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Poultry is a major source of human foodborne illness caused by broad host range
Salmonella serovars (paratyphoid), and developing cost-effective, pre-harvest
interventions to reduce these pathogens would be valuable to the industry and
consumer. Host responses to infectious agents are often regulated through
phosphorylation. However, proteomic mechanisms of Salmonella acute infection
biology and host responses to the bacteria have been limited concentrating
predominately on the genomic responses of the host to infection. Our recent
development of chicken-specific peptide arrays for kinome analysis of host
phosphorylation-based cellular signaling responses provided us with the opportunity to
develop a more detailed understanding of the early (4-24 h post-infection) host-pathogen
interactions during the initial colonization of the cecum by Salmonella. Using the chicken-
specific kinomic immune peptide array, biological pathway analysis showed infection with
S. Enteritidis increased signaling related to the innate immune response, relative to the
non-infected control ceca. Notably, the acute innate immune signaling pathways were
characterized by increased peptide phosphorylation (activation) of the Toll-like receptor
and NOD-like receptor signaling pathways, the activation of the chemokine signaling
pathway, and the activation of the apoptosis signaling pathways. In addition, Salmonella
infection induced a dramatic alteration in the phosphorylation events of the JAK-STAT
signaling pathway. Lastly, there is also significant activation of the T cell receptor signaling
pathway demonstrating the initiation of the acquired immune response to Salmonella
infection. Based on the individual phosphorylation events altered by the early Salmonella
infection of the cecum, certain conclusions can be drawn: (1) Salmonella was recognized
by both TLR and NOD receptors that initiated the innate immune response; (2) activation
of the PPRs induced the production of chemokines CXCLi2 (IL-8) and cytokines IL-2, IL-6,
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IFN-a, and IFN-g; (3) Salmonella infection targeted the JAK-STAT pathway as a means of
evading the host response by targeting the dephosphorylation of JAK1 and TYK2 and
STAT1,2,3,4, and 6; (4) apoptosis appears to be a host defense mechanism where the
infection with Salmonella induced both the intrinsic and extrinsic apoptotic pathways; and
(5) the T cell receptor signaling pathway activates the AP-1 and NF-kB transcription factor
cascades, but not NFAT.
Keywords: Salmonella, chicken, kinome, phosphorylation, innate immunity, immune phenotype
INTRODUCTION

Salmonella invasion of the chicken cecum induces a short-lived
inflammation mediated by the increased expression of pro-
inflammatory cytokine and chemokine genes in the intestinal
tissue (Withanage et al., 2005; Setta et al., 2012; Matulova et al.,
2013; Rychlik et al., 2014). The activation of the innate immune
response induces an influx of heterophils (granulocytes) to the
intestine that limits bacterial invasion (Kogut et al., 1994; Kogut
et al., 2012) but does not lead to a pathological inflammation that
is seen in mammals (Foster et al., 2003; Patel and McCormick,
2014). However, this heterophil infiltration of the intestine does
not have a significant protective response against the salmonellae
bacteria that remain in the lumenal side of the ceca. Interestingly,
this inflammatory response is largely resolved by 2-3 days post-
infection (Kogut et al., 2012; Kogut et al., 2016; Kogut et al.,
2017) and is characterized by the reduction of pro-inflammatory
cytokines mRNA transcription in the cecum to non-infected
control levels yet Salmonella can persist in the intestine and be
shed in the feces for several weeks (Withanage et al., 2005).

We have previously used a chicken-specific kinome peptide
array analysis to define changes in cecal tissue phenotype during
the establishment of a Salmonella persistent infection in
chickens. Using the kinome array, we described a Salmonella-
mediated reprogramming of host signaling pathways around 3
days post-infection to be the principal mechanism developed by
the bacteria to establish a successful persistent long-term
colonization in chicken cecum (Kogut et al., 2017). A wide
range of host immune and metabolic pathways acted as
Salmonella targets, including the T cell receptor signaling
pathway, JAK-STAT signaling pathway, the Wnt-Ca2+

signaling pathway, NF-kB signaling, the mTOR and AMPK
metabolic signaling pathways (Kogut and Arsenault, 2015;
Kogut et al., 2017; Kogut and Arsenault, 2017). These
pathways control cellular functions such as immunity and
metabolism and are an indication of the complexity and scale
with which Salmonella infection interferes and thwarts host
defense mechanisms to establish and maintain long-term
cecal colonization.

However, until now, there has been no characterization of the
acute host signaling interactome in the chicken intestine during
the initial (first 24 h) infection with Salmonella. In the murine
Salmonella infection model, Salmonella enterica serovars use
self-induced pathologic inflammation which provides a growth
advantage in the host gut that favors intestinal colonization
(Winter et al., 2010; Winter and Baumler, 2011; Thiennimitr
gy | www.frontiersin.org 2
et al., 2012; Patel and McCormick, 2014). An inflammatory
response is generated in chickens, but the signaling pathways
that are activated or altered are unknown. In this study, we used a
chicken-specific global immunologic peptide array to study the
changes in cecal immune signaling pathways during the first 24 h
following Salmonella Enteritidis infection.
MATERIALS AND METHODS

Ethics Statement
These studies were approved by the Animal Care and Use
Committee (ACUC) at the Southern Plains Agricultural
Research Center, Agricultural Research Service, United States
Department of Agriculture (ACUC #2012007), which meets all
federal requirements as defined in the Animal Welfare Act, the
Public Health Service Policy, and the Humane Care and Use of
Laboratory Animals.

Experimental Animals
Experiments were conducted according to the regulations
established by the United States Department of Agriculture
Animal Care and Use Committee. Broiler chickens used in this
study were obtained from a commercial breeder and were all
the same genetic background and were not vaccinated at any
time. Chicks were placed in floor pens containing wood
shavings, provided supplemental heat, water, and a balanced,
unmedicated corn and soybean meal-based chick starter diet ad
libitum that met or exceeded the levels of critical nutrients
recommended by the National Research Council (1994).
Salmonella was not detected in the feed or from the paper
tray liners.

S. Enteritidis Challenge
A poultry isolate of Salmonella enterica serovar Enteritidis (S.
Enteritidis; (ID 9711771, part 24) was obtained from the
National Veterinary Services Laboratory (Ames, IA, USA), and
was selected for resistance to nalidixic acid and novobiocin and
maintained in tryptic soy broth (Difco Laboratories, Sparks, MD,
USA) containing antibiotics (20 mg/mL nalidixic acid and 25 mg/
mL novobiocin; Sigma Chemical Co.; St. Louis, MO, USA). A
stock culture was prepared in sterile PBS and adjusted to a
concentration of 1 x 109 colony forming units (CFU/mL). The
viable cell concentration of the challenge dose for each
experiment was determined by colony counts on XLT4 agar
June 2022 | Volume 12 | Article 899395
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base plates with XLT4 supplement (Difco) and nalidixic acid and
novobiocin (XLT-NN).

Experimental Design
One-day-old broiler chickens were randomly distributed into
two experimental groups: non-infected control and infected.
Each group contained 15 birds fed a balanced, unmedicated
corn and soybean meal-based diet. Two days post-hatch, all
chickens were orally challenged with either 1 mL of 5 x 106 CFU/
mL S. Enteritidis (infected group) or mock challenged with 1 mL
sterile PBS (non-infected group). At 4, 8 and 24 hours after
challenge, 4 chickens from each group were humanly euthanized;
all euthanasia procedures followed the guidelines set down in the
American Veterinary Medical Association (AVMA) Guidelines
for the Euthanasia of Animals. Cecal contents were analyzed for
S. Enteritidis colonization and cecal tissue was flash frozen in
liquid nitrogen and stored at -80°C for use in the peptide arrays.
The experiment was conducted three times. Therefore, the ceca
from a total of 15 chickens for each of the 2 groups (5 chickens
each in 3 experiments) were used.

Sample Collection to Confirm
Bacteria Presence
The ceca from each chicken were removed aseptically, and the
contents (0.25 g) were added to tetrathionate broth for
enrichment, as well as serially diluted to 1:10, 1:100, 1:1,000, or
1:10,000, and spread onto selection plates. Diluent was produced
by adding tissue to 1 mL Butterfield’s Buffered Phosphate
Diluent [Sigma Aldrich (St. Louis, MO)]. Selection antibiotics
for SE included 20 mg/mL naladixic acid and 25 mg/mL
novobiocin. The plates and enrichment tubes were incubated
at 37°C for 24 h. The presence of resistant SE per gram of cecal
contents was determined by colony counts on the plates.
Contents of enrichment tubes were plated and incubated for
an additional 24 h.

