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Diabetes causes hyperglycemia, which can create a stressful environment for cardiac
microvascular endothelial cells (CMECs). To investigate the impact of diabetes on the
cellular metabolism of CMECs, we assessed glycolysis by quantifying the extracellular
acidification rate (ECAR), and mitochondrial oxidative phosphorylation (OXPHOS) by
measuring cellular oxygen consumption rate (OCR), in isolated CMECs from wild-type
(WT) hearts and diabetic hearts (db/db) using an extracellular flux analyzer. Diabetic
CMECs exhibited a higher level of intracellular reactive oxygen species (ROS), and
significantly reduced glycolytic reserve and non-glycolytic acidification, as compared to
WT CMECs. In addition, OCR assay showed that diabetic CMECs had increased maximal
respiration, and significantly reduced non-mitochondrial oxygen consumption and proton
leak. Quantitative PCR (qPCR) showed no difference in copy number of mitochondrial
DNA (mtDNA) between diabetic and WT CMECs. In addition, gene expression profiling
analysis showed an overall decrease in the expression of essential genes related to b-
oxidation (Sirt1, Acox1, Acox3, Hadha, and Hadhb), tricarboxylic acid cycle (TCA) (Idh-3a
and Ogdh), and electron transport chain (ETC) (Sdhd and Uqcrq) in diabetic CMECs
compared to WT CMECs. Western blot confirmed that the protein expression of Hadha,
Acox1, and Uqcrq was decreased in diabetic CMECs. Although lectin staining
demonstrated no significant difference in capillary density between the hearts of WT
mice and db/db mice, diabetic CMECs showed a lower percentage of cell proliferation by
Ki67 staining, and a higher percentage of cellular apoptosis by TUNEL staining, compared
with WT CMECs. In conclusion, excessive ROS caused by hyperglycemia is associated
with impaired glycolysis and mitochondrial function in diabetic CMECs, which in turn may
reduce proliferation and promote CMEC apoptosis.

Keywords: diabetes, fatty acid oxidation, mitochondrial oxidative metabolism, glycolysis, cardiac microvascular,
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INTRODUCTION

Obesity is the leading cause of insulin resistance and drives
obesity-associated type 2 diabetes, which is highly prevalent in
Western countries (1, 2). Diabetes is a major cause of morbidity
and mortality in the Western world (3). Over time, impaired
function of pancreatic islets in type 2 diabetes patients lead to
persistent hyperglycemia, which is associated with diabetic micro-
vascular and macro-vascular complications, including acute
myocardial infarction, diabetic retinopathy, cerebrovascular
accident, and lower-limb amputation (4, 5).

Diabetic patients have elevated plasma levels of lipoproteins
and triglycerides, which can cause vascular endothelial damage
(6, 6). Additionally, sustained hyperglycemia associated with
increased oxidative stress impairs endothelial cell replication
and accelerates endothelial cell apoptosis via mitochondrial
dysfunction in both type 1 and type 2 diabetes (7–9). Both
oxidative phosphorylation (OXPHOS) and glycolysis are
functionally important for angiogenic responses of vascular
endothelial cells (10). Although OXPHOS results in higher
ATP production, endothelial cells rely heavily on glycolysis to
rapidly meet their energy and metabolic demands (11, 12).

Type 2 diabetes mellitus is characterized by abnormalities in
insulin signaling, fatty acid metabolism, and mitochondrial
OXPHOS (13). Adenosine triphosphate (ATP) is generated in
mitochondria via OXPHOS using glucose metabolism-derived
acetyl-CoA and fatty acid metabolism-derived acyl-CoA as
energy substrates (14). In general, type 2 diabetes is associated
with increased fatty acid utilization and reduced glucolytic
metabolism. Notably, pathways that allow endothelial cells
to upregulate glycolysis in response to hypoxia are impaired
in diabetes (15). Dodd et al. (16) reported that reduced
succinate content leads to decreased hypoxia-inducible
factor 1-a (HIF1-a) signaling in diabetic hearts. Moreover,
hyperglycemia-induced oxidative stress depletes nicotinamide
adenine dinucleotide (NAD+), impairs glycolysis, and inhibits
electron transport and ATP generation, therefore promoting
endothelial dysfunction and diabetic vascular complications
(17), suggesting that diabetes-associated oxidative stress
might also impair pathways that allow endothelial cells to
upregulate OXPHOS.

