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The discovery of mutually exclusive mutations in BRAF (Akbani et al., 
2015) and NRAS (Alexandrov et al., 2013) genes and recent find-
ings of inactivating alterations in NF1 (Al-Khadairi & Decock, 2019; 
Andersen et al., 1993) gene in melanoma together suggested the 
RAF-MEK-ERK pathway was a major driver of melanoma tumorige-
nicity. This resulted first in the development of drugs that specifically 
target V600E mutant forms of BRAF, such as vemurafenib (Busam, 
Hedvat, Pulitzer, von Deimling, & Jungbluth, 2013) and dabrafenib 

(Chatterjee et al., 2018). However, these drugs are only effective 
in some, but not all, tumours with BRAF mutations and can cause 
paradoxical MAPK pathway activation in tumours with wild-type 
BRAF (Colombino, 2012; Davies et al., 2002; Dreno et al., 2018). The 
initial clinical success of these targeted therapies in treating BRAF-
mutant tumours has been tempered by the fact that a number of 
tumours display inherent resistance and that most of those that re-
spond initially go on to develop adaptive or acquired resistance quite 
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Abstract
Melanoma is a disease associated with a very high mutation burden and thus the pos-
sibility of a diverse range of oncogenic mechanisms that allow it to evade therapeutic 
interventions and the immune system. Here, we describe the characterization of a 
panel of 102 cell lines from metastatic melanomas (the NZM lines), including using 
whole-exome and RNA sequencing to analyse genetic variants and gene expression 
changes in a subset of this panel. Lines possessing all major melanoma genotypes 
were identified, and hierarchical clustering of gene expression profiles revealed four 
broad subgroups of cell lines. Immunogenotyping identified a range of HLA haplo-
types as well as expression of neoantigens and cancer–testis antigens in the lines. 
Together, these characteristics make the NZM panel a valuable  resource for cell-
based, immunological  and xenograft studies to better understand the diversity of 
melanoma biology and the responses of melanoma to therapeutic interventions.
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rapidly (Hatzivassiliou et al., 2010). The efficacy of BRAF inhibitor 
treatment is improved by the addition of MEK inhibitors, but again 
not all tumours respond and resistance still develops (Hatzivassiliou 
et al., 2010). Furthermore, a majority of advanced melanoma pa-
tients failed to respond to immune checkpoint blockade therapies. 
Therefore, understanding why some tumours do not respond to 
these therapies while others do has been the subject of intensive 
research (Hauschild et al., 2012; Heidorn et al., 2010). Particularly, 
the high levels of mutation burden, genetic instability and marked 
heterogeneity of gene expression patterns in melanoma are likely 
to be contributing factors to both initial drug response and intrin-
sic or acquired resistance (Hélias-Rodzewicz et al., 2015). Currently, 
cultured cell models of melanoma are widely used to study mech-
anisms and drug responses. However, due to the genetic hetero-
geneity of melanoma cell lines, it would be advantageous to have 
access to large panels of well-characterized cell lines that are rep-
resentative of the multiplicity of driver mechanisms and varied pat-
terns of gene expression seen in the disease. We have established 
a panel of NZM cell lines cultured from melanoma patient samples 
(Hélias-Rodzewicz et al., 2017; Henare et al., 2012), some of which 
have been used previously to study melanoma function (Huang et al., 
2013; Improta et al., 2013; Jeffs et al., 2009; Kakadia et al., 2018). 
Here, we present a more comprehensive genomic and gene expres-
sion characterization of the cell panel using Sequenom MassARRAY, 
whole-exome and RNA sequencing to allow wider use of these lines 
as a resource for studying the impact of genetic diversity in mela-
noma on therapeutic responses.