Statistical Analysis of SE Cecal
Colonization
Statistical differences between groups were determined by
analysis of variance (P ≤ 0.05). Means were further separated
for significance with a pair-wise multiple comparison procedure
(Tukey test, P ≤ 0.05). Chi square analysis was used to determine
significant differences between groups in Salmonella cecal
colonization rates. Differences were significant based on the
0.05 level of probability. The enrichment data were expressed
as positive/total chickens (%) and the percent recovery of S.
Enteritidis was compared using the chi-squared test of
independence to determine the significance (P ≤ 0.05) for
these studies.

Chicken-Specific Kinome (Peptide) Array
For the phenotype readout, a peptide array was used to provide
tissue immunometabolism information from the host. At 3
time points (4, 8, and 24 h), 3 whole ceca from 3 randomly
selected birds were defrosted for analysis (27 samples total for
all 3 d). Each sample was weighed to obtain a consistent 40-mg
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
sample for the array. The samples were homogenized with the
Omni International Bead Ruptor Elite (Kennesaw, GA) in 100
mL of lysis buffer (20 mmol Tris-HCl pH 7.5, 150 mmol NaCl, 1
mmol EDTA, 1 mmol ethylene glycol tetraacetic acid, 1%
Triton X-100, 2.5 mmol sodium pyrophosphate, 1 mmol
Na3VO4, 1 mmol NaF, 1 mg/mL leupeptin, 1 g/mL
aprotinin, and 1 mmol phenylmethylsulfonyl fluoride). All
products were obtained from Sigma Aldrich (St. Louis, MO),
unless indicated. After homogenization, the peptide array
protocol was carried out according to Jalal et al. (2009) with
alterations described in the study by Arsenault et al. (2017). The
resulting tissue lysates were applied onto the PepStar peptide
microarrays customized by JPT Peptide Technologies GmbH
(Berlin, Germany) and incubated in a sealed container placed in
a 5% CO2 incubator at 37°C for 2 h. After incubation, sample
residues were washed off the arrays and the arrays were stained
i n pho spho - s p e c ifi c fluo r e s c e n t P roQ D i amond
Phosphoprotein Stain (Life Technologies, Carlsbad, CA, USA)
for 1 h. The arrays were submerged in a destain solution
containing 20% acetonitrile (EMD Millipore Chemicals,
Billerica, MA, USA) and 50 mM sodium acetate (Sigma-
Aldrich, St. Louis, MO, USA) to remove non-phospho-
specific binding. The arrays were scanned in a Tecan
PowerScanner microarray scanner (Tecan Systems, San Jose,
CA, USA) at 532 to 560 nm with a 580-nm filter to detect dye
fluorescence. The images of the scanned array were gridded
manually to fit the phospho-specific spots and extract signal
intensity using GenePix Pro software (version 7.2.29 1,
Molecular Devices, CA, USA). Microsoft Excel 2016
(Redmond, WA).

Data Analysis: Kinome Array
Data normalization was performed for the kinome array, based on
the study by Li et al. (2012) using the PIIKA2 online platform
(http://saphire.usask.ca/saphire/piika/index.html), a tool designed
for in silico analysis of phosphorylation sites (Trost et al., 2013).
The array data were analyzed by conducting variance stabilization
normalization and then performing t test, clustering and pathway
analysis for statistical data. Gene ontology and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
were performed by uploading the statistically significant peptide
lists to the Search Tool for the Retrieval of Interacting Genes
(STRING) (Szklarczyk et al., 2017).
RESULTS

Salmonella Infection
At 4-, 8-, and 24-hours post-infection, animals were
sacrificed, and samples collected. Infection status was
confirmed by Salmonella Enteritidis culturing of cecal
contents and feces from each animal with and without
enrichment. Cultures confirmed that the infected group
displayed Salmonella infection throughout the 24 h
experiment, while Salmonella was not isolated from animals
in the control group (Table 1).
June 2022 | Volume 12 | Article 899395
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Kinome Arrays
Kinome analysis was carried out on the cecal samples from non-
infected and infected chickens. The results from three animals
from each group (S. Enteritidis-infected and non-infected) and
time point were combined to provide a representative result. To
remove any non-specific or baseline phosphorylation signal from
the analysis data from each time point was corrected using the
matched uninfected controls. The kinome data were subjected to
pathway overrepresentation analysis to determine which cellular
pathways/processes are altered under the infected and non-
infected conditions. To ensure that the identified pathways
represent conserved and consistent biological responses, input
data were limited to peptides with a consistent pattern of
differential phosphorylation across the three biological
replicates in at least one of the treatment sets as well as
significant changes (p ≤ 0.05) in phosphorylation level relative
to the non-infected control treatment. These select data from the
three animals were merged to generate a representative data set
for each treatment condition. All peptides that showed
significant phosphorylation changes relative to control (p ≤
0.05) for each time point were input into the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) database
(Szklarczyk et al., 2017). Using STRING functionality, KEGG
pathway results were generated for each dataset.

Biological Process Analysis
We next considered the individual peptide phosphorylation
results generated by the PIIKA2 online analysis platform
(Trost et al., 2013). These data are a series of fold changes and
significance values for each peptide on the array from each
sample analyzed. These values are generated by comparing
treatment/challenge tissue array outputs to non-challenged
control array outputs. The STRING protein-protein interaction
database (Szklarczyk et al., 2017) generates GO Biological
Process terms and a false discovery rate (FDR) which indicates
the likelihood of a biological process being truly represented in
the data and not generated by random chance. The top 10
biological processes for each group were compared to find the
differences between the lists generated for Salmonella-challenged
group and the non-infected control group (Table 2). The results
provided convincing evidence for the significant involvement of
the local cecal immune response, specifically the innate response,
during the first 24 h post-infection with S. Enteritidis.

The STRING generated KEGG pathway results showed
several pathways altered by the S. Enteritidis infection at a
statistically significant level (p ≤ 0.05 false discovery rate
(FDR) corrected). Of particular interest were the immune
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
pathways that contained substantial numbers of peptides that
were significantly differentially phosphorylated at multiple times
over the course of the study. A subset of these pathways is shown
in Table 3. Specifically, there were a total of 139 different
significantly altered phosphorylation events within these 6
immune signaling pathways at the 4-hour post-infection time
point, 120 at the 8-hour time point and another 124 after 24 h
post-infection.

Phosphorylation Events Within
Specific Pathways
Toll-Like Receptor Pathway
Toll-like receptors (TLRs) initiate a rapid activation of innate
immunity by inducing production of pro-inflammatory
cytokines and chemokines. As shown in Table 4 and
Supplemental Figure 1, TLR signaling pathways in the cecum
phosphorylated by S. Enteritidis infection appears to be MyD88-
dependent with: (1) the phosphorylation (activation) of NF-kB
and MAPK signaling pathways and (2) associated with the
phosphorylation of and IRF7 induction of interferon-a/b and
the activation of the JAK-STAT pathway through the
phosphorylation of IFNAR1 receptor.

NOD-Like Receptor Pathway
Cecal infection by S. Enteritidis induced the activation of the
NOD-like receptor (NLR) signaling pathway within 4-hours
post-infection probably via the prototypic NOD-1 pathway
which sense the cytosolic presence of bacterial peptidoglycan
fragments that escaped from endosomal compartments, driving
the activation of both the NF-kB and MAPK signaling
pathways. Based on the phosphorylation events shown in
Table 5 and Supplemental Figure 2, the NOD-1 pathway is
characterized by the phosphorylation of RIP2, CARD9, TRAF2,
TAK1, TAB that leads to the activation of IkB that activates the
NF-kB pathway that leads to pro-inflammatory cytokine and
chemokine production and the phosphorylation (activation) of
the MAPK (ERK1/3, JNK1, and p38 proteins) and AP-1
(FOS and JUN) signaling pathways that results in pro-
inflammatory cytokine and chemokine production (Table 5;
Supplemental Figure 3).

Chemokine Signaling Pathways
Following infection with S. Enteritidis, a number of chemokine
signaling-associated pathways were found to be altered when
compared to the non-infected control tissues: MAPK-JAK-STAT
signaling pathways (Table 6A), the PI3K signaling pathway
(Table 6B), and the CCR5P-PLC-PKC signaling pathway
(Table 6C) (Supplemental Figure 3). The most consistent
observation in all three downstream pathways regardless of
ultimate functional activity is that there was a change in the
phosphorylation state of a significant number of proteins within
the pathway induced within 4 hours of infection, maintained
through 8 hours post-infection, but essentially returned to
control levels by 24 hours post-infection. These data provide
evidence that the NF-kB-mediated activation of pro-
inflammatory functions induced by the MAPK-JAK-STAT
signaling pathways (Table 6A), the actin cytoskeleton
TABLE 1 | Number of Salmonella organisms in cecal contents of chickens after
oral administration on day 1 of agea.