The impact of diabetes on fatty acid metabolism and
glycolysis in cardiac microvascular endothelial cells (CMECs)
is not well studied. To study the cellular metabolism of diabetic
CMECs, we assessed glycolysis by quantifying the extracellular
acidification rate (ECAR), and OXPHOS by measuring cellular
oxygen consumption rate (OCR), in isolated CMECs from
wide-type C57BL/6 mouse hearts (WT) and diabetic mouse
hearts (db/db). We found that diabetic CMECs showed
decreased glycolytic reserve but significantly increased maximal
respiration, with no change in the copy number of mitochondrial
DNA compared withWT CMECs. Furthermore, gene expression
profiling studies in diabetic CMECs versus WT CMECs revealed
an overall inhibition of the expression of essential genes related
to b-oxidation, tricarboxylic acid cycle (TCA), and electron
transport chain (ETC).
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MATERIALS AND METHODS

CMECs Isolation and Culture
Animals were treated according to approved protocols and
animal welfare regulations of the Institutional Animal Care
and Use Committee of the Medical College of Georgia,
Augusta University. Cardiac microvascular endothelial cells
(CMECs) were isolated from the hearts of male C57BL/6 (WT)
and diabetic (db/db) mice (The Jackson Laboratory, Bar Harbor,
ME, USA) using the enzyme dissociation method. Briefly, mice
were euthanized, and ventricular cardiac tissues were minced
into 1 mm3 size and digested with 0.1% collagenase IV and 1 U/
mL dispase in DMEM medium. Then, the cells were subjected to
CD31 positive magnetic-activated cell sorting (MACS) using
CD31 microBeads in combination with MS columns (Miltenyi
Biotec Inc, Auburn, CA). The isolated CD31-positive cells were
plated on fibronectin/gelatin coated wells (0.5 mg fibronectin in
100 ml 0.1% gelatin) and cultured in endothelial cell medium
(Cell Biologics, Chicago, IL) containing 5% fetal bovine serum,
VEGF, heparin, EGF, ECGS, hydrocortisone, L-glutamine and
antibiotic-antimycotic.

Body Weight and Blood Glucose
Measurement
For measuring non-fasting blood glucose, the blood glucose
was measured directly on a drop of blood from the mouse
tail by a disposable test trip using EvenCareG2 glucometer
(Medline, Taiwan).

Seahorse Analysis of Mitochondrial
Respirometry
OCR and ECAR were quantified using Seahorse XF 96
extracellular flux analyzer (Agilent Technologies, Lexington,
MA, USA) as previously described with minor modifications
(18, 19). Briefly, the cells were plated at 10,000 cells/well in the
Seahorse XF cell culture microplate. The sensor cartridge for XF
analyzer was hydrated in a 37°C non-CO2 incubator the day
prior to experimentation. On the day of the Seahorse assay, the
medium was changed to Seahorse XF DMEM base medium
without phenol red. For OCR assay, the medium was
supplemented with 10 mM glucose, 2 mM L-glutamine, and
1 mM pyruvate, pH 7.4, and metabolic parameters were
measured using the Mitochondrial Stress Test Kit (Agilent,
Cat. No. 103015-100, Cedar Creek, TX). OCR assay was
performed using the following protocol after calibration and
equilibration: four cycles of wait 3 min, mix 3 min, measure
3 min (basal value) and then measure values after each of the
following injections (see Figure 2A for a description): 2.5 µM
oligomycin (final concentration), 2 µM carbonyl cyanide-
p- t r ifluoromethoxypheny l -hydrazon (FCCP) (fina l
concentration), and 0.5 µM rotenone/antimycin A (Rot/AA)
(final concentration). For ECAR assay, the medium was
supplemented with 2 mM L-glutamine, and 1 mM pyruvate,
pH 7.4, and metabolic parameters were measured using the
Glycolytic Rate Assay kit (Agilent, Cat. No. 103344-100, Cedar
Creek, TX). ECAR assay was performed using the following
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protocol after calibration and equilibration: four cycles of wait
3 min, mix 3 min, measure 3 min (basal value) and then measure
values after each of the following injections (see Figure 3A for a
description): 10 mM glucose (final concentration), 0.5 µM
rotenone/antimycin A (final concentration), and 50 mM 2-
Deoxy-D-glucose (2-DG) (final concentration). Post assay,
wells were washed, cells lysed, and a bicinchoninic acid assay
(BCA) protein assay was performed for protein content. Data
presented are normalized for total protein per well. Each point
represents an average of 8 to 12 different wells.