In total, 102 NZM melanoma cell lines were prepared from bi-
opsies of metastatic melanoma samples from patients presenting at 
clinics in Auckland and Palmerston North, New Zealand. All patients 
gave appropriate written informed consent, as previously described 

(Improta et al., 2013). At the time of sample collection, the standard 
of care for melanoma in New Zealand was surgery and chemother-
apy. Therefore, most samples collected were from drug-naïve pa-
tients. The preparation and use of the cell lines were conducted in 
accordance with protocols approved by the Northern Region Health 
and Disability Ethics Committee (AKL/2000/184/AM04). Four of 
the lines were repeated biopsies from later surgeries, so lines NZM1 
and 2; NZM41&47; NZM42&48; NZM62&64 are pairs of lines from 
the same subject. The cells were passaged in α-modified minimal es-
sential medium (MEM-α) supplemented with  penicillin (100  U/ml), 
streptomycin (100 µg/ml), amphotericin B (0.25 µg/ml; GIBCO Life 
Technologies),  insulin (5 μg/ml), transferrin (5 μg/ml), sodium sele-
nite (5 ng/ml; Roche Diagnostics GmbH) and 5% foetal bovine serum 
(FBS). Short tandem repeats (STR) analysis was performed for cell 
line authentication (Table S1). Importantly, cells were maintained in 
a 5% oxygen environment at all times to minimize changes in cell 
characteristics caused by growth in non-physiological atmospheric 
conditions used in standard cell culture.

First, the NZM cell lines were genotyped using Agena Bioscience 
Oncocarta V1.0 and MelaCarta MassARRAY panels, which, respec-
tively, interrogated 238 mutations in 19 genes and 72 mutations in 
20 genes (see Supplementary Methods). The results of this geno-
typing are summarized in Figure 1 and Table S2. Next, whole-exome 
sequencing was performed on a sub-panel of 52 NZM cell lines using 
an Ion Proton next-generation sequencing platform (Thermo Fisher) 
and the manufacturer's protocol (see Supplementary Methods). Raw 
exome sequence data can be downloaded using the NCBI accession 
numbers in Table S3. Raw data analysis, alignment and variant calling 
were performed using a Torrent Suite Software and Ion Reporter 
Software v5.6 (Thermo Fisher). A summary of the driving muta-
tions of BRAF, NRAS and NF1 identified in the NZM lines is shown 

F I G U R E  1   Mutational landscape of the panel of 102 NZM cell lines as divided by oncogenic mutations of BRAF and NRAS. DNA 
extracted from 102 NZM cell lines were genotyped by Sequenom analysis for hotspot mutations commonly found in melanomas. Lists of 
those mutations were presented in Supplementary Methods. The top row indicates major genotype groups based on BRAF and NRAS driver 
mutations. The second row indicates the number of hotspot mutations per cell line. Middle rows indicate colour-coded individual mutations 
found in 102 NZM cell lines. Side panels indicate the percentage of cell lines with hotspot mutations per gene. The bottom row indicates cell 
line names
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in Figure  2 and Table  S4. All but one of the variants identified in 
mass array analysis were validated by sequencing except in NZM3, 
where the mass array indicated BRAF V600K while whole-exome 
sequencing indicated V600E. This analysis also revealed potentially 
functional NF1 variants occur in 7 of 52 lines (Figure 2 and Table S4). 
Furthermore, whole-exome sequencing data also allowed a more 

detailed understanding of genetic variations in tumour suppressor 
genes. Reduction in copy numbers of tumour suppressor genes was 
common in the NZM lines (Figure  3a and Table  S5). In particular, 
homozygous deletion of CDKN2A was found in all major genotype 
groups, while PTEN deletion was mainly found in the BRAF-mutant 
group (Figure 3b). In contrast, TP53 mutations and deletions are rare 

F I G U R E  2   Mutational landscape of NZM cell lines as divided by mutations of BRAF and NRAS and NF1. Whole-exome sequencing was 
performed in 52 NZM cell lines. The top row indicates major genotype groups based on BRAF and NRAS driver mutations, of which the 
double-negative group was further divided into the NF1-mutant group and the triple-negative group. The second row indicates the number 
of hotspot mutations per cell line. Middle rows indicate colour-coded individual mutations found in 52 NZM cell lines. Side panels indicate 
the percentage of cell lines with mutations per gene. The bottom row indicates cell line names