Mean log10 CFU of Salmonella enterica serovar Enteritidis of tissue (SEM)
at h post-inection

4 h 8 h 24 h

4.71 (0.41) 4.77 (0.33) 6.12 (0.51)
aOral infection with 1 x 105 CFU/bird Salmonella enterica serovar Enteritidis ay day-of-age
broiler chickens. Viable counts are mean values from five birds at each time point.
June 2022 | Volume 12 | Article 899395
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regulation and leukocyte migration activity mediated by the
PI3K signaling pathway (Table 6B), and the migration, NO
induction, and ROS production mediated by the CCR5P-PLC-
PKC signaling pathway (Table 6C) are rapidly induced by the
host in response to the bacterial colonization. Chemokine-
mediated signaling leading to cytoskeletal rearrangements
allow cell polarization towards the chemokine gradient that
will lead to acquisition of a migratory phenotype (Wang
et al., 2013).

Apoptosis Signaling Pathway
Early infection of the chicken cecum by S. Enteritidis appears to
trigger apoptosis via both intrinsic and extrinsic pathways
(Table 7; Supplemental Figure 4). Both the Fas and TNFR1
death receptors were activated by phosphorylation by 8 h post-
infection. The extrinsic pathway via Fas is stimulated by the
binding of the Fas ligand to the Fas receptor which the
phosphorylated FADD (Fas-associated death domain) which
activates (phosphorylates) the initiator caspase, caspase 8
(CASP8). CASP8 the activates (phosphorylates) caspase 3 that
results in the subsequent apoptosis. Remarkably, the TNFR1
receptor appears to activate both the extrinsic and intrinsic
apoptosis pathways during early infection of the cecum by S.
Enteritidis. Like the Fas receptor, TNFR1 activates the extrinsic
pathway by activating the FADD !CASP8!CASP3 cascade.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
TNFR1 also activates the intrinsic pathway by activating
(phosphorylating) the RIPK1 (receptor interacting serine/
threonine protein kinase 1) and TRAF2 (TNF-R associated 2)
adaptor protein complex. This complex phosphorylates ASK
(Apoptosis signal-regulating kinase 1) which activates c-Jun N-
terminal kinase (JNK). JNK then activates the two pro-apoptotic
proteins BAD (BCL2 associated agonist of cell death) and BID
(BH3 interacting-domain death agonist) which initiate apoptosis
by forming a pore in the mitochondrial outer membrane that
allows cytochrome c to escape into the cytoplasm and activate the
pro-apoptotic caspase cascade. Lastly, the X-linked inhibitor of
apoptosis protein (XIAP), whose function when phosphorylated,
is to inhibit apoptosis was, in fact, dephosphorylated in the S.
Enteritidis-infected tissue. The dephosphorylation of XIAP blocks
the activation of an apoptosis inhibitory pathway during
Salmonella infection.

JAK-STAT Signaling Pathway
The Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) signaling pathway is a mutual conduit of
many cytokine signal transductions involved in cell proliferation,
apoptosis, differentiation, and inflammatory response. The JAK-
STAT pathway is fundamental for inhibiting the inflammatory
response, initiating innate immunity, and coordinating adaptive
immune mechanisms (O’Shea et al., 2015). Within the first 24
TABLE 2 | Top 10 GO Biological processes altered between the Salmonella-infected and noninfected groups at 4, 8 and 24 h post-infection from STRING analysis.

4 hours 8 hours 24 hours

GO ID Term #
peptides

p-value
(FDR)

#
peptides

p-value
(FDR)

#
peptides

p-value
(FDR)

00450857 Innate immune response 91 1.94 x 10-76 80 2.20 x 10-66 74 1.32 x 10-62

0007169 Transmembrane receptor protein tyrosine kinase signaling
pathway

77 7.12 x 10-69 65 2.83 x 10-56 67 7.07 x 10-63

0007167 Enzyme linked receptor protein signaling pathway 81 1.77 x 10-65 69 4.89 x 10-54 73 3.05 x 10-63

0050776 Regulation of immune response 78 3.06 x 10-64 65 2.96 x 10-50 64 3.96 x 10-53

0038093 Fc receptor signaling pathway 55 1.69 x 10-63 51 2.25 x 10-59 48 6.6 x 10-57

0002764 Immune response-regulating signaling pathway 65 2.21 x 10-60 56 6.73 x 10-51 55 3.07 x 10-52

0006955 Immune response 87 5.80 x 10-60 79 3.97 x 10-55 72 1.25 x 10-50

0006952 Defense response 86 6.13 x 10-58 76 6.73 x 10-51 65 1.77 x 10-41

0038095 Fc-epsilon receptor signaling pathway 47 1.79 x 10-56 44 1.19 x 10-53 42 3.07 x 10-52

0002768 Immune response-regulating cell surface receptor signaling
pathway

58 1.76 x 10-55 52 9.28 x 10-50 50 1.85 x 10-43
June 2022 |
 Volume 12 |
Peptides that displayed a statistically significant change (FDR corrected) in phosphorylation state were input into the STRING database for each time point. GO Biological Process results
for each time point are listed, excluding generic results that are inherent to the analysis such as “protein phosphorylation”, “enzyme linked receptor protein signaling pathway” and
“intracellular signaling transduction”. These provide no relevant data for analysis.
TABLE 3 | Kegg pathways generated by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) with consistent altered phosphorylation across all time points.

4 hours pi 8 hours pi 24 hours pi

GO ID Pathway # peptides p-value (FDR) # peptides p-value (FDR) # peptides p-value (FDR)

hsa04660 T cell receptor signaling pathway 30 8.74 x 10-24 31 8.82 x 10-27 26 3.84 x 10-21

hsa04062 Chemokine signaling pathway 35 4.86 x 10-20 28 8.46 x 10-15 27 1.34 x 10-14

has04620 Toll-like receptor signaling pathway 23 4.55 x 10-15 18 7.98 x 10-11 24 8.76 x 10-18

hsa04630 JAK-STAT signaling pathway 25 1 x 10-13 19 1.85 x 10-9 20 7.18 x 10-11

hsa04621 NOD receptor signaling pathway 12 8.65 x 10-8 8 6.39 x 10-4 12 1.23 x 10-8

hsa04210 Apoptosis 14 1.85 x 10-7 16 1.38 x 10-9 15 2.01 x 10-9
Peptides that displayed a statistically significant change in phosphorylation state were input into the STRING database for each time point. Generated pathways that displayed a p-value of
less than 0.05 (FDR corrected) are listed.
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hours post-infection, a differentiated series of phosphorylation
events occurred at the cytokine receptor level in the S.
Enteritidis-infected birds when compared to the non-infected
control birds (Table 8). First, a significant increase in
phosphorylation of the interferon-alpha receptor (IFNAR1),
interferon-gamma receptor (IFNGR1), interleukin-2 receptor
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
(IL2RB), and IL6ST (gp130) (Table 8). Simultaneously, there is
a significant decrease on the phosphorylation of the IL-4 receptor
(IL-4R) at all time points. Interestingly, there was no change in
the phosphorylation of the IL-7 receptor (IL-7R) from the non-
infected controls at 4 and 8 h pi, but was significantly
dephosphorylated at 24 h p.i. The IL10R was only significantly
TABLE 4 | Members of the TLR signaling pathway showing differential phosphorylation between Salmonella enterica serovar Enteritidis-infected cecal tissue and non-
infected cecal tissue.

4 hours pi 8 hours pi 24 hours pi

Peptide name UniProt ID p-site* Fold change p-value Fold change p-value Fold change p-value

AKT1 P31749 S473 1.245 0.000 1.126 0.030 1.361 0.00002
AKT3 Q94243 S472 1,278 0.00006 1.175 0.016 – –

PIK3R1 P27986 S608 1.907 0.000 1.107 0.014 – –

PIK3R2 O00459 Y612 1.670 0.006 1.521 0.036 – –

IFNAR1 P17181 S547 1.408 0.000 1.305 0.000 1.155 0.003
TIRAP P58753 Y179 1.119 0.027 1.205 0.000 – –

FOS P01100 S349 1.199 0.004 – – 1.187 0.005
CHUK Q015111 S194 1.086 0.017 – – 1.262 0.002
IRF7 Q92985 S464 1.393 0.00002 – – 1.223 0.009
CASP8 Q14790 S347 1.335 0.0003 1.095 0.36 1.305 0.001
NFkB-p105 P19838 S342 1.803 0.00001 1.233 0.004 – –

MEK4 P45984 S49 1.322 0.001 – – – –

p38 Q16539 Y323 1.314 0.005 1.136 0.038 1.228 0.03
TAK1 O43318 S446 1.16 0.006 – – – –

MEK1 Q02750 S300 1.132 0.036 1.231 0.0003 1.105 0.02
ERK1 P27361 T193 1.16 0.029 1.194 0.00001 – –

JNK1 P45983 Y185 1.41 0.927 ND 0.193 1.201 0.023
TRAF2 Q12933 T117 1.091 0.027 1.178 0.0003 1.091 0.031
RAC1 P63000 S71 1.242 0.0004 1.23 0.0004 1.314 0.00001
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Selection of peptides differentially phosphorylated between non-infected group and S. Enteritidis challenge group in the cecum. The UniProt ID identifies the protein, while the p-site
identifies the specific phosphorylation target site on that protein. Fold-Change indicates the directionality of phosphorylation status for each treatment compared to control. The p-value is
the measure of significance (a = 0.05). UniProt IDs and p-site correspond to human proteins for annotation purposes. ND = no statistical difference in phosphorylation between S.
Enteritidis-infected and non-infected tissue.
*= Phosphorylation site.
TABLE 5 | Members of the NOD-like receptor signaling pathway showing differential phosphorylation between Salmonella enterica serovar Enteritidis-infected cecal
tissue and non-infected cecal tissue.