Isolation and Quantification of Genomic
DNA and Messenger RNA
Genomic DNA was extracted from CMECs with the QIAamp
DNA blood mini kit (QIAGEN, Valencia, CA) following the
manufacturer’s instructions.

Total RNA was extracted by RNAzol RT (Molecular Research
Center, Inc, Cincinnati, OH, USA) following the manufacturer’s
instructions. cDNA was synthesized from total RNA using the
RevertAid First Strand cDNA Synthesis kit (Thermo Scientific).
The cDNA was used to perform quantitative PCR on a CFX96
Touch Real-Time PCR Detection System (Bio-Rad Laboratories,
Hercules, CA) using PowerUp SYBR Green Master Mix (Thermo
Fisher, Waltham, MA). Amplification was performed at 50°C for
2min, 95°C for2min, followedby45 cyclesof95°C for 15 s, 55°C for
15s, and 72°C for 1min. The primer sequences are listed inTable 1.

Western Blotting Assay
Western blotting was performed as previously described (18, 19).
Briefly, the protein samples were separated on 10% SDS–
polyacrylamide gels, and the gel was then transferred onto
nitrocellulose membranes (LI-COR Biosciences). The
Frontiers in Endocrinology | www.frontiersin.org
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membranes were blocked with Intercept™ blocking buffer (LI-
COR Biosciences) and blotted with rabbit anti-HADHA (1:1000;
10758-1-ap, Proteintech), rabbit anti-ACOX1 (1:1000; 10957-1-
ap, Proteintech), rabbit anti-UQCRQ (1:1000; 14975-1-ap,
Proteintech), and mouse anti-GAPDH (1:5000, MAB374, EMD
Millipore) overnight at 4°C. After washing with 1 × TBST, the
membranes were tagged with IRDye 680 goat anti-rabbit IgG and
IRDye 800 goat anti-mouse IgG (1:10,000, LI-COR Biosciences)
at room temperature for 1 h. The probed blot was scanned using
an Odyssey infrared imaging system (LI-COR Biosciences).

Total ROS Detection in Endothelial Cells
ROSwasmeasuredusing the total ROS-IDTotal ROSDetectionKit
(ENZ-51011, Enzo Life Sciences, Farmingdale, NY) according to
the manufacturer’s instructions. Briefly, CMEC fromWT and db/
db mouse hearts were seeded in 35mm glass-bottom culture dishes
(P35G-1.5-10-C,MatTek,Ashland,MA)overnight.ROS in thecells
were detected by staining with the Oxidative Stress Detection
Reagent (Green). NucBlue® Live Cell Stain ReadyProbe™ reagent
(R37605, Thermo) was used to counterstain cells.

Histological Analyses
Toquantify capillary density in hearts, 100µl Griffonia Simplicifolia
lectin at 1mg/ml (L-1100, Vector Laboratories, Burlingame, CA)
was injected into the right jugular vein. The hearts were fixed with
10% formalin followed by 30% sucrose, frozen in OCT and
processed for sectioning. Heart slides were blocked with 10%
donkey serum, and then stained overnight at 4°C with goat Anti-
Griffonia Simplicifolia Lectin (1:200, Vector laboratories). Slides
were incubated with donkey anti-goat secondary antibody
conjugated to Alexa 555 (1:400, Life Technologies, Carlsbad, CA);
Slides weremounted using VECTASHIELDHardSetmountmedia
withDAPI. Stainingwas visualized using a Zeiss 780 laser scanning
microscope (Carl Zeiss, Thornwood, NY). Capillary density was
calculated as the number of capillaries per mm2.

