c¢; become inactive; all nodes receive a random
community label, as in (1).

Merge: merging of two communities into one community. Conceptually, this
simulation is the converse of the split scenario. We again simulate three dynamic
communities ¢;, ¢; and ¢;, each consisting of 15 nodes. We divide the timeline of
this scenario into 5 intervals of duration 20 s each, as follows (Fig. 3c):

(1) Initially no communities are active; each node is assigned a random
community label (a randomly chosen integer between 1 and 64) for each
layer (i.e., 1's) of the 20 s interval.

(2) Communities ¢; and c¢; become active (each node receives the same
community label), without any nodes in common.

(3) Community ¢, becomes active, and receives the same community label as ¢;
and c;.

(4) Communities ¢; and c¢; become inactive (each node is assigned a random
community label), and only ¢, remains.

(5) Communities ¢, becomes inactive; all nodes receive a random community
label, as in (1).

Expand: one community expands. In this simulation, we simulate five commu-
nities ¢;, ..., cs. We divide the timeline of this scenario into seven equal intervals
(20 s duration), such that in each interval we add additional nodes to the com-
munity, as follows (Fig. 2):

(1) Initially each node is assigned a random community label (a randomly
chosen integer between 1 and 64) for each layer (i.e., 1s) of the 20 s interval.
During this interval, no organized community structure exists.

(2) Community ¢; with 15 nodes becomes active; each node receives the same
community label.

(3) Community ¢, with 10 nodes becomes active; each node receives the same
community label as ¢;.

(4) Community ¢; with 10 nodes becomes active, and each node receives the

same community label as ¢; and ¢,.

We continue to add communities in each interval (i.e., community ¢, with

10 nodes becomes active) until all 5 communities have been recruited.

(7) All communities become inactive; all nodes receive a random community
label, as in (1).

(5,6)

Contract: one community contracts. Conceptually, this simulation is the converse
of the scenario Expand. In practice, we implement this scenario, by first performing
all of the steps in the Expand simulation. We then reverse the indexing of the time
axis for all nodes (i.e.,, the last instance of activity in the Expand simulation
becomes the first instance of activity in the Contract simulation). Doing so results
in the following intervals of activity (Fig. 3a):

(1) Initially all communities are inactive; all nodes receive a random community
label.

(2) All communities (cy, ..., c5) are active.

(3) Community cs becomes inactive.

8 edges

9 edges

Fig. 6 lllustration of simple simulated networks. Adjacency matrices in which black at coordinate (j, j) indicates an edge from node i to node j. a Seven
node network at time t. b Seven node networks at time t 41, with 7, 8, and 9 edges. Red indicates edges added to the leftmost network. ¢ Nine node

network.
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(4) Community ¢, becomes inactive.
(5,6) We continue to remove communities in each interval (i.e., community ¢,
becomes inactive), until all communities have been removed.
(7) No communities are active.

Functional connectivity inference. We apply here a method previously developed
in ref. 28 and applied in refs. 566263, We outline here our specific data analysis
approach; a detailed discussion of the measure, including its statistical properties
and simulation results, may be found in ref. 8. Before applying the coupling
analysis, we process the time series data in the following way. First, we apply a
zero-phase forward and reverse finite impulse response filter of order 1000 to
bandpass filter the data between 4 and 50 Hz. Next, we divide the data into 1s
windows with 0.5 s overlap. Finally, we normalize the data from each electrode
within the 1s window to have zero mean and unit variance. We note that we do
not re-reference the in vivo data, although the choice of reference can affect the
coupling statistics. We use a measure of significant cross correlation, corrected for
multiple comparisons, to construct a functional network for each 1's window?$. To
assess the variability of the cross correlation across lags, we compute the average
variance of the cross correlation between all node pairs and all 1s epochs for the
entire dataset; this provides a common measure of variability that we apply to
assess the significance of each correlation statistic?364,

Network assessments. In order to compare how well each dynamic community
method tracked each scenario, we determined the similarity between the largest

identified community ¢;(¢) and the true community, c7{(t), at time t. We compute
the sensitivity S* and specificity S~, defined as follows, to quantify this similarity:

St = TP/(TP + EN),

S~ =TN/(IN + FP),

where
TP = Z ler(t) N (t
FN = Z lep(8) Ne ()
FP = Z lep () Ny (t
TN = ZlCT Ne (1),

and the overbar indicates the logical not function.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The seizure data that support the findings of this study are available on request from the
authors. The data are not publicly available due to them containing information that
could compromise research participant privacy/consent.

Code availability

All analyses and modeling were performed using custom designed algorithms written in
MATLAB (MathWorks, Inc). The complete analysis pipeline including the code for
simulating the different scenarios is available for re-use and further development at the
repository: https://github.com/Eden-Kramer-Lab/dppm. We note that, in the software
developed to implement the analysis described here, we have made important aspects of
the preprocessing (e.g., type and band of filtering, choice of reference) and network
inference (e.g., type of method) easily swappable. Therefore, the interested reader may
replace these choices with alternative approaches appropriate for his or her data, and
implement the dynamic community tracking algorithm.
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