4 hours pi 8 hours pi 24 hours pi

Peptide name UniProt ID p-site* Fold change p-value Fold change p-value Fold change p-value

NFkB-p105 P19838 S342 1.803 0.00001 1.233 0.004 – –

p38 Q16539 Y323 1.314 0.005 1.136 0.038 1.228 0.03
TAK1 O43318 S446 1.16 0.006 – – 1.215 0.03
ERK1 P27361 T193 1.16 0.029 1.194 0.00001 – –

JNK1 P45983 Y185 1.41 0.927 – – 1.201 0.023
FOS P01100 S349 1.199 0.004 – – 1.187 0.005
JUN P05412 S69 1.138 0.032 1.178 0.033 – –

CHUK Q015111 S194 1.086 0.017 – – 1.262 0.002
RIPK2 Q13546 Y384 1.170 0.047 1.151 0.001 – –

XIAP P98170 S87 -1.752 0.00001 – – -1.312 0.010
TRAF2 Q12933 T117 1.091 0.027 1.178 0.0003 1.091 0.031
CARD9 Q9H257 S238 1.227 0.006 – – 1.217 0.001
TAB3 Q8N5C8 S60 1.134 0.037 1.214 0.003 1.097 0.032
ERK3 Q16659 S189 1.314 0.0002 1.212 0.000 – –

IkB P25963 Y46 1.193 0.038 1.178 0.009 – –
Selection of peptides differentially phosphorylated between non-infected group and S. Enteritidis challenge group in the cecum. The UniProt ID identifies the protein, while the p-site
identifies the specific phosphorylation target site on that protein. Fold-Change indicates the directionality of phosphorylation status for each treatment compared to control. The p-value is
the measure of significance (a = 0.05). UniProt IDs and p-site correspond to human proteins for annotation purposes.
*= Phosphorylation site.
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dephosphorylated at 4 h pi with no change from the control at 8
and 24 h p.i. (Table 8).

Early infection of the cecum by S. Enteritidis appears have
differential effects in the JAK kinases. JAK1 and TYK2 are targets
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
for dephosphorylation at 4 h and 4-24 h p.i., respectively;
whereas JAK2 and JAK3 were significantly phosphorylated by
S. Enteritidis infection when compared to the non-infected
controls (Table 8).
TABLE 6A | Members of the chemokine signaling pathway showing differential phosphorylation between Salmonella enterica serovar Enteritidis-infected cecal tissue
and non-infected cecal tissue: MAPK and JAK-STAT signaling pathways.

4 hours pi 8 hours pi 24 hours pi

Functions Peptide name UniProt ID p-site* Fold change p-value Fold change p-value Fold change p-value

Cytokine production

Cellular growth & development

Cell survival

Apoptosis

Cell migration

Src P12931 S17 2.136 0 1.268 0.02 – –

Shc1 P29353 Y47 1.36 0 -1.249 0.01 – –

GRB2 P62993 Y209 – – 1.129 0.001 – –

SOS1 Q07889 S1208 1.708 0.004 1.42 0.006 1.992 0.042
H-RAS P01112 T35 1.695 0.001 1.26 0 – –

Raf-1 P10398 S343 1.219 0.003 1.287 0.032 – –

MEK1 Q02750 S300 1.133 0.037 1.231 0.0003 1.105 0.02
ERK1 P27361 T193 1.160 0.029 1.194 0 – –

CHUK
(IkkA)

O15111 S194 1.086 0.017 – – 1.262 0.002

NFkB1A
(IkB)

P25963 1.193
-

1.086

0.04
-

0.02

1.178
-
-

0.01
-
-

-
-

1.262

-
-

0.003

1.193
-

1.086
NFkB-p105 P19838 S342 1.803 0.00001 1.233 0.004 – –

NFkB-p100 QOO653 S872 1.926 0 1.214 0.02 – –

JAK2 O60674 Y219 1.118 0.006 1.512 0.000 1.073 0.05
JAK3 P52333 Y980 1.135 0.032 1.185 0.017 1.217 0.0004
STAT5B P51672 Y740 2.208 0 1.073 0.029 1.514 0.006
June 2022 | Vo
lume 12 | Article
Selection of peptides differentially phosphorylated between non-infected group and S. Enteritidis challenge group in the cecum. The UniProt ID identifies the protein, while the p-site
identifies the specific phosphorylation target site on that protein. Fold-Change indicates the directionality of phosphorylation status for each treatment compared to control. The p-value is
the measure of significance (a = 0.05). UniProt IDs and p-site correspond to human proteins for annotation purposes.
*= Phosphorylation site.
TABLE 6B | Members of the chemokine signaling pathway showing differential phosphorylation between Salmonella enterica serovar Enteritidis-infected cecal tissue
and non-infected cecal tissue: PI3K signaling pathway.

4 hours pi 8 hours pi 24 hours pi

Functions Peptide name UniProt ID p-site* Fold change p-value Fold change p-value Fold change p-value

Cytokine production

Leukocyte migration

Chemotaxis
Actin cytoskeleton regulation

Cellular shape change

PIK3R1 P27986 S608 1.907 0 1.107 0.014 – –

PIK3R2 O00459 Y612 1.670 0.006 1.521 0.036 – –

AKT1 P31749 S473 1.245 0.03 1.126 0.03 1.361 0
CHUK
(IkkA)

O15111 S194 1.086 0.017 – – 1.262 0.002

NFkB1A
(IkB)

P25963 1.193
-

1.086

0.04
-

0.02

1.178
-
-

0.01
-
-

-
-

1.262

-
-

0.003

1.193
-

1.086
NFkB-p105 P19838 S342 1.803 0.00001 1.233 0.004 – –

NFkB-p100 QOO653 S872 1.926 0 1.214 0.02 – –

ITK Q08881 Y523 2.136 0 1.268 0.2 1.194 0.016
CDC42 P60953 Y64 1.418 0 1.218 0.005 – –

WASP P42786 Y256 1.484 0 1.272 0.04 – –

RhoA P61586 S188 – – – – -1.174 0
ROCK2 O75116 Y500 1.231 0.002 -1.266 0 -1.168 0.01
FAK Q05397 Y397 1.220 0.001 -1.263 0 -1.143 0.001
CRK P46108 Y252 1.806 0.001 – – -1.402 0
PYK2 Q14289 Y405 1.259 0.001 – – -1.402 0
PAK1 Q13153 T212 1.442 0.019 1.275 0.04 – –

RAC1 P63000 S71 1.252 0 1.23 0 1.314 0
Selection of peptides differentially phosphorylated between non-infected group and S. Enteritidis challenge group in the cecum. The UniProt ID identifies the protein, while the p-site
identifies the specific phosphorylation target site on that protein. Fold-Change indicates the directionality of phosphorylation status for each treatment compared to control. The p-value is
the measure of significance (a = 0.05). UniProt IDs and p-site correspond to human proteins for annotation purposes.
*= Phosphorylation site.
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Additionally, early infection of the cecum by S. Enteritidis
appears to target most STAT proteins (STAT1, STAT3, STAT4,
STAT6) which were all significantly dephosphorylated during
the first 24 h p.i. The lone exception was STAT5B which was
significantly phosphorylated at Tyr749 at all three early post-
infection time points following infection with S. Enteritidis.

It should also be noted that the suppressor of cytokine
signaling 3 (SOCS3) was dephosphorylated during the entire
initial 24 hours of S. Enteritidis infection.

T Cell Receptor Signaling Pathway
T cells need two signals to become fully activated. Signal 1 is
provided by the T-cell receptor when recognizing a specific
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
antigen associated with major histocompatibility complex
molecules. Signal 2 comes from co-stimulatory receptors such
as CD28, presented on the surface of other immune cells. It is
expressed only when an infection was detected by the innate
immune system. Engagement of the T cell receptor through these
2 signals results in a series of signaling cascades that lead to T-cell
proliferation, cytokine production and differentiation into
effector cells (Smith and Gobel, 2022). These protein cascades
lead to the activation of transcription factors. Transcription
factors involved in T cell signaling pathway are the NFAT, NF-
kB and AP1 (Smith and Gobel, 2022). Specifically, TCR
activation results in the phosphorylation and activation of the
lymphocyte-specific protein tyrosine kinase. Phosphorylation of
TABLE 6C | Members of the chemokine signaling pathway showing differential phosphorylation between Salmonella enterica serovar Enteritidis-infected cecal tissue
and non-infected cecal tissue: CCR5P-PLC-PKC signaling pathway.