To quantify cell proliferation in cardiac endothelial cells, we
performed double immunostaining with Ki-67 for the analysis of
cell proliferation, and CD31 for microvessels. After carrying out
epitope retrieval using citrate buffer in a 2100 Retriever (Prestige
Medical, Model No. 210050, England), we blocked tissue section
with 5% goat serum and streptavidin/biotin (Vector laboratories,
Inc. Burlingame, CA). Heart sections were stained overnight at 4°C
with biotinylated anti-mouse/rat Ki67 (1:100, eBioscience) and
rabbit anti-CD31 (1:100, Cell Signaling Technology). Slides were
incubated with streptavidin Alexa Fluor 488 conjugate (1:400, Life
Technologies, Carlsbad, CA) and Alexa Fluor555 conjugated goat
anti-rabbit IgG (1:400, Life Technologies, Carlsbad, CA). Cell
proliferation was calculated by the percentage of Ki67 positive
nuclei to the total number of CD31 positive cells in each field.

Cell apoptosis was assessed by dual immunofluorescence
staining for CD31 and terminal deoxynucleotidyl-transferase
dUTP nick-end-labeling (TUNEL) in heart tissues as we
described previously (19). After epitope retrieval, heart sections
were stained overnight at 4°C with rabbit anti-CD31 (1:100, Cell
SignalingTechnology), followedbyTUNEL staining next dayusing
DeadEnd™ Fluorometric TUNEL System (Promega, Madison,
WI). Slides were then incubated with Alexa Fluor555 conjugated
TABLE 1 | Primer list.

Gene Sequence (5′–3′)

b-actin FWD (mouse) AGAGCATAGCCCTCGTAGAT
b-actin REV (mouse) GCTGTGCTGTCCCTGTATG
Sirt1 FWD (mouse) GTTGGTGGCAACTCTGATAAATG
Sirt1 REV (mouse) GTCATAGGCTAGGTGGTGAATATG
Acox1 FWD (mouse) CCTTGGCCAATGCTCTCATTA
Acox1 REV (mouse) CGCAGCAGTATAAACTCTTCCC
Acox3 FWD (mouse) CCCTAGAGAAGCTACGAGAACT
Acox3 REV (mouse) CAGGCAGTTAATCAGCACTAGAA
Hadha FWD (mouse) CCATGTCGGCCTTCTCAAA
Hadha REV (mouse) AGTGAAGAAGAAAGCTCTCACAT
Hadhb FWD (mouse) AGACCATGGGCCACTCT
Hadhb REV (mouse) CTTCTTGGCCAGACTATGAGAAC
Idh3a FWD (mouse) GGCCATCCATCTATGAATCTGT
Idh3a REV (mouse) GTATTCTCCTTCCGTGTTCTCTC
Ogdh FWD (mouse) CATGTATCACCGCAGGATCAA
Ogdh REV (mouse) GGTCTTTCCCATCACGACAG
Sdhd FWD (mouse) GATGCCGACATCGTGGTAAT
Sdhd REV (mouse) GTTACCGACTACGTTCATGGG
Uqcrq FWD (mouse) CTTTGCTGAAATAGCTTGGGAAG
Uqcrq REV (mouse) GAACCTGGCGCGGATAC
MT-ND6 FWD (mouse) CACCCAGCTACTACCATCATTC
MT-ND6 REV (mouse) GTTTGGGAGATTGGTTGATGTATG
POLB FWD (mouse) GGCGGATGGTGTACTCATT
POLB REV (mouse) ACTGTGGTGTTCTCTACTTCAC
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhang et al. Cellular Metabolism of Diabetic Endothelial Cells
goat anti-rabbit IgG (1:400, Life Technologies, Carlsbad, CA).
Slides were mounted using VECTASHIELD HardSet Mounting
Medium with DAPI (Vector Laboratories), cell apoptosis was
classified as a percentage of TUNEL positive nuclei in relation to
the total number of CD31 positive cells in each field.