F I G U R E  3   Deletion of tumour 
suppression genes in NZM lines. The 
deletion of tumour suppression genes 
(TSGs) was identified using whole-exome 
sequencing data of 52 NZM cell lines. (a) 
Percentages of the NZM lines with TSGs 
deletion. (b) Distribution of homozygous 
deletion of PTEN and CDKN2A in the 
mutational landscape of NZM lines. 
The top row indicates the number of 
mutations of BRAF, NRAS, PTEN and 
CDKN2A genes per cell line. Middle rows 
indicate colour-coded individual mutations 
of BRAF, NRAS, PTEN and CDKN2A 
genes found in 52 NZM cell lines. Side 
panels indicate the percentage of cell lines 
with mutations per gene. The bottom row 
indicates cell line names
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F I G U R E  4   Comparison of % of cell 
lines or tumour samples containing various 
genetic alterations. (a) Comparisons are 
with published data from TCGA (Cancer 
Genome Atlas, 2015) except for TERT 
promoter mutation frequency incidence 
(Huang et al., 2013). (b) Comparison of 
allele frequency of BRAF and NRAS 
mutations. Genotype and allele frequency 
were assessed using Sequenom analysis 
as described in Supplementary Methods. 
Statistical difference was analysed by a 
two-tailed t test with ** and *** indicates 
p < .01 and p < .001, respectively

F I G U R E  5   TERT promoter mutations 
in NZM lines. DNA extracted from NZM 
cell lines was genotyped by Sequenom 
analysis for hotspot mutations, including 
the 2 TERT promoter mutations, C228T 
and C250T. (a) Oncoprint plot of TERT 
promoter mutations in alignment with 
BRAF and NRAS driver mutations in 
NZM cell lines. (b) Frequency of mutant 
alleles of TERT C228T and TERT C250T 
mutations. Statistical difference was 
analysed by a two-tailed t test with **** 
indicates p < .0001



140  |     TRAN et al.

in the NZM cells as is the case in melanoma tumours. Furthermore, 
expression patterns of key signalling molecules were also profiled by 
Western blotting (Figure S1).

The overall frequency of major melanoma-associated genetic al-
terations in the NZM cell lines studied is summarized in Figure 4a. 
This analysis revealed the ratio of major known melanoma mutations 
in the NZM cell line panel is very similar to that described in primary 
melanoma tumours (Lim, Menzies, & Rizos, 2017; Maertens et al., 
2013). A total of 44 lines of the panel (43%) had mutations in BRAF, 
of which 38 lines were V600E mutant, 3 lines were V600K mutant 
and one each of V600R, G466A and G469A mutations. A further 
23 lines (23%) had NRAS mutations, of which 21 lines were Q61 
mutant. A further 2 lines had known KRAS-activating mutations. As 
expected, RAS and BRAF mutations were mutually exclusive in the 
lines. Notably for the major driver mutations, the V600 mutations 
in BRAF and Q61 mutation in NRAS were on average heterozygous. 
In contrast, other variants in these genes tended to be homozygous 
(Figure 4b,c). These patterns were similar to the zygosity status of 
BRAF V600 and NRAS Q61 observed in melanoma tumours in pre-
vious studies (Marshall et al., 1993; Marshall et al., 1992; Mitsiades 
et al., 2011; Poulikakos, Zhang, Bollag, Shokat, & Rosen, 2010). 
Other cell lines representing rarer melanoma genotypes were also 
observed. For example, two of the lines had GNA mutations, but not 
NRAS or BRAF mutations, and so were presumably of uveal origin 
(Reifenberger et al., 2004). Activating mutations in PK3CA (4 lines), 

PDGFRA (2 lines), CTNNB1 (3 lines) and MET (1 line) were also ob-
served. In addition, the mass array analysis revealed 60/102 of the 
cell lines contained C228T or C250T mutations in the TERT promoter 
(Figure  5a), which is a similar ratio to that previously described in 
melanoma tumours (Stagni et al., 2018). Interestingly, we also note 
that the C228T variant was more commonly seen in heterozygous 
form compared to the C250T variant (Figure 5b).