4 hours pi 8 hours pi 24 hours pi

Functions Peptide name UniProt ID p-site* Fold change p-value Fold change p-value Fold change p-value

Degranulation
NO induction

Migration

ROS production

CCR5 P51681 S276 1.412 0 1.088 0.03 1.234 0
PKCA P1752 S659

T640
1.35
2.09

0.001
0

-
-

-
-

-
-

-
-

INOS P35228 Y148 1.263 0 -1.537 0 – –

FAK Q05397 Y397 1.220 0.001 -1.263 0 -1.143 0.001
CRK P46108 Y252 1.806 0.001 – – -1.402 0
PYK2 Q14289 Y405 1.259 0.001 – – -1.402 0
NCF10
(p47phox)

P14598 S360 1.086 0.029 1.170 0.03 – –
June 2022 |
 Volume 12 | Article
Selection of peptides differentially phosphorylated between non-infected group and S. Enteritidis challenge group in the cecum. The UniProt ID identifies the protein, while the p-site
identifies the specific phosphorylation target site on that protein. Fold-Change indicates the directionality of phosphorylation status for each treatment compared to control. The p-value is
the measure of significance (a = 0.05). UniProt IDs and p-site correspond to human proteins for annotation purposes.
*= Phosphorylation site.
TABLE 7 | Members of the apoptosis signaling pathway showing differential phosphorylation between Salmonella enterica serovar Enteritidis-infected cecal tissue and
non-infected cecal tissue.

4 hours pi 8 hours pi 24 hours pi

Peptide name UniProt ID p-site* Fold change p-value Fold change p-value Fold change p-value

TRAF2 Q12933 T117 1.091 0.027 1.178 0.0003 1.091 0.031
CHUK Q015111 S194 1.086 0.017 – – 1.262 0.002
XIAP P98170 S87 -1.752 0.00001 – – -1.312 0.010
cFLAR O15519 Y283 1.392 0.00004 – – 1.191 0.0009
CASP6 P55212 S268 2.14 0.000 1.325 0.0011 – –

CASP8 Q14790 Y383 1.335 0.0003 1.095 0.035 1.305 0.001
CASP8 Q14790 S350 – – 1.095 0.014 1.225 0.003
BAD Q92934 S112 1.180 0.00002 1.05 0.044 1.110 0.018
NTRK1
(TrkA)

P04629 Y785 -1.368 0.004 -1.471 0.0006 -1.192 0.039

RIPK1 Q13546 Y384 1.170 0.047 1.151 0.001 – –

FAS P25445 Y265 – – 1.316 0.0004 1.295 0.002
RelA
(NF-kB p65)

Q04206 S281 1.098 0.041 1.294 0.0002 1.116 0.0007

CASP3 P42574 S158 – – 1.173 0.0002 1.161 0.045
BID P55957 Y56 1.008 0.046 1.029 0.033 1.122 0.037
TNF-R1 P19438 Y343 – – 1.355 0.002 1.196 0.041
ASK-1 Q59GL6 S852 – – 1.203 0.008 1.158 0.011
JNK P45938 Y185 1.402 0.000 – – 1.201 0.023
Selection of peptides differentially phosphorylated between non-infected group and S. Enteritidis challenge group in the cecum. The UniProt ID identifies the protein, while the p-site
identifies the specific phosphorylation target site on that protein. Fold-Change indicates the directionality of phosphorylation status for each treatment compared to control. The p-value is
the measure of significance (a = 0.05). UniProt IDs and p-site correspond to human proteins for annotation purposes.
*= Phosphorylation site.
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Lck can lead to the activation of two transcription factors, NFAT
via phospholipase C and AP-1 through MAPK signaling
pathway (Salmond et al., 2009; Smith-Garvin et al., 2009; Nika
et al., 2010; Van der Merwe and Dushek, 2011). The third
transcription factor, NF-kB can be activated through the
stimulation of the co-stimulatory molecule CD28 via the
phosphoinositide 3-kinase (PI-3K) pathway (Smith and
Gobel, 2022).
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Analysis of the T cell receptor signaling pathway revealed
several significant changes in phosphorylation events (Table 9):

First, the three transcription factors (NFAT, AP-1, and NF-
kB) exhibited differential phosphorylation activity within 4-8 h
post infection with S. Enteritidis with a return to control levels by
24 h (Table 9). The significant phosphorylation of the members
of the NFAT family n the ceca of S. Enteritidis-infected chickens
(Table 9) is a meaningful finding because inactivated NFAT
TABLE 8 | Members of the JAK-STAT signaling pathway showing differential phosphorylation between Salmonella enterica serovar Enteritidis-infected cecal tissue and
non-infected cecal tissue.

4 hours pi 8 hours pi 24 hours pi

Peptide name UniProt ID p-site* Fold change p-value Fold change p-value Fold change p-value

IFNGR1 P15260 Y416 1.652 0 1.450 0 – –

IFNAR1 P17181 S547
Y486

1.408
-

0
-

1.305
-1.468

0
0

1.155
1.166

0.01
0.05

JAK1 P23458 Y1028 – – – – -1.19 0.002
JAK2 O60674 Y1004

Y219
1.114
1.118

0.01
0.01

-
1.512

-
0

-1.165
-

0.03
-

JAK3 P52333 Y980
Y938

1.135
1.302

0.03
0.02

1.185
-

0.02
-

1.217
1.145

0
0.01

TYK2 P29697 Y35 -2.502 0 – – -1.451 0.03
STAT1 P42224 S729 -1.61 0.01 – – -1.19 0.001
STAT3 P40763 Y706

S728
-2.40 0.002 -2.235 0.002 – –

STAT4 Q14765 S722
Y694

-1.234
-2.236

0.05
0.002

-
-

-
-

1.041
-

0.04
-

STAT5B P51692 Y740
Y699

2.207
-1.60

0.001
0

1.073
-

0.03
-

1.514
-1.09

0.01
0.002

STAT6 P42226 Y236 -1.205 0.001 -1.173 0.05 – –

IL2RB P14784 Y464
Y270

1.75
-

0
-

1.09
-1.102

0.02
0.004

1.57
-

0
-

IL10RA Q13651 Y475 -1.178 0.01 – – – –

IL4R P24394 Y230 -1.641 0 -1.285 0.03 -1.24 0.01
IL7R P16871 Y454 – – – – -1.169 0.001
IL6ST
(gp130)

P40189 Y905
Y764

1.271
1.30

0.02
0.0001

-
1.321

-
0

-
1.104

-
0.002

SOCS3 O14543 Y205 -1.428 0 -1.282 0.0002 -1.343 0.0003
EP300
(HAT)

Q99558 S104
S89

1.17
-

0.0003
-

-1.326
-

0
-

-
-

-
-

STAM Q92783 Y527 -1.37 0.0003 1.166 0.02 1.22 0
PIM1 P11309 Y218 1.256 0 -1.351 0 – –

CCND1
(cyclin1)

P29385 T283 1.112 0.04 – – 1.114 0.01

GRB2 P62993 Y209 – – -1.129 0.001 – –

AKT1 P31749 T308
S473

-1.121
1.245

0.03
0

-
1.126

-
0.03

-
1.361

-
0

AKT3 Q94243 S472
T305

-
-1.094

-
0

1.175
-

0.02
-

-
-1.154

-
0.004

PIK3R1 P27986 S608
Y528
Y556

1.908
-1.419

-

0
0.0002

-

1.107
1.163
1.71

0.01
0.002
0.01

-
-
-

-
-
-

PIK3R2 O00459 Y612
Y471

1.67
-

-.01
-

1.521
1.150

0.04
0.05

-
-

-
-

CBL P22681 Y684
Y728
Y773

1.611
1.090
1.391

0
0.01
0

-
-

1.115

-
-

0.03

1.199
1.353

-

0.04
0
-

SOS1 Q07889 S1208
S1234

1.71
-

0.005
-

1.42
-1.04

0.006
0.05

-1.199
-

0.04
-
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Selection of peptides differentially phosphorylated between non-infected group and S. Enteritidis challenge group in the cecum. The UniProt ID identifies the protein, while the p-site
identifies the specific phosphorylation target site on that protein. Fold-Change indicates the directionality of phosphorylation status for each treatment compared to control. The p-value is
the measure of significance (a = 0.05). UniProt IDs and p-site correspond to human proteins for annotation purposes.
*= Phosphorylation site.
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TABLE 9 | Members of the T cell receptor signaling pathway showing differential phosphorylation between Salmonella enterica serovar Enteritidis-infected cecal tissue
and non-infected cecal tissue.