Statistical Analysis
All data were expressed as the mean± standard error of the mean
(SEM). A two-tailed student’s t-test (GraphPad Prism version
7.0) was used to compare data between two groups. A value of
P<0.05 was considered statistically significant.
RESULTS

Diabetes Is Associated With Weight Gain
and Hyperglycemia in Mice
As expected, db/db mice gained significantly more body weight
(Figures 1A, B) and developed severe hyperglycemia compared to
WT mice at 6 months of age (Figure 1C). Previous studies
demonstrated that hyperglycemia associated with diabetes
increases cellular reactive oxygen species (ROS) production and
decreases cellular antioxidant defense capacity (20, 21). Accordingly,
we detected increased intracellular ROS levels in CMECs from db/
db hearts compared to WT hearts shown in Figure 1D.

Diabetic CMECs Have Increased OXPHOS
Maximal Respiratory Capacity
To determine the impact of diabetes on CMEC metabolism, we
monitored real-time cellular OCR following sequential addition of
Frontiers in Endocrinology | www.frontiersin.org 4
oligomycin, FCCP, rotenone, and antimycin A (Figures 2A, B).
The results indicate that diabetic CMECs have significantly
increased maximal respiration in comparison with WT CMECs
(Figure 2C). Meanwhile, the proton leak and non-mitochondrial
oxygen consumption were significantly decreased in diabetic
CMECs compared to WT CMECs (Figure 2C). However, no
significant change was noted for basal respiration or ATP
productionbetweendiabeticCMECsandWTCMECs (Figure 2C).

Diabetic CMECs Have Impaired Glycolytic
Capacity
To study the impact of diabetes on the glycolytic function of
CMECs, we quantified ECAR, an index of cellular glycolytic
capacity, in CMECs (Figures 3A, B). ECAR is comprised of both
glycolytic and non-glycolytic acidification, and the non-
glycolytic acidification was decreased in diabetic CMECs
compared to WT CMECs (Figure 3C). Although no significant
difference was detected in basal glycolysis or glycolytic capacity
between diabetic CMECs and WT CMECs (Figure 3C), diabetic
CMECs exhibited a lower capacity to increase the glycolytic rates,
as reflected by the glycolytic reserve (Figure 3C).

Diabetes Down-Regulates Genes Involved
in Mitochondrial Fatty Acid b-Oxidation,
Tricarboxylic Acid (TCA) Cycle, and
Electron Transport Chain (ETC) in CMECs
Next, we examined the transcription of a set of essential genes in
fatty acid b-oxidation, TCA cycle, and ETC by quantitative real-
time PCR (q-rtPCR). The results demonstrated that genes
involved in fatty acid transport and oxidation (Sirt1, Acox1,
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FIGURE 1 | Comparison of WT and db/db mice. (A) A db/db mouse in comparison to an age-matched C57BL/6 WT mouse; (B) Body weight (g) in 6-month-old
WT mice and db/db mice; results are shown as mean ± SEM (n = 3, * p < 0.05); (C) Blood glucose levels (mg/dl) in 6-month-old WT mice and db/db mice fed with
standard chow, (n = 3, **p < 0.01); (D) Green fluorescence intensity was used as a measure of relative intracellular ROS in WT CMECs and diabetic CMECs.
May 2021 | Volume 12 | Article 642857

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhang et al. Cellular Metabolism of Diabetic Endothelial Cells
A B

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 20 40 60 80 100 120

O
CR

 (p
m

ol
/m

in
/u

g)

Time (min)

Mitochondrial Respira�on

C

Basal Respiration

Maximal Respiration

Proton Leak

ATP Production

Non-Mitochondrial Oxygen Consumption
0

5

10

15

20

25

Cell Mito Stress Test

O
CR

 (p
m

ol
/m

in
/u

g) WT-EC
db/db-EC

✱✱

✱ ✱✱

ns
ns

Oligo FCCP Rot &AA

FIGURE 2 | Assessment of oxygen consumption rate (OCR) in WT and diabetic CMECs. (A) Schematic representation of the protocol employed in data collection
and calculations of mitochondrial respiration; (B) Normalized OCR data; (C) Parameters of mitochondrial respiration function calculated from the OCR tracing in (B).
Results are normalized to total cellular protein and shown as mean ± SEM (n = 8), NS p > 0.05, *p < 0.05, **p < 0.01.
B