Next, we performed RNA sequencing analysis for a panel of 
28 NZM lines (see Supplementary Methods). Raw RNA sequence 
data can be downloaded using the NCBI accession numbers in the 
Table S6. Variant allele frequencies were highly correlated between 
the DNA and RNA sequence data (Figure S2). Hierarchical cluster-
ing of gene expression profiles revealed four broad subgroups of 
cell lines (Figure  6), of which differences in the major pathways 
corresponded to interleukins (C1), extracellular matrix proteins 
(ECM; C2), cell cycle (C3) and stress response (C4; Figure  6 and 
Figure S3). We noted that BRAF and NRAS mutations randomly 
distributed between the four subgroups of cell lines (Figure  6), 
consistent with similar descriptions of discordance between gene 
expression and mutation status noted in previous reports (Jeffs 
et al., 2009; Sweetlove et al., 2015; Tsai et al., 2008). We further 
characterized the expression patterns of specific genes of interest 
across the subgroups (MITF, SOX10, SOX9, SMAD3, CTNNB1, AXL, 
NGFR, EGFR, ERBB3, YBX1, EBF3 and PXDN; Figure S4). Overall, 
except for cluster C1, clusters C2 to C4 corresponded broadly in 

F I G U R E  6   Transcriptionally defined 
subgroups of NZM lines. RNA extracted 
from 28 NZM lines was sequenced, 
and the data were used for hierarchical 
clustering analysis. Four major clusters 
annotated C1 to C4 were identified. 
Pathway analysis was performed on the 
top 500 expressed ENSEMBL genes 
(RPKM) of each cluster against Reactome 
database, which revealed differences 
in the major pathways corresponding 
to interleukins (C1), extracellular matrix 
proteins (ECM; C2), cell cycle (C3) and 
stress response (C4; more details about 
pathway analysis can be found in Figure 
S3)
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gene expression patterns to neural crest-like (low MITF expres-
sion signature), melanocytic (high MITF expression signature) and 
transitory clusters, respectively, identified in earlier studies (Jeffs 
et al., 2009; Tsoi et al., 2018).

Finally, we performed immunogenotyping in the NZM lines to 
facilitate the use of these cell lines for immuno-oncology research 
(see Supplementary Methods). Firstly, for each NZM line, we iden-
tified up to two class I HLA haplotypes in both DNA and RNA 
sequence data with generally good concordance between RNA-
based and DNA-based HLA haplotype identification (Table  S6). 
Then, neoantigens were predicted by combining: (a) DNA and 
RNA sequence variants, (b) the ability of the cells to present pep-
tides encoded by these variants to the immune system, given their 
HLA haplotypes, and (c) expression of the variants (Figure 7a,b). 
Cancer–testis antigens (CTA) are not generally expressed in so-
matic cells but can be recognized by the immune system when 

expressed in tumours (Welsh, Rizos, Scolyer, & Long, 2016); some 
CTAs such as MAGE-A3 have been used in immunotherapeutic 
vaccine trials in melanoma (Wilmott et al., 2013). The expression 
of RNAs encoding CTA was quantified in these cell lines to facili-
tate their future use in CTA research. For example, NZM104 and 
NZM3 co-expressed detectable levels of multiple CAGE and MAGE 
family RNAs, respectively (Figure S5).

In summary, the NZM early passage primary melanoma cell panel 
has already proved valuable in melanoma research. Here, we have 
shown that these lines represent a wide range of melanoma gen-
otypes, signalling pathway subsets inferred from RNA expression 
profiles and immunogenic features. Given that all lines in the panel 
are directly comparable to one another since they were derived and 
maintained identically, they provide a uniquely useful resource in 
which to study the impact of the genetic, gene expression and immu-
nogenic diversity found in melanoma. These cell lines can be made 

F I G U R E  7   Neoantigen identification 
in NZM lines. Neoantigens were predicted 
by combining DNA and RNA sequence 
variants, the ability of the cells to present 
peptides encoded by these variants to the 
immune system and the expression of the 
variants (more details can be found in the 
Supplementary Methods). (a) Number of 
expressed neoantigens in NZM lines. (b) 
Correlation between variant number and 
expressed neoantigen number
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available upon reasonable request for non-commercial research to 
investigators able to cover the handling and shipping costs involved.
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