4 hours pi 8 hours pi 24 hours pi

Peptide name UniProt ID p-site* Fold change p-value Fold change p-value Fold change p-value

HRAS P01112 T35 1.695 0.001 1.260 0.001 – –

CBL P22681 Y684
Y728
Y773

1.611
1.090
1.391

0
0.01
0

-
-

1.115

-
-

0.03

1.199
1.353

-

0.04
0
-

MAPK3
(ERK1)

P27361 T193 1.160 0.03 1.194 0 – –

MAP3K8
(COT)

P41279 S400
T290

-1.476
-1.166

0
0.004

1.248
1.104

0.002
0.002

-1.301
-

0
-

PRKCQ
(PKC q)

Q04759 T546 -1.386 0 1.189 0.002 -1.136 0.01

MAPK14
(p38 a)

Q16539 Y323
Y181

1.314
-

0.005
-

1.136
-

0.04
-

1.228
-

0.03
-

CHUK
(IkkA)

O15111 S194
T34

1.086
-

0.02
-

-
1.191

-
0.005

1.262
-

0.002
-

MAP3K7
(TAK1)

O43318 T177
S446

-
1.160

-
0.006

1.365
-

0.02
-

-
1.215

-
0.001

MAP2K1
(MEK1, MKK1)

Q02750 S222
S300

-1.280
1.133

0.001
004

1.140
1.230

0.03
0.0003

-
1.105

-
0.02

ITK Q08881 Y191
Y523

-
1.357

-
0.002

-
1.164

-
0.01

-1.408
1.194

0
0.02

LCK P06289 Y504
Y393

-
-1.306

-
0

-1.070
1.090

0.04
0.05

-1.230
-1.120

0.001
0.02

AKT1 P31749 T308
S473

-1.121
1.245

0.03
0

-
1.126

-
0.03

-
1.361

-
0

AKT3 Q94243 S472
T305

-
-1.094

-
0

1.175
-

0.02
-

-
-1.154

-
0.004

NFkB1A
(IkB)

P25963 Y46
S36
S194

1.193
-

1.086

0.04
-

0.02

1.178
-
-

0.01
-
-

-
-

1.262

-
-

0.003
RAF1 P04049 S43

S343
S259

-
1.219

-

-
0.003

-

-
-

1.297

-
-

0.03

-
-1.10
-

-
0.001

-
PIK3R1 P27986 S608

Y528
Y556

1.908
-1.419

-

0
0.0002

-

1.107
1.163
1.71

0.01
0.002
0.01

-
-
-

-
-
-

PIK3R2 O00459 Y612
Y471

1.67
-

0.01
-

1.521
1.150

0.04
0.05

-
-

-
-

FOS P01100 S349 1.199 0.004 – – 1.187 0.005
NFkB1
(NFkB p105)

P19838 S943
S938
S342

-1.583
-

1.803

0
-
0

-
-

1.233

-
-

0.004

-
-
-

-
-
-

NFkB1
(NFkB p100)

Q00653 S818
S872

1.453
1.926

0
0

-1.433
1.214

0
0.02

-
-

-
-

Calmodulin P62158 Y100
T80

-
-

-
-

-
-1.122

-
0.002

-
-

-
-

NFATC1 Q13469 S225
S175

1.253
1.706

0.04
0.007

-1.118
1.264

0.02
0.03

-
-

-
-

NFATC2 O95647 S526
S351
S302

-
1.79
1.821

-
0.001
0.001

-1.223
1.241
1.16

0
0.03
0.04

1.298
-
-

0
-
-

NFATC3 Q12968 S203 1.32 0.0004 -1.439 0 – –

PLCG1 P19174 Y717
Y675

-
-1.251

-
0

-1.245
-

0.003
-

-1.122
-1.205

0.02
0.006

SOS1 Q07889 S1208
S1234

1.71
-

0.005
-

1.42
-1.04

0.006
0.05

-1.199
-

0.04
-

CD28 P10747 Y192 1.368 0 – – 1.111 0.03
JUN P05412 Y59

Y69
-1.452
1.138

0.001
0.03

-
1.178

-
0.03

-1.688
-

0
-

CDC42 P60953 Y64 1.42 0 1.218 0.005 – –

(Continued)
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proteins in the cytoplasm of a cell are in their phosphorylated
form. Following T cell receptor (TCR) stimulation, cytoplasmic
NFAT proteins are dephosphorylated and translocate from the
cytoplasm to the nucleus where they regulate transcription of key
cytokine genes. Thus, based on the findings here the increased
phosphorylation of NFAT prevents the protein from
translocating to the nucleus. The significant phosphorylation of
the adapter protein GRB2, SOS, and the MAPKs (MEK1, ERK1,
and p38) and the JUN and FOS proteins demonstrates the
activation of the transcription factor, AP-1. AP-1 controls a
number of cellular processes including differentiation,
proliferation, and apoptosis (Karin et al., 1997). Lastly, The
Ser/Thr kinase COT, CHUK (Ikk-A), NF-kB1A (IkB), and
NF-kB (p105 and p100), all significantly phosphorylated
within 4-8 h of infection with S. Enteritidis (Table 9), but
all were found to be no different than non-infected control
levels by 24 h (Table 4). Both NFAT and NF-kB are
transcription factor that when phosphorylated can regulate
genes responsible for both the innate and adaptive immune
responses when activated by various intra- and extra-cellular
stimuli then translocate into the nucleus and stimulates the
expression of genes involved in a variety of immune functions
(Zanoni and Granucci, 2012; Banoth et al., 2015). Secondly,
phospholipase C-1 (PLCG1) and calmodulin were significantly
dephosphorylated in the S. Enteritidis-infected cecal tissue by 4
hours post-infection when compared to the non-infected control
cecal tissue. The importance of this is twofold: PLCG1 generates
second messenger molecule inositol 1,4,5-trisphosphate (IP3)
(Essen et al., 1997). IP3 binds to calcium channel receptors on
the endoplasmic reticulum (ER) induces the release of calcium
(Ca2+) into the cytosol of the T cell.
DISCUSSION

Understanding both sides of the host –Salmonella interaction is
essential in discovering alternative strategies to manage
infections in poultry. The host’s antimicrobial immunity and
the bacteria’s evasion of that immunity both rely on appropriate
regulation of transcriptional and signaling networks. To date, the
majority of the studies in the chicken-Salmonella interaction has
been microbe-centric, concentrating on the pathogen’s infection
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
of the bird intestine by using the Salmonella pathogenicity
islands 1 and 2 (SPI-1 and SPI-2) that encode a specialized
type III secretion system (T3SS) to secrete multiple protein
effectors into the intestinal epithelium which manipulate the
host cell biology to aid in bacteria invasion, intracellular survival,
and to modulate host immune responses (Barrow et al., 2012;
Figueira and Holden, 2012; Wigley, 2014; Eng et al., 2015). On
the host side of the interaction, the transcriptional and signaling
descriptions of the interaction has concentrated on the post-
infection period starting 2 days after the initial infection by the
pathogen. This breach results in a directed innate immune
response to purge the bacterium and includes the release of
antimicrobial peptides (Crhanova et al., 2011; Garcia et al.,
2020), activation of pattern-recognition receptors (Keestra
et al., 2013, Kogut, 2022a; Kogut, 2022b), release of
chemokines and cytokines (Withanage et al., 2005; Bernd et al.,
2007; Rychlik et al., 2014; Meijerink et al., 2021), and recruitment
of a variety of immune cells (Van Immerseel et al., 2003; Bernd
et al., 2007; Pieper et al., 2011; Meijerink et al., 2021).

Therefore, what is needed is more insight into the immediate
response of the chicken to the Salmonella infection process (first
24 hours). For example, chickens infected with Salmonella do not
develop clinical disease and the acute inflammatory response is
short-lived (Wigley, 2014). Thus, it is vital to understand how the
chicken responds to a Salmonella breach of the mucosal barrier
system and what is involved in the regulation of the intestinal
response that prevents excessive intestinal inflammation and
damage yet does not eliminate pathogen colonization. Our
recent development of chicken-specific peptide arrays for
kinome analysis of host phosphorylation-based cellular
signaling responses provided us with the opportunity to
develop a more detailed understanding of the chicken host-
pathogen interactions with Salmonella (Arsenault and Kogut,
2015; Perry et al., 2020). We have used this technology to
describe the immunometabolic phenotypic changes in the
avian cecum of Salmonella-infected chickens that decreased the
host responsiveness resulting in the establishment of persistent
colonization starting around 4 days after the initial infection
(Kogut et al., 2016).