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 20 40 60 80 100 120

EC
AR

 (m
pH

/m
in

/u
g)

Time (min)

Glycoly�c Func�on

Non-Glycolytic Acidification
Glycolysis

Glycolytic Capacity

Glycolytic Reserve
0

10

20

30

40

50

Glycolysis Stress  Test

EC
A

R
  (

m
pH

/m
in

/u
g)

WT-EC db/db-EC

✱✱ ✱✱

ns

ns

Glucose
Rot/AA

2-DG
A

C

Rot/AA 2-DGGlucose

FIGURE 3 | Assessment of extracellular acidification rate (ECAR) in WT and diabetic CMECs. (A) Schematic representation of the protocol employed in data
collection and calculations of glycolytic function. (B) Normalized ECAR data. (C) Parameters of glycolytic function calculated from the ECAR tracing in (B). Results
are normalized to total cellular protein and shown as mean ± SEM (n = 12), ns p > 0.05, **p < 0.01.
Frontiers in Endocrinology | www.frontiersin.org May 2021 | Volume 12 | Article 6428575

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhang et al. Cellular Metabolism of Diabetic Endothelial Cells
Acox3, Hadha, Hadhb), TCA cycle (Idh3a and Ogdh), and ETC
(Sdhd and Uqcrq) were significantly downregulated in diabetic
CMECs compared to WT CMECs (Figures 4A–C). We further
examined the protein level of essential genes related to fatty acid
oxidation and the ETC. As shown in Figures 4D, E, the
expression of HADHA and Acox1 (related to fatty acid b-
oxidation), and UQCRQ (component of the mitochondrial
ETC), was significantly reduced in CMECs from diabetic mice
in comparison to WT mice. The number of mitochondria can be
estimated by quantifying the mitochondrial DNA copy number
(22). To determine whether diabetes impacts the number of
mitochondria in CMECs, we quantified the copy number of
mitochondrial DNA (mtDNA) from genomic DNA isolated
from CMECs. As shown in Figure 4F, the mitochondrial DNA
copy numbers were similar in diabetic CMECs and WT CMECs.

Effects of Diabetes on Cardiac
Angiogenesis, Proliferation, and Apoptosis
To determine the impact of diabetes on cardiac angiogenesis, we
measured the capillary density in heart tissues. Immunofluorescent
staining for lectin showed no significant difference in capillary
density between WT hearts and diabetic hearts (Figures 5A, B).
However, we observed more proliferating cardiac endothelial cells
in WT hearts than in diabetic hearts by dual-immunostaining for
Ki67 and CD31 (Figures 5C, D), indicating that diabetes impairs
proliferation of cardiac endothelial cells. Next, to study the impact
of diabetes on apoptosis of cardiac endothelial cells, we performed
Frontiers in Endocrinology | www.frontiersin.org 6
immunofluorescent staining for TUNEL and CD31.We detected a
significantly higher number of TUNEL+ apoptotic endothelial cells
in diabetic hearts than in WT hearts, suggesting that diabetes
increases apoptosis of cardiac endothelial cells (Figures 5E, F).
DISCUSSION

In this study, excessive ROS caused by hyperglycemia was
associated with reduced glycolytic reserve, and reduced
expression of enzymes involved in various metabolic pathways,
in CMECs. Moreover, compared with WT CMECs, diabetic
CMECs exhibited more cell apoptosis and less cell proliferation.