Overall, in all the pathways described here, the majority of the
differential phosphorylation events between the infected cecal
tissue compared to the non-infected control tissue occurred with
TABLE 9 | Continued

4 hours pi 8 hours pi 24 hours pi

Peptide name UniProt ID p-site* Fold change p-value Fold change p-value Fold change p-value

GSK3b P49884 Y351
S144

-
-1.38

-
0

-1.188
1.347

0.003
0

-
-

-
-

PAK1 Q13153 T422
S198
T212

-
-1.28
1.442

-
0.02
0.02

-
1.332
1.275

-
0

0.04

1.195
1.071

-

0.001
0.05
-

June 2022
 | Volume 12 | Article
Selection of peptides differentially phosphorylated between non-infected group and S. Enteritidis challenge group in the cecum. The UniProt ID identifies the protein, while the p-site
identifies the specific phosphorylation target site on that protein. Fold-Change indicates the directionality of phosphorylation status for each treatment compared to control. The p-value is
the measure of significance (a = 0.05). UniProt IDs and p-site correspond to human proteins for annotation purposes.
*= Phosphorylation site.
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the first 4-8 hours post-infection. In general, from 8-24 hours
post-infection, there was a decrease in phosphorylation
alterations in the infected tissue with a return to control levels
of phosphorylation. Based on the signaling pathways that were
differentially activated (TLR, NOD, chemokine, apoptosis, JAK-
STAT), the chicken responds very rapidly with an orchestrated
innate response: recognition (TLR and NOD signaling pathway),
attraction of activated immune cells (chemokine and JAK-STAT
signaling pathways), and the prevention/reduction in pathogen
numbers (apoptosis).

Based on the findings described here, the chicken pattern
recognition receptors, Toll-like receptors (TLR) and nucleotide-
binding oligomerization domains receptors (NOD), recognized
molecular associated microbial patterns (MAMPs) associated
with S. Enteritidis (Tables 4, 5; Supplemental Figures 1 and
2). The activity of both pathways was activated (phosphorylated)
4-8 hours post-infection and their activity decreased by 24 post-
infection. Pathways analysis suggests that NOD1 and NOD2 are
specifically involved in the immediate recognition of a
Salmonella in chickens. NOD1 and NOD2, two prototypic
NLRs, sense the cytosolic presence of bacterial peptidoglycan
fragments that escaped from endosomal compartments, driving
the activation of NF-kB and MAPK, cytokine production and
apoptosis (Li et al., 2017; Tao et al., 2017). However, NOD2
appears to be absent in birds (Boyle et al., 2013). There is no
evidence, based on the pathway analysis, that inflammasome-
mediated pathways were involved the chicken recognition of
S. Enteritidis.

Although kinome analysis of the S. Enteritidis-infected tissue
does not provide the specific TLR that initiated the TLR signaling
pathway in the chicken, previous studies have convincingly
shown that recognition of flagellin by TLR5 is the primary
recognition receptor that stimulates the bird’s innate response
(Iqbal et al., 2003). Is also possible that TLR4 that recognizes LPS
on the Salmonella cell wall and TLR21 which recognizes CpG
(bacterial unmethylated DNA) could be involved in initiating the
TLR signaling pathway as both have been found in chickens
(Higgs et al., 2006). However, chickens are very refractory to LPS
except at high levels not found in bacterial cell walls (Adler and
DaMassa, 1979; Keestra and Van Putten, 2008).

Chemokines are small chemoattractant peptides that provide
directional cues for the cell trafficking and thus are vital for
protective host response. In addition, chemokines regulate
several biological processes of hematopoietic cells that lead to
cellular activation, differentiation and survival. The chemokine
signal is transduced by chemokine receptors expressed on the
hematopoietic immune cells. After receptor activation, several
diverse downstream pathways are activated which encompass a
number of biological activities of hematopoietic cells that lead to
cellular activation, differentiation and survival. Based on the
findings here, the kinomic analysis of the chemokine signaling
pathway demonstrates the activation of three downstream
pathways: (1) the MAPK/JAK-STAT cascades involved in cell
migration, cytokine production, and cell survival, (2) the PI3K!
AKT! Itk cascade that regulates leukocyte transmembrane
migration and actin reorganization, and (3) the CCL5 ! PLC
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
! PKC cascade that causes the induction of nitric oxide,
production of reactive oxygen species, and degranulation
(Hughes et al., 2001; Wang et al., 2005; Sick et al., 2006;
Hughes et al., 2007). All three cascades were highly
phosphorylated in the 4 h post-infection cecal tissue when
compared to the non-infected control tissue. From 8-24 h
post-infection, there is a dramatic increase in either
dephosphorylation events or no differences from the control
inn the S. Enteritidis-infected tissues. The kinome analysis of the
timing of the chemokine signaling pathway coincides with our
previous studies where we found that paratyphoid Salmonella
serovars induced a rapid (within 4 h) inflammatory response
characterized by an influx of heterophils (the primary
granulocytic cell the gastrointestinal tract of chickens (Kogut
et al., 1993; Kogut et al., 1994; Genovese et al., 1999; Swaggerty
et al., 2006).

Apoptosis is a genetically regulated process of caspase-
dependent form of cell death of damaged or infected cells in
response to intrinsic or extrinsic signaling cascades (Galluzzi et al.,
2018; Wemyss and Pearson, 2019). Typically, in the intestine
apoptosis of epithelial cells from the mucosa occurs with little, if
any, inflammation and disruption of the epithelial barrier integrity
(Schwerk and Schultze-Osthoff, 2005). However, Salmonella-
induced cell death (apoptosis, necroptosis, pyroptosis) are
crucial components of bacterial-mediated gastroenteritis in
mammals (Kim et al., 1998; Fink and Cookson, 2007; Hefele
et al., 2018; Wemyss and Pearson, 2019). Alternatively, the major
paratyphoid Salmonella serovar infections of poultry leads to little
or no clinical signs of disease (Barrow et al., 2012) which may
coincide with the fact that there have been no reports of
Salmonella-induced cell death in the chicken intestine during
colonization and infection. Based on the findings here,
S. Enteritidis infection of the cecum induces the apoptosis
signaling pathway when compared to the non-infected control
cecal tissue. More specifically, in fact, based on the alterations in
phosphorylation, S Enteritidis infection stimulated both intrinsic
and extrinsic apoptotic signaling cascades (Table 7; Supplemental
Figure 4). The lack of clinical signs of disease in chickens during
paratyphoid Salmonella infection, the importance of maintaining
both intestinal homeostasis and the intestinal barrier during the
initial phase of infection, strongly suggests that the apoptotic
pathway outlined here is a host defense strategy to limit
bacterial replication and survival (Sellin et al., 2014). Limiting
the initial infection and replication of the pathogen may be an
important component of the ‘disease tolerance’mechanism of host
defense that is unique to the chicken-Salmonella interaction that
we have described previously (Kogut and Arsenault, 2017; Lee
et al., 2020). Finally, we found no evidence, based on
phosphorylation events, of either of the pro-inflammatory forms
of cell death, necroptosis nor pyroptosis in the Salmonella-infected
cecal tissues. Specifically, necroptosis is an inflammatory-
mediated, caspase-independent cell death mechanism. We have
shown clearly (Table 7; Supplemental Figure 4) that caspases 3, 6,
and 8 are all phosphorylated; thus activated as part of the extrinsic
apoptosis pathway. Further, pyroptosis is a highly inflammatory
cell death pathway that requires the development of an
June 2022 | Volume 12 | Article 899395
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inflammasome which mediates the event. We found no evident of
an inflammasome development in our studies.

Further kinome pathway analysis of the S. Enteritidis-infected
cecal tissue revealed the differential phosphorylation of individual
peptides in the JAK-STAT pathway (Table 8). The JAK-STAT
pathway is a signaling cascade that provides a direct mechanism to
translate an extracellular signal into a transcriptional response, in
S. Enteritidis-infected cecal tissue. The JAK-STAT system consists
of three main components: (1) a receptor; (2) Janus kinase (JAK);
and (3) Signal Transducers and Activator of Transcription (STAT)
(Hu et al., 2021). Based on the results from the present experiment
(Table 8), the IFN-a, IFN-g, IL-2, and IL-6 cytokine family
(gp130) receptors were phosphorylated; whereas, IL-4, IL-10
were dephosphorylated, and IL-7 receptor showed no change
from the non-infected control cecal tissue, at 4 and 8 hours after
infection, but was dephosphorylated at 24 h post-infection. IFN-g
is characteristic of a Th1 response whereas IL-2 is normally
produced by T cells during an immune response and involved
in growth, proliferation, and differentiation of T cells to become
“effector” T cells (Cantrell and Smith, 1984; Smith, 1988).
Traditionally, IL-6 is a pro-inflammatory cytokine involved in
stimulating an immune response during infection which may very
well be the case with these findings. However, we also consider
strong evidence that IL-6 is involved in metabolic function, rather
than just immune response. IL-6 induction has been found to
stimulate a metabolic reprogramming [Pavlov and Tracey (2012);
Flint et al., 2016 and Ghanemi and St Amand (2018)] which could
be happening here with the initiation of an innate response to
Salmonella infection. Salmonella infection activates the innate
immune system as described above but activating the innate
immune system places considerable energy and resource
demands on the chicken that requires amplified metabolic
requirements and nutrient consumption (Klasing, 2007; Klasing,
2017). The increased phosphorylation of the IL6ST (gp130)
receptor throughout the initial 24 hours of infection with
Salmonella may be an immunometabolic signature of the
instigation of the innate immune response.

Neither the IL-4R nor the IL7R were activated (phosphorylated)
during the first 24 h after S. Enteritidis infection in the cecum when
compared to the non-infected control tissues. Since IL-4 normally
induces differentiation of naïve T helper cells to Th2 cells and IL-7 is
involved in early T cell development, it is undoubtedly too early in
the immune process for responses, the results are suggestive of
premature involvement of T cell-mediated immune responsiveness
so early in the infection process. Interestingly, the IL2RB was
phosphorylated throughout the 24 hr initial infection period.
Classically, IL-2 was described as a T cell growth factor and to
also stimulate growth promoting activity in B cells and NK cells
(Henney et al., 1981; Robb et al., 1981; Waldmann et al., 1984).
However, we showed 20 years ago that IL-2 can directly activate
chicken heterophils to exert effector functions and induce heterophil
activation (Kogut et al., 2002). It has subsequently been proven that
IL-2 has functional activity that connects innate and acquired
immunity (reviewed Bendickova and Fric, 2020).

Both the type I interferon (IFNAR1, IFN-a) and type II
interferon receptors (IFNGR1, IFN-g) were phosphorylated 4-8
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
hours after cecal infection with S. Enteritidis. Traditionally, IFN-
a is an antiviral cytokine, but recent evidence suggests that it is
involved further in the development of innate immunity by
playing a role in restricting bacterial infections, including
Salmonella (Alphonse et al., 2021). In fact, further evidence is
that IFN-a signaling can be regulated by the NOD-1 receptor
(Kienes et al., 2021). We can speculate that the sensing of the S.
Enteritidis infection by NOD-1, as described above, can lead to
the production of IFN-a that controls the level of colonization
and infection by the pathogenic bacteria in the chicken cecum.
We have further shown that IFN-g can activate in vitro
heterophil functional activity against Salmonella (Kogut et al.,
2001; Kogut et al., 2005) and the presence of IFN-g and IL-2 in a
S. Enteritidis immune cytokine cocktail protects day-old chicks
against Salmonella infections mediated by activated heterophils
(Kogut et al., 1996; Verduzzo et al., 2009).

The dephosphorylation of SOCS3 suggests that Salmonella
virulence factors are not directly involved in the inhibition of
cytokine signaling during the early infection period in the cecum.
Alternatively, the host is initiating the innate response necessary
to fight infection through the release of cytokines and that the
activation of the negative regulator of cytokine signaling is not
required at this time.

Cytokine receptor proteins lack enzymatic activity, thus are
dependent upon JAKs to initiate signaling upon binding of their
ligands. The JAK family has four members: JAK1, JAK2, JAK3
and tyrosine kinase 2 (TYK2) (Hu et al., 2021). The STAT family
consist of seven members: STAT1, STAT2, STAT3, STAT4,
STAT5a, STAT5b, and STAT6 (Hu et al., 2021; Nobel et al.,
2021). We observed a selective activation of the JAK proteins
with JAK2 and JAK3 the only JAK family members that were
phosphorylated in the ceca from the S. Enteritidis-infected
chickens (Table 8). JAK2 signaling is activated by interferon
receptors and the gp130 receptor family (IL-6R) and is an
essential tyrosine kinase for initiating the innate immune
response (Pena et al., 2010). JAK3 is predominantly expressed
in hematopoietic lineage and intestinal epithelial cells, but its role
in cytokine signaling is more restricted than other JAKs with IL-
2R, IL-4R, and IL-7R being the most common receptors (Kumar
et al., 2007; Mishra et al., 2012). In the intestinal epithelium, IL-2
induces activation of Jak3 to facilitate/maintain mucosal
homeostasis including mucin secretion and tight junction
proteins (Kumar et al., 2021).

STAT5b is the sole member of the STAT family that is
phosphorylated in the cecum during the initial infection process
(4-24 hours) by S. Enteritidis. JAK-STAT5B signaling in the
intestine is involved in the host response to inflammation and
infection (Nobel et al., 2021). In the intestine, STAT5B activation
is regulated by specific members of IL-2 family of cytokines
(Awasthi et al., 2021) and IL-6 (Jiang et al., 2009; Rani and
Murphy, 2016) is involved in multiple intestinal physiological
responses including mucosal barrier function through tight
junction permeability, mucin production, and regeneration and
proliferation of intestinal epithelial stem cells (Han et al., 2009;
Gilbert et al., 2015; Karin and Clevers, 2016; Degirmenci et al.,
2018). However, activated STAT5 is short-lived and undergo rapid
June 2022 | Volume 12 | Article 899395

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Kogut et al. Immunity During Early Salmonella Infection
deactivation (Grimley et al., 1999). Combined with the cytokine
receptor phosphorylation data discusses previously (IL2R and
IL6R), it is reasonable to assume that STAT5B phosphorylation
found here is involved in maintaining the cecal function during
the initial Salmonella infection stage.

Stimulation of the T cell receptor results in the activation of the
TCR signal transduction pathway. This pathway can activate the
transcription factors nuclear factor kB (NF-kB), nuclear factor of
activated T-cells (NFAT), and activator protein 1 (AP-1), that
induce expression of cytokine genes (Smith-Garvin et al., 2009).
However, based on up-stream regulators, neither NFAT nor NF-
kB are activated through the T cell receptor pathway. First, the
NFAT transcription factor family are regulated by calcium
signaling which is critical to activation of NFAT because
calmodulin activates the serine/threonine phosphatase
calcineurin. Nuclear import of NFAT is dependent on the
calcium level inside of a cell. If the calcium level drops, the
exporting kinases in a nucleus rephosphorylate NFAT causing
the transcription factor to revert into its inactive state and is
exported back to the cytosol where maintenance kinases finish
the rephosphorylation to keep it in the inactivated state (Baba and
Kuroski, 2016; Park et al., 2020). Here we found a significant
dephosphorylation in calmodulin, meaning that there is a dramatic
reduction in calcium levels in the S. Enteritidis-infected tissue thus
inhibiting NFAT activity. Second, NFAT requires the activity of
PLC-1, which generates the second messengers, diacylglycerol
(DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 induces an
increase in the concentration of cytoplasmic calcium (Ca2+) and
activation of the Ca2+-dependent phosphatase calcineurin, which
results in the rapid activation of NFAT, which is followed by its
translocation to the nucleus (Baine et al., 2009). Thus, the
dephosphorylation of PLCG1 prevents NFAT activation due to
the decrease in intracellular calcium transport into the immune
cells. Likewise, the dephosphorylation of PLCG1 inhibits the
generation of DAG which is a vital second messenger in NF-kB
activation via the T cell receptor. However, activation of NF-kB by
PRRs in the innate response does not require PLCG1 generation of
the DAG molecule to activate downstream proteins. PRRs use
MyD88-dependent pathways to activate NF-kB activity (Akira
et al., 2006, Kumar et al., 2011).

One intriguing finding from the current studies that links with
our previous report on Salmonella persistence is the consistent
dephosphorylation of phospholipase cg1 (PLCG1) enzyme in the S.
Enteritidis -infect cecal tissue (Kogut et al., 2017). This ‘targeting’ of
PLCG1 by Salmonella seems to be a feature of infection between 24-
96 hours post-infection. Even though we are not aware of what
bacterial factors may be involved in dephosphorylating PLCG1, it is
reasonable to assume that this action is part of the asymptomatic
inflammatory response of chickens that leads to the development of
a persistent Salmonella infection in the chicken. Further it appears
possible that Salmonella inhibiting PLCG1 phosphorylation is part
of the unique survival strategy of paratyphoid Salmonella in poultry
that minimizes host defenses mechanisms (disease resistance)
during the initial infection and then further uses the inhibition of
PLCG1 activity as part of the immunometabolic reprogramming
that converts host defense strategy to disease tolerance. Disease
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
tolerance is the ability of the host to limit the damage caused by both
the pathogen and the host immune response, i.e., immunopathology
(Ayres and Schneider, 2012). PLCG1 would be a logical focal point
of the initial Salmonella colonization/infection repertoire since it is
involved in regulating innate immune functions including
phagocytosis, the oxidative burst, cell migration and TLR-
mediated signaling (Bae et al., 2017; Zhu et al., 2018; Jing
et al., 2021).
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