Angiogenesis is an energy-intensive process, since both
OXPHOS and glycolysis are necessary for endothelial cell
growth and angiogenic responses (10). Glucose is a primary
energy source for normal endothelial cells, which are highly
glycolytic. Repression of endothelial glycolysis by glucose
transporter isoform1 (GLUT1) inhibition can impair
developmental and pathological angiogenesis (23). In the
hearts of diabetic patients, normal cardiac metabolism is
dysregulated, as manifested as impaired glycolysis and greater
dependence on fatty acid as a major energy source (24, 25). In
diabetic patients, diabetes complications are caused in party by
increased glucose influx into endothelial cells, which leads to
impaired glycolysis and accumulation of glycolysis metabolites
(such as methylglyoxal), and degradation of VEGFR2, leading to
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perturbations in angiogenesis (26, 27). Here, we observed that,
compared with normal CMECs, the basal glycolysis rate in
diabetic CMECs was not significantly reduced. However, the
glycolytic reserve [the difference between glycolytic capacity and
glycolysis (28)], was significantly reduced, indicating that the
ability of diabetic CMECs to rely upon glycolysis to generate
ATP in response to high metabolic demand is impaired.

According to reports, hyperglycemic stress can induce diabetic
endothelial cells to transformfromglycolysis toOXPHOS.Pyruvate
kinase M (PKM) is a crucial enzyme that produces pyruvate, an
essential oxidative fuel formetabolic transformation (12).However,
a recent study showed that glucose oxidation in diabetic hearts is
decreased, while rates of fatty acid oxidation (FAO) are increased,
leading to oxidative stress damaging OXPHOS, and eventually
causing mitochondrial dysfunction. In addition, mitochondrial
dysfunction caused by metabolic stress leads to cardiomyocyte
necrosis (29). In our real-time mitochondrial OCR assay, diabetic
CMECs exhibited a significant increase in maximal respiration,
which indicates that diabetic CMECs may preferentially convert
their energy source from glycolysis to OXPHOS.

Our qRT-PCR data indicate that the diabetic CMECs have a
general decrease in mRNA levels of OXPHOS-related genes,
including fatty acid transport and oxidation (Sirt1, Acox1, Acox3,
Hadha, Hadhb), TCA cycle(Idh3a, Ogdh), ETC (Uqcrq, Sdhd)
compared with WT-CMECs. Western blots also confirmed
decrease fatty acid b-oxidation and mitochondrial ETC enzyme
protein levels. The down-regulation of OXPHOS-related genes
might explain why diabetic CMECs exhibit decreased basal
respiration and decreased ATP production, along with increased
Frontiers in Endocrinology | www.frontiersin.org 7
maximal respiration. The inhibition of OXPHOS-related gene
expression could be caused by oxidative stress induced by
hyperglycemia. Many studies have demonstrated that
hyperglycemia increases ROS, contributing to diabetic endothelial
apoptosis and dysfunction (30, 31). We observed increased cardiac
endothelial cell apoptosis in db/db-hearts, a result consistent with
the report by Peng C. et al. (25). They demonstrated that high
glucose could induce apoptosis through increased ROS in cardiac
microvascular endothelial cells. Oxidative stress has been shown to
induce caspase-dependent apoptotic genes and inhibit metabolic
gene expression (32, 33). These results are consistent with previous
reports from other investigators. Li Q. et al. (34) reported that
diabetes upregulates endothelial miR-34a by recruiting p66Shc
through an oxidant-sensitive mechanism, thereby downregulating
endothelial Sirt1 levels. ACOX1 and peroxisome proliferator-
activated receptor-d (PPAR-d) were also significantly decreased
in the muscle of diabetic rats (35). Recent studies have shown
significantly reduced activity of HADHA, along with lipid
accumulation, in diabetic hearts (36). Sdhd is one of the genes
encodingmitochondrial complex I and II subunits andwas found to
be down-regulated in obese subjects and patients with type 2
diabetes (37).

For immuofluorescent staining of mouse CD31, a heat
epitope retrieval process in citrate buffer is necessary.
Interestingly, we observed that heat-induced epitope retrieval
can increase the detection of nuclear antigens, such as Ki67.

In summary, high glucose-induced ROS accumulation in
diabetic cardiac microvascular endothelial cells could disrupt
normal ATP production by inhibiting both mitochondrial
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FIGURE 5 | Comparison of cardiac angiogenesis, endothelial proliferation, and apoptosis between WT-hearts and db/db-hearts. (A) Immunofluorescent staining of
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electron transport system and glycolysis, therefore inhibiting
CMEC proliferation and inducing CMEC apoptosis in diabetic
hearts (Figure 6).
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